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Figure 1. Examples of label-noise robust conditional image generation. Each column shows samples belonging to the same class. In

(c) and (d), each row contains samples generated with a fixed z and a varied yg . Our goal is, given noisy labeled data (b), to learn a

conditional generative distribution that corresponds with clean labeled data (a). When naive cGAN (c) is trained with (b), it fails to learn

the disentangled representations, disturbed by noisy labeled data. In contrast, proposed rcGAN (d) succeeds in learning the representations

disentangled on the basis of clean labels, which are close to (a), even when we can only access the noisy labeled data (b) during training.

Abstract

Generative adversarial networks (GANs) are a frame-

work that learns a generative distribution through adver-

sarial training. Recently, their class conditional exten-

sions (e.g., conditional GAN (cGAN) and auxiliary classi-

fier GAN (AC-GAN)) have attracted much attention owing

to their ability to learn the disentangled representations and

to improve the training stability. However, their training re-

quires the availability of large-scale accurate class-labeled

data, which are often laborious or impractical to collect in

a real-world scenario. To remedy this, we propose a novel

family of GANs called label-noise robust GANs (rGANs),

which, by incorporating a noise transition model, can learn

a clean label conditional generative distribution even when

training labels are noisy. In particular, we propose two

variants: rAC-GAN, which is a bridging model between

AC-GAN and the label-noise robust classification model,

and rcGAN, which is an extension of cGAN and solves this

problem with no reliance on any classifier. In addition to

providing the theoretical background, we demonstrate the

effectiveness of our models through extensive experiments

using diverse GAN configurations, various noise settings,

and multiple evaluation metrics (in which we tested 402

conditions in total).

1. Introduction

In computer vision and machine learning, generative

modeling has been actively studied to generate or repro-

duce samples indistinguishable from real data. Recently,

deep generative models have emerged as a powerful frame-

work for addressing this problem. Among them, generative

adversarial networks (GANs) [14], which learn a genera-

tive distribution through adversarial training, have become

a prominent one owing to their ability to learn any data dis-

tribution without explicit density estimation. This mitigates

oversmoothing resulting from data distribution approxima-

tion, and GANs have succeeded in producing high-fidelity

data for various tasks [24, 38, 69, 7, 19, 29, 53, 25, 66, 77,

18, 31, 10, 61, 60, 76, 8, 22].

Along with this success, various extensions of GANs

have been proposed. Among them, class conditional ex-

tensions (e.g., conditional GAN (cGAN) [37, 39] and aux-

iliary classifier GAN (AC-GAN) [41]) have attracted much

attention mainly for two reasons. (1) By incorporating class

labels as supervision, they can learn the representations that

are disentangled between the class labels and the others.

This allows them to selectively generate images conditioned

on the class labels [37, 41, 22, 73, 23, 10]. Recently, this

usefulness has also been demonstrated in class-specific data

augmentation [12, 75]. (2) The added supervision simpli-
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fies the learned target from an overall distribution to the

conditional distribution. This helps stabilize the GAN train-

ing, which is typically unstable, and improves image qual-

ity [41, 39, 69, 7].

In contrast to these powerful properties, a possible limi-

tation is that typical models rely on the availability of large-

scale accurate class-labeled data and their performance de-

pends on their accuracy. Indeed, as shown in Figure 1(c),

when conventional cGAN is applied to noisy labeled data

(where half labels are randomly flipped, as shown in Fig-

ure 1(b)), its performance is significantly degraded, influ-

enced by the noisy labels. When datasets are constructed in

real-world scenarios (e.g., crawled from websites or anno-

tated via crowdsourcing), they tend to contain many misla-

beled data (e.g., in Clothing1M [63], the overall annotation

accuracy is only 61.54%). Therefore, this limitation would

restrict application.

Motivated by these backgrounds, we address the fol-

lowing problem: “How can we learn a clean label con-

ditional distribution even when training labels are noisy?”

To solve this problem, we propose a novel family of GANs

called label-noise robust GANs (rGANs) that incorporate

a noise transition model representing a transition proba-

bility between the clean and noisy labels. In particular,

we propose two variants: rAC-GAN, which is a bridging

model between AC-GAN [41] and the label-noise robust

classification model, and rcGAN, which is an extension of

cGAN [37, 39] and solves this problem with no reliance on

any classifier. As examples, we show generated image sam-

ples using rcGAN in Figure 1(d). As shown in this figure,

our rcGAN is able to generate images conditioned on clean

labels even where conventional cGAN suffers from severe

degradation.

