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Abstract

This paper addresses the problem of recovering projec-

tive camera matrices from collections of fundamental matri-

ces in multiview settings. We make two main contributions.

First, given
(
n
2

)
fundamental matrices computed for n im-

ages, we provide a complete algebraic characterization in

the form of conditions that are both necessary and sufficient

to enabling the recovery of camera matrices. These con-

ditions are based on arranging the fundamental matrices

as blocks in a single matrix, called the n-view fundamen-

tal matrix, and characterizing this matrix in terms of the

signs of its eigenvalues and rank structures. Secondly, we

propose a concrete algorithm for projective structure-from-

motion that utilizes this characterization. Given a complete

or partial collection of measured fundamental matrices, our

method seeks camera matrices that minimize a global al-

gebraic error for the measured fundamental matrices. In

contrast to existing methods, our optimization, without any

initialization, produces a consistent set of fundamental ma-

trices that corresponds to a unique set of cameras (up to a

choice of projective frame). Our experiments indicate that

our method achieves state of the art performance in both

accuracy and running time.

1. Introduction

This paper considers the problem of recovering pro-

jective camera matrices from collections of fundamental

matrices. Many multiview structure from motion (SFM)

pipelines begin, given n images, I1, ..., In, by robustly es-

timating fundamental matrices between image pairs from

collections of point matches, e.g., using RANSAC. How-

ever, in typical settings, only a subset of the
(
n
2

)
pairwise

fundamental matrices can be estimated, and the estimated

matrices may be subject at times to significant errors. More-

over, fundamental matrices are defined through a homoge-

neous equation and can thus assume any scale factor, but
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a consistent setting of these scales is important in multi-

view settings [20, 22] (in analogy to resolving the distance

between cameras in a calibrated setting). Consequently, ac-

curate recovery of camera matrices is interesting both from

theoretical and practical standpoints. Our paper makes con-

tributions to both of these aspects.

An important theoretical question is, given a collection

of
(
n
2

)
fundamental matrices, whether these fundamental

matrices are consistent, in the sense that there exist n cam-

era matrices that produce these fundamental matrices. Be-

low we address this question by providing a set of algebraic

constraints that form both necessary and sufficient condi-

tions for the consistency of fundamental matrices. Our for-

mulation, which extends the partial list of necessary condi-

tions introduced in [22], considers the symmetric matrix F
of size 3n × 3n, formed by stacking all

(
n
2

)
fundamental

matrices. It provides a complete characterization of F in

terms of the signs of its eigenvalues and rank patterns.

An advantage of our algebraic characterization is that it

can readily be used to construct optimization algorithms to

recover camera matrices. In the second part of this paper we

introduce an efficient algorithm to recover projective cam-

era matrices directly from measured fundamental matrices.

Our algorithm, which utilizes the consistency constraints

presented in this paper, uses global optimization for camera

recovery, overcoming noise and missing measurements. It

further avoids one of the main difficulties in a previous ap-

proach [22] – the need to accurately recover a scale factor

for each of the estimated fundamental matrix. This allows

us to obtain state-of-the-art results without any initializa-

tion. We demonstrate the utility of our method by applying

it to uncalibrated image collections of various sizes. Our

experiments indicate that our method outperforms previous

methods in both accuracy and runtime.

1.1. Previous work

The recovery of projective camera matrices was ad-

dressed in several lines of work.

Incremental algorithms [13, 15, 19] process the images

sequentially, interleaving camera and depth recovery for ev-
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ery new image. Such methods can be sensitive to the order

of processing and may suffer from drift, due to accumula-

tion of errors. The use of bundle adjustment for every new

image reduces such drift, but is computationally demand-

ing.

Factorization-based methods [5, 6, 12, 15, 16, 23, 25] fac-

tor a measurement matrix that includes all point matches

across views into an (unknown) product of camera matrices,

depth values, and 3D point locations. These methods typi-

cally yield very large optimization problems and are often

approached by splitting the problem into smaller subprob-

lems.

Global methods. A number of “global methods” were pro-

posed recently demonstrating both accurate and efficient

recovery of camera matrices from pairwise measurements

(essential or fundamental matrices), mostly in a calibrated

setting [11, 27, 18, 7, 2]. Sweeney el al. [24] attempts to

improve the consistency of fundamental matrices by mini-

mizing the discrepancy of reprojected points in three views

(through an “epipolar point transfer”). They, however, can-

not achieve projective recovery since their method does not

guarantee the consistency of the improved fundamental ma-

trices. Sengupta et al. [22] attempt to enforce rank con-

straints on the measured fundamental matrices. Compli-

cated by the need to simultaneously recover suitable scale

factors, their method is sensitive to errors and requires

highly accurate initialization, which was achieved by ap-

plying the state-of-the-art, calibrated LUD algorithm [18],

defeating the purpose of projective camera recovery without

calibration.

