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Abstract

This paper addresses the generation of explanations with

visual examples. Given an input sample, we build a sys-

tem that not only classifies it to a specific category, but also

outputs linguistic explanations and a set of visual examples

that render the decision interpretable. Focusing especially

on the complementarity of the multimodal information, i.e.,

linguistic and visual examples, we attempt to achieve it by

maximizing the interaction information, which provides a

natural definition of complementarity from an information

theoretical viewpoint. We propose a novel framework to

generate complemental explanations, on which the joint dis-

tribution of the variables to explain, and those to be ex-

plained is parameterized by three different neural networks:

predictor, linguistic explainer, and example selector. Expla-

nation models are trained collaboratively to maximize the

interaction information to ensure the generated explanation

are complemental to each other for the target. The results

of experiments conducted on several datasets demonstrate

the effectiveness of the proposed method.

1. Introduction

When we explain something to others, we often provide

supporting examples. This is primarily because examples

enable a concrete understanding of abstract explanations.

With regard to machines, which are often required to justify

their decision, do examples also help explanations?

This paper addresses the generation of visual explana-

tions with visual examples. More specifically, given an in-

put sample, we build a system that not only classifies it to

a specific category but also outputs linguistic explanations

and a set of examples that render the decision interpretable.

An example output is shown in Fig. 1.

The first question to be raised toward this problem would

be “How do examples help explanations?”, or equiva-

lently, “Why are examples required for explanations?”

This work is done at the University of Tokyo.
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Figure 1: Our system not only classifies a given sample to

a specific category (in the red dotted box), but also outputs

linguistic explanations and a set of examples (in the blue

dotted box).

To answer these questions, we consider the characteristics

of two types of explanations pertaining to this work: lin-

guistic explanation, and example-based explanation.

• Using language, one can transmit information effi-

ciently by converting an event to a shared concept be-

tween humans. Inherently, the conversion process is in-

vertible; thus, the whole event can not necessarily be

represented by language alone.

• Using examples, one can transmit information more

concretely than language can, as the saying, “a picture

is worth a thousand words.” However, the way of the

interpretation for the given examples is not determined

uniquely. Thus, using examples alone is inappropriate

for the explanation.

These explanations with different characteristics can be ex-

pected to complement each other, that is, from a lexicon,

a thing that contributes extra features to something else in

such a way as to improve or emphasize its quality [1].

The next important questions here are as follows: “How

can the complementarity be achieved?” and “Which ex-

planation is complemental, and which is not?”.

We answer the former question from the information
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theoretical viewpoint, that is, interaction-information [20]

maximization. Interaction-information is one of the gener-

alizations of mutual information defined on more than three

random variables, and provides the natural definition of the

complementarity: The increase of dependency of two vari-

ables when the third variable is conditioned.

We propose a novel framework in this work to build a

system that generates complemental explanations. First,

we introduce a linguistic explainer and an example selec-

tor parameterized by different neural networks, in addition

to the predictor that is the target of the explanation. These

two auxiliary models are responsible for generating expla-

nations with linguistic and examples, respectively, and they

are simultaneously trained to maximize the interaction in-

formation between variables of explanations and the output

of the predictor in a post-hoc manner. Because the direct

optimization of interaction-information with regard to the

selector is intractable owing to the number of combination

of examples, we maximize the variational lower bound in-

stead. One more additional classifier, referred to as rea-

soner, appears in the computation of the lower bound. Tak-

ing linguistics and example-based explanations as inputs,

the reasoner attempts to predict the output of the predic-

tor. To enable the optimization of the selector with back-

propagation, we utilized a reparameterization trick that re-

places the sampling process of the examples with a differ-

entiable function.

Under our framework, where complementarity is defined

by information theory, we can understand better the comple-

mental explanation related to the latter question. It can be

mentioned that complemental examples for a linguistic ex-

planation are a discriminative set of examples, by which one

can reason to the correct conclusion with the given linguis-

tic explanations, but cannot be achieved with different pos-

sible explanations. Complemental linguistic explanations

to examples are also considered to be explanations that can

construct such a set of examples. More details will be dis-

cussed in the subsequent section.