Another important issue regarding learning deep neural

networks (DNNs) using noisy labeled data is the memo-

rization effect. In image classification, a recent study [67]

empirically demonstrated that DNNs can fit even noisy (or

random) labels. Another study [5] experimentally showed

that there are qualitative differences between DNNs trained

on clean and noisy labeled data. To the best of our knowl-

edge, no previous studies have sufficiently examined such

an effect for conditional deep generative models. Motivated

by these facts, in addition to providing a theoretical back-

ground on rAC-GAN and rcGAN, we conducted extensive

experiments to examine the gap between theory and prac-

tice. In particular, we evaluated our models using diverse

GAN configurations from standard to state-of-the-art in var-

ious label-noise settings including synthetic and real-world

noise. We also tested our methods in the case when a noise

transition model is known and in the case when it is not.

Furthermore, we introduce an improved technique to stabi-

lize training in a severely noisy setting (e.g., that in which

90% of the labels are corrupted) and show the effectiveness.

Overall, our contributions are summarized as follows:

• We tackle a novel problem called label-noise robust

conditional image generation, in which the goal is to

learn a clean label conditional generative distribution

even when training labels are noisy.

• To solve this problem, we propose a new family of

GANs called rGANs that incorporate a noise transi-

tion model into conditional extensions of GANs. In

particular, we propose two variants, i.e., rcGAN and

rAC-GAN, for the two representative class conditional

GANs, i.e., cGAN and AC-GAN.

• In addition to providing a theoretical background, we

examine the gap between theory and practice through

extensive experiments (in which we tested 402 condi-

tions in total). Details and more results are available at

https://takuhirok.github.io/rGAN/.

2. Related work

Deep generative models. Generative modeling has been a

fundamental problem and has been actively studied in com-

puter vision and machine learning. Recently, deep genera-

tive models have emerged as a powerful framework. Among

them, three popular approaches are GANs [14], variational

autoencoders (VAEs) [27, 50], and autoregressive models

(ARs) [57]. All these models have pros and cons. One well-

known problem with GANs is training instability; however,

the recent studies have been making a great stride in solv-

ing this problem [11, 43, 51, 74, 3, 4, 35, 15, 24, 62, 38, 36,

69, 7]. In this paper, we focus on GANs because they have

flexibility to the data representation, allowing for incorpo-

rating a noise transition model. However, with regard to

VAEs and ARs, conditional extensions [26, 34, 65, 58, 47]

have been proposed, and incorporating our ideas into them

is a possible direction of future work.

Conditional extensions of GANs. As discussed in Sec-

tion 1, conditional extensions of GANs have been actively

studied to learn the representations that are disentangled be-

tween the conditional information and the others or to sta-

bilize training and boost image quality. Other than class or

attribute labels [37, 41, 22, 73, 23, 10], texts [45, 71, 70, 64],

object locations [44], images [11, 19, 29, 61], or videos [60]

are used as conditional information, and the effectiveness of

conditional extensions of GANs has also been verified for

them. In this paper, we focus on the situation in which noise

exists in the label domain because obtaining robustness in

such a domain has been a fundamental and important prob-

lem in image classification and has been actively studied,

as discussed in the next paragraph. However, also in other

domains (e.g., texts or images), it is highly likely that noise

may exist when data are collected in real-world scenarios

(e.g., crawled from websites or annotated via crowdsourc-

ing). We believe that our findings would help the research

also in these domains.
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Label-noise robust models. Learning with noisy labels has

been keenly studied since addressed in the learning theory

community [1, 40]. Lately, this problem has also been stud-

ied in image classification with DNNs. For instance, to ob-

tain label-noise robustness, one approach replaces a typical

cross-entropy loss with a noise-tolerant loss [2, 72]. An-

other approach cleans up labels or selects clean labels out

of noisy labels using neural network predictions or gradi-

ent directions [46, 55, 33, 20, 49, 16]. The other approach

incorporates a noise transition model [54, 21, 42, 13], simi-

larly to ours. These studies show promising results in both

theory and practice and our study is based on their findings.

The main difference from them is that their goal is to ob-

tain label-noise robustness in image classification, but our

goal is to obtain such robustness in conditional image gen-

eration. We remark that our developed rAC-GAN internally

uses a classifier; thus, it can be viewed as a bridging model

between noise robust image classification and conditional

image generation. Note that we also developed rcGAN,

which is a classifier-free model, motivated by the recent

studies [41, 39] that indicate that AC-GAN tends to lose di-

versity through a side effect of generating recognizable (i.e.,

classifiable) images. Another related topic is pixel-noise ro-

bust image generation [6, 30]. The difference from them is

that they focused on the noise inserted in a pixel domain,

but we focus on the noise in a label domain.