Solvability of viewing graphs. A number of papers seek

to design algorithms that can identify “solvable viewing

graphs” [14, 18, 20, 24]. A viewing graph captures the pat-

tern of missing fundamental matrices. Let G = (V,E) be a

graph such that a node vi ∈ V represents image Ii and an

edge eij ∈ E exists if the fundamental matrix Fij relating Ii

and Ij is available. G is called solvable if the corresponding

n camera matrices can be determined uniquely (up to a 4×4
projective transformation) despite the missing fundamental

matrices. Identifying solvable graphs is equivalent to ask-

ing, given a partial set of fundamental matrices, if F can be

completed uniquely to satisfy our algebraic constraints.

Finally, both our paper and [22] explore algebraic prop-

erties of multiview fundamental matrices (MVFs) and pro-

pose optimization schemes for utilizing these properties to-

ward camera pose recovery. However, these two papers

differ in several significant respects. First, [22] provides

a set of necessary algebraic constraints, for the consistency

of MVF F , while we provide a complete set of necessary

and sufficient algebraic conditions. Moreover, our condi-

tions are specified directly in terms of the MVFs, in con-

trast to [22] which rely on the construction of an auxiliary,

unknown matrix. Our direct formulation further leads to

a significantly simpler optimization algorithm, including a

new algorithm for recovering the projective camera matri-

ces, from a consistent MVF F , which is lacking in [22]

2. Algebraic constraints of n-view fundamental

matrices

Let I1, . . . , In denote a collection of n images of a

static scene captured respectively by projective cameras

P1, ..., Pn. Each camera Pi is represented by a 3× 4 matrix

Pi = KiR
T
i [I,−ti], where Ki is a 3×3 calibration matrix,

ti ∈ R3 and Ri ∈ SO(3) respectively denote the location

and orientation of Pi in some global coordinate system, and

I denotes the 3 × 3 identity matrix. Below we further de-

note Vi = K−T
i RT

i , so Pi = V −T
i [I,−ti]. Consequently,

let X = (X,Y,Z)T be a scene point in the global coordi-

nate system. Its projection onto Ii is given by xi = Xi/Zi,

where Xi = (Xi, Yi, Zi)
T = KiR

T
i (X− ti).

We next denote the fundamental matrix between images

Ii and Ij by Fij . In [2, 22] it was shown that Fij can be

written as

Fij = K−T
i RT

i (Ti − Tj)RjK
−1
j = Vi(Ti − Tj)V

T
j , (1)

where Ti = [ti]×. It can be readily verified that this def-

inition of Fij is consistent with the standard properties of

fundamental matrices [8], including (a) PT
i FijPj is skew

symmetric, and (b) e
T
ikFijejk = 0, where eik denotes the

projection of the center of camera k onto camera i, i.e.,

eik = Pitk.

Note, however, that (1) attributes a scale to each Fij that

relates it to some global coordinate system. In practice,

given two images, a fundamental matrix is determined only

up to a multiplicative factor. We will denote an estimated

fundamental matrix by F̂ij and assume, in case it is esti-

mated accurately, that F̂ij = λijFij with unknown λij 6= 0.

We next construct a matrix from all
(
n
2

)
fundamental ma-

trices.

Definition 1. A matrix F ∈ S3n, whose 3 × 3 blocks are

denoted by Fij , is called an n-view fundamental matrix if

rank(Fij) = 2 for all i 6= j and Fii = 0.

We use S3n to denote the space of all 3n × 3n symmetric

matrices. The symmetry of F implies that Fij = FT
ji .

Definition 2. An n-view fundamental matrix F is called

consistent if there exist camera matrices P1, ..., Pn of the

form Pi = V −T
i [I, ti] such that Fij = Vi([ti]×−[tj ]×)V T

j .

A consistent F , therefore, takes the form

F =




0 F12 ... F1n

F21 0 ... F2n

...
...

Fn1 Fn2 ... 0
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and each Fij is scaled properly in accordance with the

global coordinate system. We further refer to the 3 × 3n
ith block row of F by Fi.

Our main theoretical result is summarized below in The-

orem 1, which specifies a set of necessary and sufficient

algebraic conditions for the consistency of F in terms of

its eigenvalue sign and rank patterns. These, in turn, will

be used in later sections to construct a new optimization al-

gorithm for global recovery of projective camera matrices

from noisy fundamental matrices.

Theorem 1. An n-view fundamental matrix F is consistent

with a set of n cameras whose centers are not all collinear

if, and only if, the following conditions hold:

1. Rank(F ) = 6 and F has exactly 3 positive and 3 neg-

ative eigenvalues.