We conducted experiments on several datasets and

demonstrated the effectiveness of the proposed method.

The contributions of this work are as follows:

• Propose a novel visual explanation task using linguistic

and set of examples,

• Propose a novel framework for achieving complemen-

tarity on multimodal explanations.

• Demonstrate the effectiveness of the proposed method

by quantitative and qualitative experiments.

The remainder of this paper is organized as follows. In

Section 2, we discuss the related work of the visual expla-

nation task. Further, we explain the proposed framework

to achieve complemental explanations in Section 3 and de-

scribe and discuss the experiments that we performed on it

in Section 4. Finally, we conclude our paper in Section 5.

2. Related Work

The visual cognitive ability of a machine has improved

significantly primarily because of the recent development in

deep-learning techniques. Owing to its high complexity, the

decision process is inherently a black-box; therefore, many

researchers have attempted to make a machine explain the

reason for the decision to verify its trustability.

The primary stream is visualizing where the classifier

weighs for its prediction by assigning an importance to each

element in the input space, by propagating the prediction to

the input space [24, 3, 29, 23, 30, 8, 31], or by learning

the instance-wise importance of elements [4, 5, 15] with an

auxiliary model. As a different stream, some works trained

the generative model that outputs explanations with natu-

ral language [12, 21] in a post-hoc manner. Although most

studies are focused on single modality, our work exploits

multimodal information for explanations.

Prototype selection [25, 7, 13, 16, 25, 10] or machine

teaching [18] can be considered as example-based expla-

nations. The essential idea of these methods is to extract

representative and discriminative (parts of) examples. In

other words, they attempt to obtain examples that represent

p(x|c), which is the distribution of sample x conditioned

on the category c. Our work is different in that we attempt

to explain the black-box posterior distribution p(c|x) such

as that represented by deep CNN. Moreover, we utilized

the linguistic information as well because the interpreta-

tion toward example-based explanation is not determined

uniquely.

Few works have treated multimodality for explanation

[21, 2], which is visual and linguistic. Although they pro-

vided visual information by referring to a part of the target

samples, we explore the method to utilize other examples

for explanation.

3. Method

The goal of this study is to build a model that generates

linguistic and example-based explanations, which are com-

plemental to each other. In this section, we describe the

proposed framework. First, in subsection 3.1, we formu-

late our novel task with the notation used throughout this

paper. Subsequently, the objective function to be optimized

is illustrated in subsection 3.2. From subsection 3.3 to 3.6,

we explain the details of the actual optimization process.

The proposed method is discussed qualitatively in subsec-

tion 3.7. Finally, its relation with other explanation methods

is mentioned in subsection 3.8.

3.1. Problem formulation

We denote by x and y the sample and the category that

are the target for explanations where y is a one-hot vec-

tor. s is a vector representing a discrete attribute, whose
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ŷ

X = {x1,x2, ...,xN}

p
o

o
li

n
g

trainable modelfreezed model

CNN

Figure 2: The pipeline of our explanation system. It holds

two auxiliary models, which are responsible for generating

explanations with linguistics and examples, respectively. In

addition, it contains a reasoner that predicts the output of

the predictor from the given explanations as described in

subsection 3.3.

every index corresponds to the type of attribute (e.g., dim1

→ color, dim2 → shape..), and the value of the vector cor-

responds to the value of attributes (e.g., 1 → red, 2 → blue

..). Attribute values are also treated as one-hot vector on im-

plementation. We assume that the attributes are assigned to

all the samples used for training the explanation model. In

this study, we utilize one attribute as an element of linguis-

tic explanation. More specifically, linguistic explanation s

contains only one non-zero value (i.e., ||s||0 = 1), and the

corresponding type-value is outputted (e.g., “because color

is red.”). To explicitly distinguish the variable representing

linguistic explanation from one representing attributes as-

signed to the samples, we denote the former by s and the

latter by ŝ. The set of candidate examples used for explana-

tion is represented by X = {(xi, ŝi,yi)}
N
i=1, and its subset

D ⊂ X , |D| = k is used as an element of the example-

based explanation. We assume
(

N

k

)

, and that the number

of combinations D, is sufficiently large. Our system gener-

ates multiple elements (s1,D1), (s2,D2), . . . , (sM ,DM ),
and construct a explanation by simply applying them to the

template as in Fig. 1.