3. Notation and problem statement

We begin by defining notation and the problem state-

ment. Throughout, we use superscript r to denote the real

distribution and g the generative distribution. Let x ∈ X
be the target data (e.g., images) and y ∈ Y the correspond-

ing class label. Here, X is the data space X ⊆ R
d, where

d is the dimension of the data, and Y is the label space

Y = {1, . . . , c}, where c is the number of classes. We as-

sume that y is noisy (and we denote such noisy label by ỹ)

and there exists a corresponding clean label ŷ that we can-

not observe during training. In particular, we assume class-

dependent noise in which each clean label ŷ = i is cor-

rupted to a noisy label ỹ = j with a probability p(ỹ = j|ŷ =
i) = Ti,j , independently of x, where we define a noise tran-

sition matrix as T = (Ti,j) ∈ [0, 1]c×c (
∑

i Ti,j = 1). Note

that this assumption is commonly used in label-noise robust

image classification (e.g., [2, 72, 54, 21, 42, 13]).

Our task is, when given noisy labeled samples

(xr, ỹr) ∼ p̃r(x, ỹ), to construct a label-noise robust con-

ditional generator such that p̂g(x, ŷ) = p̂r(x, ŷ), which can

generate x conditioned on clean ŷ rather than conditioned

on noisy ỹ. This task is challenging for typical conditional

generative models, such as AC-GAN [41] (Figure 2(b))

and cGAN [37, 39] (Figure 2(d)), because they attempt to

construct a generator conditioned on the observable labels;

i.e., in this case, they attempt to construct a noisy-label-

dependent generator that generates x conditioned on noisy ỹ

rather than conditioned on clean ŷ. Our main idea for solv-

ing this problem is to incorporate a noise transition model,

i.e., p(ỹ|ŷ), into these models (viewed as orange rectangles

in Figures 2(c) and (e)). In particular, we develop two vari-

ants: rAC-GAN and rcGAN. We describe their details in

Sections 4 and 5, respectively.

4. Label-noise robust AC-GAN: rAC-GAN

4.1. Background: ACGAN

AC-GAN [41] is one of representative conditional exten-

sions of GANs [14]. AC-GAN learns a conditional gen-

erator G that transforms noise z and label yg into data

x
g = G(z, yg) with two networks. One is a discrimi-

nator D that assigns probability p = D(x) for samples

x ∼ pr(x) and assigns 1 − p for samples x ∼ pg(x).
The other is an auxiliary classifier C(y|x) that represents

a probability distribution over class labels given x. These

networks are optimized by using two losses, namely, an ad-

versarial loss and an auxiliary classifier loss.

Adversarial loss. An adversarial loss is defined as

LGAN = E
x

r∼pr(x)[logD(xr)]

+ E
z∼p(z),yg∼p(y)[log(1−D(G(z, yg)))], (1)

where D attempts to find the best decision boundary be-

tween real and generated data by maximizing this loss, and

G attempts to generate data indistinguishable by D by min-

imizing this loss.

Auxiliary classifier loss. An auxiliary classifier loss is used

to make the generated data belong to the target class. To

achieve this, first C is optimized using a classification loss

of real data:

Lr
AC = E(xr,yr)∼pr(x,y)[− logC(y = yr|xr)], (2)

where C learns to classify real data to the corresponding

class by minimizing this loss. Then, G is optimized by us-

ing a classification loss of generated data:

Lg
AC = E

z∼p(z),yg∼p(y)[− logC(y = yg|G(z, yg))], (3)

where G attempts to generate data belonging to the corre-

sponding class by minimizing this loss.

Full objective. In practice, shared networks between D and

C are commonly used [41, 15]. In this setting, the full ob-

jective is written as

L
D/C = − LGAN + λr

ACL
r
AC, (4)

LG = LGAN + λ
g
ACL

g
AC, (5)

where λr
AC and λ

g
AC are the trade-off parameters between

the adversarial loss and the auxiliary classifier loss for the

real and generated data, respectively. D/C and G are opti-

mized by minimizing L
D/C and LG, respectively.
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Figure 2. Comparison of naive and label-noise robust GANs. We denote the generator, discriminator, and auxiliary classifier by G, D, and

C, respectively. Among all models, conditional generators (a) are similar. In our rAC-GAN (c) and rcGAN (e), we incorporate a noise

transition model (viewed as an orange rectangle) into AC-GAN (b) and cGAN (d), respectively.

4.2. rACGAN

By the above definition, when yr is noisy (i.e., ỹr is

given) and C fits such noisy labels,1 AC-GAN learns the

noisy label conditional generator G(z, ỹg). In contrast, our

goal is to construct the clean label conditional generator

G(z, ŷg). To achieve this goal, we incorporate a noise tran-

sition model (i.e., p(ỹ|ŷ); viewed as an orange rectangle in

Figure 2(c)) into the auxiliary classifier. In particular, we

reformulate the auxiliary classifier loss as

Lr
rAC = E(xr,ỹr)∼p̃r(x,ỹ)[− log C̃(ỹ = ỹr|xr)]

= E(xr,ỹr)∼p̃r(x,ỹ)

[− log
∑

ŷr

p(ỹ = ỹr|ŷ = ŷr)Ĉ(ŷ = ŷr|xr)]