2. Rank(Fi) = 3 for all i = 1, ..., n.

Below we provide a proof sketch. The full proof is deferred

to the supplementary material. To prove the theorem we

first state that for a symmetric rank 6 matrix F the following

three conditions are equivalent:

(i) F has exactly 3 positive and 3 negative eigenvalues.

(ii) F = XXT − Y Y T with X,Y ∈ R
3n×3 and

rank(X) = rank(Y ) = 3.

(iii) F = UV T + V UT with U, V ∈ R
3n×3 and

rank(U) = rank(V ) = 3.

In particular, using the eigen-decomposition of F , let

Fxi = αixi and Fyi = −βyi, αi, βi > 0, the columns

of X and Y respectively may include
√

αixi and
√

βiyi,

and U, V are related to X,Y through

U = (X − Y )/
√

2, V = (X + Y )/
√

2. (2)

Next, to show the necessary condition, let F be a con-

sistent, n-view fundamental matrix, then clearly (1) can be

written in matrix form as F = UV T +V UT , where U, V ∈
R

3n×3 whose 3 × 3 blocks respectively are Ui = ViTi and

Vi, implying condition 1. Condition 2 holds because not all

cameras are collinear, since if conversely rank(Fi) < 3
for some i then there exists a 3-vector e 6= 0 such that

FT
i e = 0, and therefore ∀j Fjie = 0, implying, in con-

tradiction, that the camera centers are all collinear.

To establish the sufficient condition, let F be an n-view

fundamental matrix that satisfies conditions 1 and 2. Con-

dition 1 (along with (iii)) implies that Fij = UiV
T
j +ViU

T
j .

Next, Fii = 0 implies that UiV
T
i is skew symmetric, and

so ∀i either rank(Ui) = 2 or rank(Vi) = 2. Next, as we

show in the supplementary material, rank(Fi) = 3 implies

WLOG that ∀i, rank(Vi) = 3 and rank(Ui) = 2. This and

the skew-symmetry of UiV
T
i imply that V −1

i Ui is skew-

symmetric. Denote this matrix by Ti = [ti]×, we obtain

Fij = Vi(Ti−Tj)V
T
j , establishing that F is consistent. Fi-

nally, {ti}ni=1 are not all collinear, since, otherwise ∃i and

∃e 6= 0 such that ∀j Fjie = 0, implying that FT
i e = 0,

contradicting the full rank of Fi.

Theorem 1 also provides a practical tool for projective

reconstruction. Given a set of (possibly noisy) pairwise

fundamental matrices we can use constrained, low-rank op-

timization to recover a matrix that satisfies conditions 1-2.

Then, we can use the obtained n-view fundamental matrix

to recover the underlying camera matrices. This is summa-

rized in the following corollary.

Corollary 1. Projective reconstruction: Let F ∈ S3n be

a consistent n-view fundamental matrix, then it is possible

to explicitly determine camera matrices P1, ..., Pn that are

consistent with F .

Proof. The claim is justified by the following construction,

which relies on the proof of Theorem 1.

1. Since F satisfies condition 1 we can use its eigen-

decomposition to express it as F = XXT − Y Y T ,

and then construct U and V using (2).

2. Now, WLOG, rank(Vi) = 3 and rank(Ui) = 2 for all

i = 1, ..., n (or else U and V should be interchanged).

3. We next define Ti = V −1
i Ui. Ti is skew symmetric,

and we denote Ti = [ti]×.

4. By construction Fij = Vi(Ti − Tj)V
T
j , implying that

Pi = [V −T
i |−V −T

i ti] form a consistent set of camera

matrices.

This construction is unique up to a 4 × 4 projective trans-

formation.

Let F be a consistent n-view fundamental matrix.

Clearly, if we scale differently any of its blocks, λijFij

with λij 6= 0, then in general F ceases to be consistent.

In particular, it maintains condition 2 of Theorem 1, but

its rank is no longer 6. Note, however, that we can scale

each block-row (and by symmetry column) of F differently

and maintain both the conditions of the theorem; i.e., let

S = diag(s1I, .., snI) with si 6= 0, then SFS is consistent

if and only if F is consistent. (Such scaling is equivalent to

scaling the projective camera matrices.) This, in fact, im-

plies that we need to determine only
(
n
2

)
− n of the scale

factors and set the rest of the n scales arbitrarily.