We built a model not only categorizing the input x to

a specific class y, but also providing an explanation with

linguistics and example-based explanations s and D. We

decomposed a joint distribution p(y, s,D|x) to three prob-

abilistic models: predictor, explainer, selector, all of which

were parameterized by different neural networks:

p(y, s,D|x) = p(y|x)
predictor

p(s|x,y)
explainer

p(D|x,y, s)
selector

(1)

predictor p(y|x) is the target model of the explanation,

which categorizes sample x to y. Particularly, we study

the model pretrained for the classification task. Throughout

this paper, the weight of the predictor is frozen, and the

remaining two auxiliary models, namely, explainer and

selector, are trained to explain the output of the predictor.

explainer p(s|x,y) is the probability of linguistic

explanation s being selected given target sample x and

class y. We limit ||s||0 = 1, and the dimension and the

value corresponding to the non-zero element is used as an

explanation.

selector p(D|x,y, s) is the probability of example-based

explanation D being selected out of all candidate examples

given x, y, and s as inputs.

3.2. Objective function

We illustrate the objective function optimized for train-

ing the explanation models in this subsection. As stated

earlier, linguistic explanation s and example-based expla-

nation D are expected to be complemental to each other.

Intuitively, one type of explanation should contain the in-

formation for the target y, that is different from what the

other explanation contains.

Hence, we leverage the interaction information [20] as

an objective function. Interaction-information is a gener-

alization of the mutual information defined on more than

three random variables, and it measures how the depen-

dency of two variable increases when the third variable

is conditioned, which provides a natural definition toward

complementarity.

From the definition, the interaction information of

y, s,D conditioned on the input x is written as the differ-

ence of two mutual information:

I(y, s,D|x) = I(y, s|x,D)− I(y, s|x) (2)

where

I(y, s|x,D)

=

∫

x

∑

y,s,D

p(y, s,D,x)log
p(y, s|x,D)

p(s|x,D)p(y|x,D)
dx,

=Ep(x)





∑

y,s,D

p(s,D|x,y)p(y|x)log
p(s|x,y,D)

p(s|x,D)





(A)

(3)

and similarly,

I(y, s|x)

= Ep(x)

[

∑

y,s

p(y, s|x)log
p(s|x,y)

∑

y
p(s|x,y)p(y|x)

]

(B)

(4)

Intuitively, it measures how much linguistic explanation

s becomes useful information to identify a category y when

given a set of example-based explanation D.

The direct estimation of (3) is difficult, as calculating the

expectation over all possible D is intractable. We handle
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!

s
u

m"

w1, w2, ..., wk q(
y
|x
,
s
,D

)

function (with parameter) function (without  parameter) variable probability !"" pre-trained CNN

ŝ
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Figure 3: Structures of three neural networks representing three probabilistic models. As described in subsection 3.4, the net-

work of the selector predict the parameter of categorical distribution unlike the other two models for the ease of optimization.

this problem by (a) introducing the variational lower bound

and (b) leveraging reparameterization trick similar to [4],

which are described in subsections 3.3 and 3.4, respectively.