= E(xr,ỹr)∼p̃r(x,ỹ)[− log
∑

ŷr

Tŷr,ỹr Ĉ(ŷ = ŷr|xr)], (6)

where we denote the noisy label classifier by C̃ and the

clean label classifier by Ĉ (and we explain the reason why

we call it clean in Theorem 1). Between the first and second

lines, we assume that the noise transition is independent of

x, as mentioned in Section 3. Note that this formulation

(called the forward correction) is often used in label-noise

robust classification models [54, 21, 42, 13] and rAC-GAN

can be viewed as a bridging model between GANs and

them. In naive AC-GAN, C̃ is optimized for Lr
AC, whereas

in our rAC-GAN, Ĉ is optimized for Lr
rAC. Similarly, G is

optimized using Ĉ rather than using C̃:

Lg
rAC = E

z∼p(z),ŷg∼p(ŷ)[− log Ĉ(ŷ = ŷg|G(z, ŷg))]. (7)

Theoretical background. In the above, we use a cross-

entropy loss, which is a kind of proper composite loss [48].

In this case, Theorem 2 in [42] shows that minimizing the

1Zhang et al. [67] discuss generalization and memorization of DNNs

and empirically demonstrated that DNNs are capable of fitting even noisy

(or random) labels. Although other studies empirically demonstrated that

some techniques (e.g., dropout [5], mixup [68], and high learning rate [55])

are useful for preventing DNNs from memorizing noisy labels, their theo-

retical support still remains as an open issue. In this paper, we conducted

experiments on various GAN configurations to investigate such effect in

our task. See Section 7.1 for details.

forward corrected loss (i.e., Equation 6) is equal to mini-

mizing the original loss under the clean distribution. More

precisely, the following theorem holds.

Theorem 1. When T is nonsingular,

argmin
Ĉ

E(xr,ỹr)∼p̃r(x,ỹ)[− log
∑

ŷr

Tŷr,ỹr Ĉ(ŷ = ŷr|xr)]

= argmin
Ĉ

E(xr,ŷr)∼p̂r(x,ŷ)[− log Ĉ(ŷ = ŷr|xr)]. (8)

For a detailed proof, refer to Theorem 2 in [42]. This

supports the idea that, by minimizing Lr
rAC for noisy la-

beled samples, we can obtain Ĉ that classifies x as its cor-

responding clean label ŷ. In rAC-GAN, G is optimized for

this clean classifier Ĉ; hence, in G’s input space, ŷg is en-

couraged to represent clean labels.

5. Label-noise robust cGAN: rcGAN

5.1. Background: cGAN

cGAN [37, 39] is another representative conditional ex-

tension of GANs [14]. In cGAN, a conditional genera-

tor G(z, yg) and a conditional discriminator D(x, y) are

jointly trained using a conditional adversarial loss.

Conditional adversarial loss. A conditional adversarial

loss is defined as

LcGAN = E(xr,yr)∼pr(x,y)[logD(xr, yr)]

+ E
z∼p(z),yg∼p(y)[log(1−D(G(z, yg), yg))], (9)

where D attempts to find the best decision boundary be-

tween real and generated data conditioned on y by maxi-

mizing this loss. In contrast, G attempts to generate data

indistinguishable by D with a constraint on yg by minimiz-

ing this loss. In an optimal condition [14], cGAN learns

G(z, y) such that pg(x, y) = pr(x, y).

5.2. rcGAN

By the above definition, when yr is noisy (i.e., ỹr is

given), cGAN learns the noisy label conditional generator

G(z, ỹg). In contrast, our goal is to construct the clean la-

bel conditional generator G(z, ŷg). To achieve this goal, we
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insert a noise transition model (viewed as an orange rectan-

gle in Figure 2(e)) before ŷg is given to D. In particular, we

sample ỹg from ỹg ∼ p(ỹ|ŷg) and redefine Equation 9 as

LrcGAN = E(xr,ỹr)∼p̃r(x,ỹ)[logD(xr, ỹr)]

+ E
z∼p(z),ŷg∼p(ŷ),ỹg∼p(ỹ|ŷg)[log(1−D(G(z, ŷg), ỹg))],

(10)

where D attempts to find the best decision boundary be-

tween real and generated data conditioned on noisy labels ỹ,

by maximizing this loss. In contrast, G attempts to generate

data indistinguishable by D with a constraint on clean la-

bels ŷg (and we explain the rationale behind calling it clean

in Theorem 2), by minimizing this loss.

Theoretical background. In an optimal condition, the fol-

lowing theorem holds.

Theorem 2. When T is nonsingular (i.e., T has a unique

inverse), G is optimal if and only if p̂g(x, ŷ) = p̂r(x, ŷ).

Proof. For G fixed, rcGAN is the same as cGAN where y

is replaced by ỹ. Therefore, by extending Proposition 1 and

Theorem 1 in [14] (GAN optimal solution) to a conditional

setting, the optimal discriminator D for fixed G is

D(x, ỹ) =
p̃r(x, ỹ)

p̃r(x, ỹ) + p̃g(x, ỹ)
. (11)

Then G is optimal if and only if

p̃g(x, ỹ) = p̃r(x, ỹ). (12)

As mentioned in Section 3, we assume that label corruption

occurs with p(ỹ|ŷ), i.e., independently of x. In this case,

p̃(x, ỹ) = p̃(ỹ|x)p(x) =
∑

ŷ

p(ỹ|ŷ)p̂(ŷ|x)p(x)

=
∑

ŷ

p(ỹ|ŷ)p̂(x, ŷ) =
∑

ŷ

Tŷ,ỹp̂(x, ŷ). (13)

Substituting Equation 13 into Equation 12 gives

∑

ŷ

Tŷ,ỹp̂
g(x, ŷ) =

∑

ŷ

Tŷ,ỹp̂
r(x, ŷ). (14)

By considering the matrix form,

T⊤P̂ g = T⊤P̂ r, (15)

where P̂ g = [p̂g(x, ŷ = 1), . . . , p̂g(x, ŷ = c)]⊤ and P̂ r =
[p̂r(x, ŷ = 1), . . . , p̂r(x, ŷ = c)]⊤. When T has an inverse,

T⊤P̂ g = T⊤P̂ r ⇔ P̂ g = (T⊤)−1T⊤P̂ r = P̂ r. (16)

As the corresponding elements in P̂ g and P̂ r are equal,

p̂g(x, ŷ) = p̂r(x, ŷ).

This supports the idea that, in an optimal condition, rc-

GAN learns G(z, ŷ) such that p̂g(x, ŷ) = p̂r(x, ŷ).

6. Advanced techniques for practice

6.1. Noise transition probability estimation

In the above, we assume that T is known, but this

assumption may be too strict for real-world applications.

However, fortunately, previous studies [54, 21, 42, 13] have

been eagerly tackling this problem and several methods for

estimating T ′ (where we denote the estimated T by T ′) have

been proposed. Among them, we tested a robust two-stage

training algorithm [42] in the experiments and analyzed the

effects of estimated T ′. We show the results in Section 7.2.

6.2. Improved technique for severely noisy data

Thorough extensive experiments, we find that some

GAN configurations suffer from performance degradation

in a severely noisy setting (e.g., in which 90% of the labels

are corrupted). In this type of environment, each label is

flipped with a high probability. This disturbs G form associ-

ating an image with a label. To strengthen their connection,

we incorporate mutual information regularization [9]:

LMI = E
z∼p(z),ŷg∼p(ŷ)[− logQ(ŷ = ŷg|G(z, ŷg))], (17)

where Q(ŷ|x) is an auxiliary distribution approximating a

true posterior p(ŷ|x). We optimize G and Q by minimizing

this loss with trade-off parameters λ
g
MI and λ

q
MI, respec-

tively. This formulation is similar to Equation 7, but the

difference is whether G is optimized for Ĉ (optimized us-

ing real images and noisy labels) or for Q (optimized using

generated images and clean labels). We demonstrate the ef-

fectiveness of this technique in Section 7.3.

7. Experiments

7.1. Comprehensive study

In Sections 4 and 5, we showed that our approach is the-

oretically grounded. However, generally, in DNNs, there is

still a gap between theory and practice. In particular, the

label-noise effect in DNNs just recently began to be dis-

cussed in image classification [67, 5], and it is demonstrated

that such a gap exists. However, in conditional image gener-

ation, such an effect has not been sufficiently examined. To

advance this research, we first conducted a comprehensive

study, i.e., compared the performance of conventional AC-

GAN and cGAN and proposed rAC-GAN and rcGAN using

diverse GAN configurations in various label-noise settings

with multiple evaluation metrics.2 Due to the space limi-

tation, we briefly review the experimental setup and only

provide the important results in this paper. See the supple-

mentary materials at https://takuhirok.github.

io/rGAN/ for details and more results.

Dataset. We verified the effectiveness of our method on

two benchmark datasets: CIFAR-10 and CIFAR-100 [28],

2Through Sections 7.1–7.3, we tested 392 conditions in total. For each

condition, we trained two models with different initializations.
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Figure 3. Generated image samples on CIFAR-10. Each column shows samples belonging to the same class. Each row contains samples

generated with a fixed z and a varied yg . In symmetric noise (a), cSN-GAN is primarily influenced by noisy labels and fails to learn the

disentangled representations. In asymmetric noise (b), it is expected that fourth and sixth columns will include cat and dog, respectively.