3.3. Maximizing variational bound

In this subsection, we consider the variational lower

bound of (A) in (3). From the definition of the KL diver-

gence, p log p ≥ p log q is applied for any distribution p
and q. Using this relation, (A) inside the expectation in (3)

can be lower-bounded as follows:

(A) ≥
∑

y,s,D

p(s,D|x,y)p(y|x)log
q(s|x,y,D)

p(s|x,D)
(5)

q(s|x,y,D) can be any distribution provided that it is nor-

malized, and the expectation of the KL divergence between

q(s|x,y,D) and true distribution p(s|x,y,D) is the dif-

ference between (A) and the lower bound. Similar to the

method in [9], we used the following

q(s|x,y,D) =
q(s,y|x,D)

q(y|x,D)
=

q(y|x, s,D)p(s|x,D)
∑

s′ q(y|x, s
′,D)p(s′|x,D)

,

and substituted it to (5). When considering parameteriz-

ing as in (1), it is computationally difficult to calculate

p(s|x,D). Considering the sampling order, we approximate

it to p(s|x,y) instead for simplicity. The first term of the

objective function used for optimization is as follows:

(5) ≈ Ep(y,s,D|x)

[

log
q(y|x, s,D)

Ep(s|x,y)[q(y|x, s,D)]

]

. (6)

q(y|x, s,D) is hereafter referred to as a reasoner, which

is expected to reason the category of input given a pair of

explanation for it.

3.4. Continuous relaxation of subset sampling

The abovementioned (6) is required to be optimized

stochastically with sampling to avoid calculating the sum-

mation over the enormous number of possible combinations

of D. In this situation, the difficulty of optimization with re-

gard to the network parameter still exists. As it involves the

expectation over the distribution to be optimized, sampling

process disables calculating the gradient of parameters, ren-

dering it impossible to apply back-propagation.

We resort on the reparameterization trick to overcome

this issue, which replaces the non-differential sampling pro-

cess to the deterministic estimation of the distribution pa-

rameter, followed by adding random noise. In particular,

the Gumbel-softmax [19, 14] function is utilized similar to

[4], which approximates a random variable represented as

a one-hot vector sampled from a categorical distribution to

a vector using continuous values. Specifically, we estimate

the parameter of categorical distribution p ∈ RN satisfying
∑N

i=1 pi = 1 by the network where N = |X | is the candi-

date set of examples. An N -dimensional vector C, which is

a continuous approximation of the categorical one-hot vec-

tor, is sampled by applying softmax to the estimated param-

eter after taking logarithm and adding a noise G sampled

from the Gumbel distribution as follows:

C[i] =
exp{(log pi +Gi)/τ}

∑N

j=1 exp{(log pj +Gj)/τ}
(7)

where

Gi = −log(−log ui), ui ∼ Uniform(0, 1), (8)

and τ is the temperature of softmax controlling the hardness

of the approximation to the discrete vector. To sample k-hot

vector representing example-based explanation D, concrete

vector C is independently sampled k times, and element-

wise maximum is taken to C1,C2, . . . ,Ck to construct a

vector corresponding to D.

3.5. Structure of networks

We parameterize three probabilistic distributions, ex-

plainer, selector, and reasoner with different neural net-

works. We elucidate their detailed structures.

8606



Explainer p(s|x,y) is represented by a neural network

that predicts the probability of each type (dimension) of

attribute is selected. The model is constituted using three

fully-connected layers as in left of Fig. 2. Taking the tar-

get sample x and the category label y as inputs, the model

projects them to the common-space and element-wise sum-

mation is applied. After one more projection, they are nor-

malized by the the softmax function. The output dimension

of the network f(x,y) is the same as that of the attribute

vector, and each dimension indicates the probability that

each type of attribute is selected as an explanation. When

training, the attribute ŝ assigned to the sample is used as

the value. Formally, for all i-th dimension of the linguistic

explanation vector,

p(s|x,y) =

{

f(x,y)[i] if s[i] = ŝ[i]

0 otherwise

For inference, the value that maximizes the output of the

reasoner (described later) for the class to be explained is

selected.