However, in AC-CT-GAN and cSN-GAN, these columns contain the inverse. As evidence, we list the accuracy in the fourth column for

cat/dog classes in Table 1. These scores indicate that the proposed models are robust but the baselines are weak for the flipped classes.

which are commonly used in both image generation and

label-noise robust image classification. Both datasets con-

tain 60k 32 × 32 natural images, which are divided into

50k training and 10k test images. CIFAR-10 and CIFAR-

100 have 10 and 100 classes, respectively. We assumed

two label-noise settings that are popularly used in label-

noise robust image classification: (1) Symmetric (class-

independent) noise [59]: For all classes, ground truth labels

are replaced with uniform random classes with probability

µ. (2) Asymmetric (class-dependent) noise [42]: Ground

truth labels are flipped with probability µ by mimicking

real mistakes between similar classes. Following [42], for

CIFAR-10, ground truth labels are replaced with truck →
automobile, bird → airplane, deer → horse, and cat ↔ dog,

and for CIFAR-100, ground truth labels are flipped into the

next class circularly within the same superclasses. In both

settings, we selected µ from {0.1, 0.3, 0.5, 0.7, 0.9}.

GAN configurations. A recent study [32] shows the sensi-

tivity of GANs to hyperparameters. However, when clean

labeled data are not available, it is impractical to tune the

hyperparameters for each label-noise setting. Hence, in-

stead of searching for the best model with hyperparameter

tuning, we tested various GAN configurations using default

parameters that are typically used in clean label settings

and examined the label-noise effect. We chose four mod-

els to cover standard, widely accepted, and state-of-the-art

models: DCGAN [43], WGAN-GP [15], CT-GAN [62],

and SNGAN [38]. We implemented AC-GAN, rAC-GAN,

cGAN, and rcGAN based on them. For cGAN and rcGAN,

we used the concat discriminator [37] for DCGAN and the

projection discriminator [39] for the others.

Evaluation metrics. As discussed in previous studies [56,

32, 52], evaluation and comparison of GANs can be chal-

lenging partially because of the lack of an explicit likeli-

hood measure. Considering this fact, we used four metrics

for a comprehensive analysis: (1) the Fréchet Inception dis-

tance (FID), (2) Intra FID, (3) the GAN-test, and (4) the

GAN-train. The FID [17] measures the distance between

pr and pg in Inception embeddings. We used it to assess the

AC-CT-GAN rAC-CT-GAN cSN-GAN rcSN-GAN

cat/dog 13.4/83.9 84.8/10.3 35.6/55.9 75.9/13.0

Table 1. Accuracy in the fourth column in Figure 3(b) (ground

truth: cat) for the flipped classes (cat ↔ dog)

quality of an overall generative distribution. Intra FID [39]

calculates the FID for each class. We used it to assess the

quality of a conditional generative distribution.3 The GAN-

test [52] is the accuracy of a classifier trained on real images

and evaluated on generated images. This metric approxi-

mates the precision (image quality) of GANs. The GAN-

train [52] is the accuracy of a classifier trained on generated

images and evaluated on real images in a test. This metric

approximates the recall (diversity) of GANs.

Results. We present the quantitative results for each condi-

tion in Figure 4 and provide a comparative summary be-

tween the proposed models (i.e., rAC-GAN and rcGAN)

and the baselines (i.e., AC-GAN and cGAN) across all con-

ditions in Figure 5. We show the generated image samples

on CIFAR-10 with µ = 0.7 in Figure 3. Regarding the FID

(i.e., evaluating the quality of the overall generative distri-

bution), the baselines and the proposed models are compa-

rable in most cases, but when we use CT-GAN and SN-

GAN (i.e., state-of-the-art models) in symmetric noise, the

proposed models tend to outperform the baselines (32/40

conditions). This indicates that the label ambiguity caused

by symmetric noise could disturb the learning of GANs if

they have the high data-fitting ability. However, this degra-

dation can be mitigated by using the proposed methods.

Regarding the other metrics (i.e., evaluating the quality

of the conditional generative distribution), rAC-GAN and

rcGAN tend to outperform AC-GAN and cGAN, respec-

tively, across all the conditions. The one exception is rAC-

WGAN-GP on CIFAR-10 with symmetric noise, but we

find that it can be improved using the technique introduced

in Section 6.2. We demonstrate this in Section 7.3. Among

the four models, CT-GAN and SN-GAN work relatively

well for rAC-GAN and rcGAN, respectively. This tendency

3We used Intra FID only for CIFAR-10 because, in CIFAR-100, the

number of clean labeled data for each class (500) is too few.
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Figure 5. Comparison between the proposed models and the base-

lines across all the conditions in Figure 4.