Selector p(D|x,y, s) takes the linguistic explanation s in

addition to x and y as inputs; their element-wise summation

is calculated after projecting them to the common-space. As

stated in the previous subsection, we leverage reparameter-

ization trick to render the optimization tractable owing to

the enormous number of the combination D. The network

estimates the parameter p of categorical distribution. When

sampling from a distribution, noise variables that are inde-

pendently generated k times are added to the parameter, and

the element-wise maximum is computed after the Gumbel

softmax is applied.

Reasoner q(y|x, s,D) infers the category to which the

sample x belongs, given a pair of generated explanation (s,

D). We design it by modifying the matching network [26],

which is a standard example-based classification model.

The prediction of the reasoner must be based on the given

explanations. Such reasoning process is realized by consid-

ering (1) consistency to the linguistic explanation s, and (2)

similarity to the target sample x, for each example in D.

Based on a certain reason, the reasoner decides whether

each example deserves consideration, and predicts the cate-

gory exploiting only selected examples. The weight of each

referred sample xi is determined by the visual and semantic

similarity to the target x. More formally,

q(y|x, s,D) =
∑

(xi,ŝi,yi)∈D

α(s, ŝi) w(x, s,xi, ŝi) yi (9)

q(ȳ|x, s,D) = 1−
∑

(xi,ŝi,yi)∈D

α(s, ŝi) w(x, s,xi, ŝi) (10)

where

w(x, s,xi, ŝi) =
exp(g(x, s)⊤g(xi, ŝi))
∑

(xi,ŝi,yi)∈D

exp(g(x, s)⊤g(xi, ŝi))
(11)

α indicates the function to verify the coincidence of the lin-

guistic explanation and the attribute assigned to each sam-

ple. In our setting, we set as α(s, ŝ) =
∑

i[[s[i] = ŝ[i]]]
where [[·]] is an indicator function of 1 if the condition

inside bracket are satisfied, otherwise 0. Note α(s, ŝ) ∈
{0, 1} as ||s||0 = 1. w measures the weight of each re-

ferred sample used for prediction. The probability of the

sample being assigned to each class is determined to utilize

the samples in D, which match to the linguistic explanation

as in (9). An additional “unknown” category ȳ is introduced

for convenience, indicating the inability to predict from the

input explanations. The remaining weight is assigned to

the probability of the “unknown” class, as in (10). In (11),

g(x, s) is the feature embedding implemented by the neural

network as in the right-most in Fig. 3, and the similarity is

computed by the dot product in that space following nor-

malization by the softmax function.

While the reasoner attempts to make a decision based on the

given explanations, the other two models are trained collab-

oratively to generate explanations such that the reasoner can

reach the appropriate conclusion.

3.6. Training and Inference

We parameterize the joint distribution as in (1), and the

lower bound of the objective (2) calculated by (4) and (6)

is optimized with regard to the parameters of the neural

network models representing p(s|x,y), p(D|x,y, s), and

q(y|x, s,D). Assuming that the calculation of the expec-

tation over s is feasible, although that over D is not, we

optimized the model of the selector by sampling, and that

of the explainer was optimized directly.

The processing flow in each iteration is as follows:

1. x is sampled randomly from the training dataset,

2. y is sampled randomly from the predictor p(y|x),
3. p(s|x,y) is computed for possible s,

4. D is sampled randomly from the selector p(D|x,y, s)
for each s,

5. For each sampled (x,y, s,D), the objective is calcu-

lated by (6) and (4), and the gradient of it w.r.t the

weights of all parametric models are computed.

6. All weights are updated by stochastic gradient decent

(SGD).

The inference is performed by sequentially sampling

variables from the distributions given input x. When gen-

erating linguistic explanations, M identical attribute type is

selected whose output value of the predictor is the largest,

where M is the number of attribute-examples pairs. used

for explanation. For estimating the attribute value, the one
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Figure 4: Intuitive understanding of complemental expla-

nations. The reasoner predicts the target sample x (writ-

ten as gray circles) by referring other samples based on the

similarity space (orange and blue) corresponding to each

linguistic explanation s1, s2. Considering two pairs of pos-

sible explanations (s1,D1) and (s2,D2), the expected D1

(written as green circle) is the one by which the reasoner

can reach the correct conclusion with s1; however, this can-

not be achieved with s2.

that most explains the prediction the best will be selected.

In other words, s1, s2, ... having the same attribute type, the

value maximizing q(y|x, s,D) is outputted after the corre-

sponding D1,D2, ... are sampled from the selector.

3.7. Which explanation is complemental?

By analyzing the proposed method, it provides an intu-

itive understanding of complemental explanations, from the

viewpoint of maximizing interaction information.

To understand which set D is preferred, we consider (6)

where D relates. Inside the expectation in this equation, the

numerator is the output of the reasoner, and the denomina-

tor is that averaged over s′. Given x, y, and s, the situa-

tion where the ratio becomes large is when the reasoner can

reach the correct conclusion y for given linguistic explana-

tion s with D but it can not when D is used with other s′. In

other words, an example-based explanation is complemen-

tal to its linguistic counterpart when it is a discriminative

set of examples for not only the target but also the linguistic

explanation.

The concept of “a set is discriminative” is clearly differ-

ent from “single example is discriminative” in our frame-

work. This can be understood intuitively by Fig. 4. A rea-

soner contains a different similarity space for each linguistic

explanation s. Here, we consider two possible explanations

s1, s2, and D1 which is the counterpart of s1. In this situ-

ation, the desired D for linguistic explanation s is that the

correct class is predicted for the given s, but a wrong one

is predicted for different s′. Therefore, the set should con-

tain both of the same/different classes from the predicted

dataset acc (predictor) acc (reasoner) consistency

AADB 0.647 0.646 0.738

CUB 0.694 0.434 0.598

Table 1: The accuracy of identifying the target category of

the predictor (target) and reasoner (explain), and the consis-

tency between them.

one. As shown, a naive method of example selection, such

as one selecting only one nearest sample from the target, is

not appropriate for selecting a complemental explanation.

Considering s, it relates to both terms in (2). For (6), the

same claim as that mentioned above can be applied: a com-

plemental linguistic explanation s for examples D is one

where a specific set D can be derived, instead of another see

D′. As for (4), it can be regarded as a regularizer to avoid

weighing excessively on the attribute that can identify the

target class without considering examples for selectings.

3.8. Relationship with other methods

The existing works for visual explanation explanations

(e.g., [12]) trains the classifier as well as the explanation

generator to guarantee that the generated explanations are

discriminative for the target class. In this work, we also

train the auxiliary classifier (i.e., reasoner) similar to the

existing methods; however, it naturally appears in the con-

text of interaction information (mutual information) maxi-

mization. Conversely, we found that such an intuitive idea

in these works is justified from the information theoreti-

cal viewpoint. Similarly, our method shares the idea with

methods for generating referring expression (e.g.,[28]) in

that they utilize auxiliary models.

4. Experiment

We conducted experiments to verify that the proposed

method can generate the appropriate explanation. Given

a target sample x, our system generates a prediction y

from the predictor, and explanations (s1,D1), (s2,D2), ...,
(sM ,DM ) from explanation models. We evaluated the pro-

posed method by quantifying the properties that the gener-

ated explanation should satisfy: (a) fidelity and (b) comple-

mentarity. Related to (a), we consider two types of fidelity

as follows. (a1) The target value y to be explained should

be obtained from the explanations. Moreover, (a2) The out-

putted linguistic explanation s should be correct. In addi-

tion, as for (b), we would like to assess whether the output

explanations (s,D) are complemental to each other. In the

following subsections, we describe the evaluation method

as well as discussing the obtained results after elucidating

the setting of the experiments in subsection 4.1.

4.1. Experimental setting

Dataset In our experiments, we utilized Caltech-UCSD

Birds-200-2011 Dataset (CUB) [27] and Aesthetics with
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dataset baseline (random) baseline (predict) ours

AADB 0.200 0.572 0.582

CUB 0.125 0.428 0.436

Table 2: The accuracy of identifying the attribute value of

our model and that of baselines: selecting attribute value

randomly (random), and predicting attributes by the percep-

tron (predict).