AC-GAN rAC-GAN cGAN rcGAN

Symmetric -0.846 ± 0.084 -0.786 ± 0.163 -0.989 ± 0.013 -0.818 ± 0.142

Asymmetric -0.976 ± 0.008 -0.476 ± 0.119 -0.985 ± 0.029 -0.427 ± 0.274

Table 2. Pearson correlation coefficient between the noise rate and

GAN-train. The scores are averaged over all GAN configurations.

is also observed in clean label settings (i.e., µ = 0). This

indicates that the performance of rAC-GAN and rcGAN is

closely related to the advance in the baseline GANs.

To analyze the dependency on the noise rate, we calcu-

lated the Pearson correlation coefficient between GAN-train

and the noise rate. We list these in Table 2. These results

indicate that cGAN has the highest dependency on the noise

rate, while AC-GAN shows robustness for symmetric noise

but weakness for asymmetric noise. This would be related

to the memorization effect in a DNN classifier. cGAN is

a classifier-free model; therefore, it learns the distribution

conditioned on the labels regardless of whether they are

noisy or clean. In contrast, AC-GAN internally uses a clas-

sifier that prioritizes learning simple (i.e., clean) labels [5].

In symmetric noise, the corruption variety is large, making

it difficult to memorize labels. As a result, AC-GAN pri-

oritizes learning simple (i.e., clean) labels. In contrast, in

asymmetric noise, the label corruption pattern is restrictive;

as a result, AC-GAN easily fits noisy labels.

7.2. Effects of estimated T ′

In Section 7.1, we report the results using known T . As

a more practical setting, we also evaluate our method with

T ′ estimated by a robust two-stage training algorithm [42].

We used CT-GAN for rAC-GAN and SN-GAN for rcGAN,

which worked relatively well in both noisy and clean set-

tings in Section 7.1. We list the scores in Table 3. In

CIFAR-10, even using T ′, rAC-CT-GAN and rcSN-GAN

tend to outperform conventional AC-CT-GAN and cSN-

GAN, respectively, and show robustness to label noise. In

CIFAR-100, when the noise rate is low, rAC-CT-GAN and

rcSN-GAN work moderately well; however, in highly noisy

settings, their performance is degraded. Note that such a

tendency has also been observed in noisy label image clas-

sification with T ′ [42], in which the authors argue that the

high-rate mixture and limited number of images per class

(500) make it difficult to estimate the correct T . Further

improvement remains as an open issue.

7.3. Evaluation of improved technique

As shown in Figure 4, rAC-GAN and rcGAN show ro-

bustness for label noise in almost all cases, but we find that

they are still weak to severely noisy settings (i.e., symmet-

ric noise with µ = 0.9) even though using known T . To
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Model Metric
CIFAR-10 (symmetric noise) CIFAR-10 (asymmetric noise) CIFAR-100 (symmetric noise) CIFAR-100 (asymmetric noise)

0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9 0.1 0.3 0.5 0.7 0.9

FID ↓ 10.9 11.4 11.3 11.5 13.0 10.8 10.2 10.2 10.4 11.0 19.7 19.3 17.7 17.3 18.5 19.4 19.3 19.7 18.8 19.0

rAC-CT-GAN Intra FID ↓ 28.7 31.0 30.1 31.7 38.9 28.5 27.4 31.2 35.0 36.8 – – – – – – – – – –

with T ′ GAN-test ↑ 95.3 93.2 92.0 87.7 70.4 94.9 92.9 85.2 78.5 76.6 76.6 67.1 68.1 1.0 2.5 74.1 68.9 28.7 7.2 2.2

GAN-train ↑ 78.7 75.9 76.9 73.7 63.4 79.8 79.5 74.0 69.1 67.3 21.2 21.4 23.3 1.0 2.3 19.1 19.9 10.7 5.5 3.9

FID ↓ 10.7 11.9 12.4 12.1 15.0 10.8 10.8 11.0 10.9 11.3 14.3 16.6 17.5 20.0 19.8 13.8 14.1 14.7 14.7 13.9

rcSN-GAN Intra FID ↓ 25.5 29.4 29.4 29.7 87.4 25.7 26.0 28.7 32.6 33.9 – – – – – – – – – –

with T ′ GAN-test ↑ 85.3 79.0 84.8 82.8 15.9 86.6 87.2 84.0 74.9 71.2 53.4 36.6 37.7 1.0 1.7 65.0 63.0 32.4 7.8 3.8

GAN-train ↑ 80.7 78.1 77.4 75.6 15.0 80.5 79.0 75.7 69.3 65.7 40.1 32.8 31.3 1.0 1.8 41.7 39.3 20.1 6.1 3.9

Table 3. Quantitative results using the estimated T ′. The second row indicates a noise rate. Bold and italic fonts indicate that the score is

better or worse by more than 3 points over or under the baseline models (i.e., AC-CT-GAN or cSN-GAN), respectively.