Attributes Database (AADB) [17], both of which hold at-

tributes assigned for all contained images. CUB is a stan-

dard dataset for fine-grained image recognition, and it con-

tains 11,788 images in total and 200 categories of bird

species. It contains 27 types of attributes, such as “wing

pattern” or “throat color.” AADB is a dataset created for

the automatic image aesthetics rating. It contains 10,000

images in total and the aesthetic score in [-1.0, 1.0] is as-

signed for each image. We treat the binary classification

by regarding images having non-negative scores as samples

of the positive class, and remaining samples as the nega-

tive class. Attributes are also assigned as the continuous

values in [-1.0, 1.0], and we discretized them according to

the range that it belongs to: [-1.0, -0.4), [-0.4, -0.2), [-0.2,

0.2), [0.2, 0.4), or [0.4, 1.0]. It contains eleven types of

attributes, including “color harmony” and “symmetry.” Un-

like the standard split, we utilized 60% of the test set for

CUB, and 30% of the train set for AADB as the candidates

of examples X .

Although CUB dataset is for the fine-grained task, where

the inner-class variance of the appearance is considered

small, that of AADB is large owing to the subjective na-

ture of the task. We selected these two datasets to assess the

influence of the variation of the samples within the class.

Detailed setting To prepare a predictor, we fine-tuned

a deep residual network [11] having 18 layers for each

dataset, which is pre-trained on ImageNet dataset [6]. The

optimization was performed with SGD. The learning rate,

weight decay, momentum, and batch size were set to 0.01,

10−4, 0.9, and 64, respectively. When training explana-

tion models, all networks were optimized with SGD with-

out momentum with learning rate 10−3, weight decay 10−3,

and batch size 64 for AADB and 20 for CUB. We set k, the

number of examples used for explanations, to 10 in all ex-

periments.

Empirically, we found that the linguistic explainer

p(s|x,y) tended to assign a high probability (almost 1) on

only one type of attribute, and small probability (almost

0) to the others. To avoid it, we added an extra entropy

term H(s|x,y) =
∑

s
−p(s|x,y) log p(s|x,y) to the max-

imized objective function as our goal is to generate multiple

outputs. The implementation was performed on the Pytorch

framework [22].

ours w/o x w/o y w/o s

accuracy 0.646 0.627 0.569 0.613

consistency 0.738 0.689 0.600 0.620

ours w/o x w/o y w/o s

accuracy 0.434 0.354 0.02 0.153

consistency 0.598 0.492 0.02 0.201

Table 3: The ablation study for the accuracy of identify-

ing the target category on AADB dataset (above) and CUB

dataset (below).

4.2. Fidelity

One important factor of the explanation model is the fi-

delity to the target to be explained. We conducted an ex-

periment to investigate whether the target can be obtained

from its explanation. Interestingly, our framework holds

two types of paths to the decision. One is the target pre-

dictor p(y|x) to be explained. The other is the route via

explanations interpretable for humans, i.e., y → s,D → y′

through the explainer p(s|x,y), selector p(D|x,y, s), and

reasoner q(y′|x, s,D). We evaluated the fidelity to the

model by the consistency between the interpretable deci-

sions from the latter process and that from the target pre-

dictor. In the Table. 1, we reports the consistency as well

as the mean accuracy of each models. As shown, the ex-

planation model (written as reasoner) achieved the similar

performance as the target model (written as predictor), and

considerably high consistency on both datasets.

We also conducted the ablation study to clarify the influ-

ence of three variables x,y, s on the quality of explanations.

We measured the accuracy in the same manner as above ex-

cept that we dropped one variable by replacing the vector

filled by 0 when generating explanations. The results in Ta-

ble 3 exhibits that our models put the most importance on

the category label out of three. These results are reasonable

because it contains information for which the explanation

should be discriminative.

The other important aspect for the fidelity in our task is

the correctness of the linguistic explanation. In particular,

the attribute value (e.g., “red” or “blue” for attribute type

“color”) is also estimated during the inference. We evalu-

ated the validity by comparing the predicted attributes with

that of grand-truth on the test set. The attribute value that

explains the output of the predictor y the best will be se-

lected as written in subsection 3.6. As baselines, we em-

ployed the three layers perceptron with a hidden layer of

512 dimensions (predict). It was separately trained for each

type of attribute with SGD. Moreover, we also report the

performance when the attribute is randomly selected (ran-

dom). We measured the accuracy and the results are shown

in the Table 2. As shown, our method, which generates lin-

guistic explanations through selecting examples, can pre-

dict it as accurate as the direct estimation, and the accuracy

is much better than the random selection.
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Figure 5: The mean accuracy of identifying the linguistic

explanation from the examples on AADB (left) and CUB

(right) dataset. The y-axis and x-axis indicates the accuracy

and the number of generated explnations.

4.3. Complementarity

To quantify the complementarity of explanations, we in-

vestigate how the example-based explanation D renders the

linguistic explanation s identifiable. Specifically, utilizing

the reasoner q(y|x, s,D), which is trained to reason the tar-

get from the explanation, we confirmed whether it can rea-

son to the correct conclusion only from the generated ex-

planation pair as discussed in subsection 3.7. For generated

pairs of explanations (s1,D1), (s2,D2), ..., (sM ,DM ) of

which attribute type is identical, we computed the output of

the reasoner as qij = q(y|si,Dj) (1 ≤ i, j ≤ M ) for y

obtained from the predictor. Selecting the index having the

maximum value for all j as i⋆ = argmaxi qij , we verified

i⋆ = j. The mean accuracy is compared with a baseline that

outputs the same examples for all si and results are shown

in Fig. 5. The x-axis of the figure indicates the number of

the generated explanations (i.e., M).

On both datasets, the accuracy of our model is better than

the baseline. Furthermore, as shown in Fig. 6, we observe

that the diagonal element has a high value on the confu-

sion matrix. These results demonstrate the ability of our

method to generate complemental explanations. The differ-

ence in the performance between the proposed method and

baseline on AADB is lower than on CUB. We conjecture

that one reason is the difference between appearance and at-

tributes. AADB dataset contains highly-semantic attributes

(e.g., “color harmony”) compared with those in CUB (e.g.,

“color” or “shape”). Such the semantic gap may hinder to

construct the discriminative set which renders the attribute

identifiable.

4.4. Output example

An output of our system on CUB dataset when the num-

ber of explanations is two is shown in Fig. 7. In this ex-

ample, the combination of linguistic and example-based ex-

planation seems compatible, where it will not make sense

AADB CUB

Figure 6: The confusion matrix of identifying the attribute

type from the examples on AADB (left) and CUB (right)

dataset.

throat color
is white

upper tail color
is blue

!"#$%&$

!"#$%&$

%&$

%&$

is red cockaded Woodpecker

'()%*&(

Figure 7: Example output of our system on CUB dataset.

if these pairs are switched. For instance, the below linguis-

tic explanation “throat color is white” may not be a good

explanation for the above examples.

Although not the primary scope in this work, the pro-

posed task may be extended to machine teaching task,

where the machine teaches to human by showing examples

iteratively.

5. Conclusion

In this work, we performed a novel task, that is, generat-

ing visual explanations with linguistic and visual examples

that are complemental to each other. We proposed to pa-

rameterize the joint probability of variables to explain, and

to be explained by the three neural networks. To explic-

itly treat the complementarity, auxiliary models responsible

for the explanations were trained simultaneously to maxi-

mize the approximated lower bound of the interaction in-

formation. We empirically demonstrated the effectiveness

of the method by the experiments conducted on the two vi-

sual recognition datasets.
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