Model Metric
CIFAR-10 (symmetric noise) CIFAR-100 (symmetric noise)

A B C D A B C D

FID ↓ 27.9 14.7 12.4 13.5 33.1 20.4 17.2 18.4

Improved Intra FID ↓ 55.7 34.6 33.4 36.9 – – – –

rAC-GAN GAN-test ↑ 65.1 77.7 78.2 63.5 26.2 22.5 21.5 15.4

GAN-train ↑ 59.9 70.8 69.1 59.7 17.1 16.3 14.8 11.7

FID ↓ 30.4 16.9 14.2 14.9 50.2 25.8 18.0 18.7

Improved Intra FID ↓ 76.9 39.6 52.9 48.2 – – – –

rcGAN GAN-test ↑ 27.3 65.7 38.9 48.8 4.5 12.0 9.5 6.1

GAN-train ↑ 31.9 60.7 36.7 47.3 6.0 10.3 7.5 4.4

Table 4. Quantitative results using the improved technique. In the

second row, A, B, C, and D indicate DCGAN, WGAN-GP, CT-

GAN, and SN-GAN, respectively. We evaluated in severely noisy

settings (i.e., symmetric noise with µ = 0.9). Bold and italic fonts

indicate that the score is better or worse by more than 3 points over

or under naive models (i.e., rAC-GAN or rcGAN), respectively.

Metric
Clean Noisy Mixed

AC c AC rAC c rc AC rAC c rc

FID ↓ 6.8 12.0 4.4 4.6 9.4 9.4 4.8 4.7 10.5 9.7

GAN-train ↑ 56.6 53.9 49.5 51.7 48.6 49.8 52.8 57.0 51.7 55.0

Table 5. Quantitative results on Clothing1M. AC, rAC, c, and rc

denote AC-CT-GAN, rAC-CT-GAN, cSN-GAN, and rcSN-GAN,

respectively. Bold font indicates better scores in each block.

improve the performance, we developed an improved tech-

nique (Section 6.2). In this section, we validate its effect.

We list the scores in Table 4. We find that the improved de-

gree depends on the GAN configurations, but, on the whole,

the performance is improved by the proposed technique. In

particular, we find that the improved technique is most ef-

fective for rAC-WGAN-GP, in which all the scores doubled

compared to those of naive rAC-WGAN-GP.

7.4. Evaluation on realworld noise

Finally, we tested on Clothing1M [63] to analyze the ef-

fectiveness on real-world noise.4 Clothing1M contains 1M
clothing images in 14 classes. The data are collected from

several online shopping websites and include many misla-

beled samples. This dataset also contains 50k, 14k, and

10k of clean data for training, validation, and testing, re-

spectively. Following the previous studies [63, 42], we ap-

proximated T using the partial (25k) training data that have

both clean and noisy labels. We tested on three settings:

(1) 50k clean data, (2) 1M noisy data, and (3) mixed data

that consists of clean data (bootstrapped to 500k) and 1M
noisy data, which are used in [63] to boost the performance

of image classification. We used AC-CT-GAN/rAC-CT-

GAN and cSN-GAN/rcSN-GAN. We resized images from

256× 256 to 64× 64 to shorten the training time.

4We tested 10 conditions in total. For each condition, we trained three

models with different initializations.

Results. We list the scores in Table 5.5 The comparison

of FID values indicates that the scores depend on the num-

ber of data (noisy, mixed > clean) rather than the differ-

ence between the baseline and proposed models. This sug-

gests that, in this type noise setting, the scale of the dataset

should be made large, even though labels are noisy, to cap-

ture an overall distribution. In contrast, the comparison of

the GAN-train between the clean and noisy data settings in-

dicates the importance of label accuracy. In the noisy data

setting, the scores improve using rAC-GAN or rcGAN but

they are still worse than those using AC-GAN and cGAN in

the clean data setting. The balanced models are rAC-GAN

and rcGAN in the mixed data setting. They are comparable

to the models in the noisy data setting in terms of the FID

and outperform the models in the clean data setting in terms

of the GAN-train. Recently, data augmentation [12, 75]

has been studied intensively as an application of conditional

generative models. We expect the above findings to provide

an important direction in this space.

8. Conclusion

Recently, conditional extensions of GANs have shown

promise in image generation; however, the limitation here

is that they need large-scale accurate class-labeled data to

be available. To remedy this, we developed a new family

of GANs called rGANs that incorporate a noise transition

model into conditional extensions of GANs. In particular,

we introduced two variants: rAC-GAN, which is a bridg-

ing model between GANs and the noise-robust classifica-

tion models, and rcGAN, which is an extension of cGAN

and solves this problem with no reliance on any classifier. In

addition to providing a theoretical background, we demon-

strate the effectiveness and limitations of the proposed mod-

els through extensive experiments in various settings. In the

future, we hope that our findings facilitate the construction

of a conditional generative model in real-world scenarios in

which only noisy labeled data are available.
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