Up to this point we considered n-view matrices that in-

clude all
(
n
2

)
pairwise fundamental matrices. In real appli-

cations, however, often only a subset of the pairwise ma-

trices can be computed. Additionally, the estimated funda-

mental matrices are improperly scaled and may suffer from
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large inaccuracies. In these cases we may want to recon-

struct the cameras from partial subsets of fundamental ma-

trices. Indeed, our algorithm, presented later in Sec. 3, re-

covers a consistent set of camera matrices from triplets of

images, allowing us to handle missing fundamental matri-

ces and to remove outliers. The following theorem estab-

lishes that, with proper intersection, camera matrices are

determined uniquely (up to the usual 4× 4 projective ambi-

guity) from consistent sub-matrices. We first need the fol-

lowing definition:

Definition 3. Let F ∈ R3n×3n and let F 1, ..., F k be block

sub-matrices of F, with F i ∈ R3mi×3mi , 3 ≤ mi ≤ n.

{F 1, ..., F k} is called a consistent cover of F if each

F i forms a consistent multi-view fundamental matrix and

each diagonal element of F is contained in at least one of

F 1, ..., F k.

Theorem 2. Let F ∈ R3n×3n and let F 1, ..., F k form a

consistent cover of F . If for all 2 ≤ m ≤ k, there ex-

ists l < m such that F l, Fm overlap in at least one funda-

mental matrix, then there exists a unique n-view consistent

fundamental matrix F̄ (up to n scale factors) whose blocks

F̄ij = λijFij with some λij 6= 0 for all Fij that belong to

any of F 1, ..., F k.

Proof. We prove this by induction on k. We begin with

k = 2. By Corollary 1, F 1, F 2 define two sets of camera

matrices P1,P2 that are consistent with respect to F 1, F 2,

respectively. Since F 1 and F 2 share a fundamental ma-

trix Fij , Fij corresponds to a pair of cameras in P1 and a

second pair in P2 so that the two pairs are equal up to a

projective homography ([8], p. 254). Consequently, P2 can

be mapped to the projective frame of P1 to form a set of n
camera matrices [20], that in turn determine a unique (up to

n global scale factors) consistent n-view matrix, F̄ . Now,

each fundamental matrix, in either F 1 or F 2, corresponds

to two cameras from this set of n cameras and hence has

exactly the same entries as in F̄ up to scale.

This argument can now be repeated inductively to prove

the theorem for all k > 2.

3. Method

Given images I1, ..., In, we assume a standard robust

method (e.g., RANSAC) is used to estimate the pairwise

fundamental matrices, where we denote by Ω = {F̂ij} the

set of estimated fundamental matrices. In general, only a

subset of the
(
n
2

)
pairwise fundamental matrices are esti-

mated, due to, e.g., occlusion, large motion, or changes in

brightness, and the available estimates are noisy. An addi-

tional complication is that to make these fundamental matri-

ces consistent they must each be scaled by an unknown fac-

tor to fit the global coordinate frame. Our aim therefore is

to find a consistent n-view matrix F ∈ S3n that is as similar

as possible to the measured fundamental matrices. Straight-

forward optimization of this problem is difficult as it yields

a nonlinear optimization formulation with rank constraints,

as in [22], which required initialization by a high quality

method.

Below we introduce a novel method that utilizes global

optimization and yet circumvents the need to recover the

scale factors. Our method works by enforcing the consis-

tency constraints of Theorem 1 on 3-view fundamental ma-

trices and by maintaining their intersections, as is required

by Theorem 2, to obtain a global reconstruction. This yields

an optimization problem, with simple and efficient formu-

lation, that directly uses the measured data without the need

to incorporate any initialization. We solve this optimiza-

tion using the alternating direction method of multipliers

(ADMM) [3], where each step in the ADMM has a closed

form solution.

We avoid recovering scale factors by enforcing consis-

tency for image triplets. As we explained in Sec. 2, we only

need to determine
(
n
2

)
−n of the scale factors, while the rest

can be set arbitrarily. A consequence of this is that there are

no scale factors for n = 3, as proved below.

Corollary 2. A consistent 3-view fundamental matrix is in-

variant to arbitrarily scaling its constituent fundamental

matrices.

Proof. Let F be a consistent 3-view fundamental matrix

whose blocks are defined as Fij = Vi(Ti − Tj)V
T
j , and

let F̃ be a 9 × 9 matrix whose blocks are defined to be

F̃ij = sijFij where sij 6= 0 are arbitrary scale factors.

Without loss of generality we can assume that the number

of negative scale factors is even (otherwise we can multi-

ply the entire matrix by -1). Therefore, s1 = ( s12s13

s23

)
1

2 ,

s2 = ( s23s12

s13

)
1

2 , and s3 = ( s13s23

s12

)
1

2 determine real values

such that s1s2 = s12, s1s3 = s13, and s2s3 = s23. Let

Ṽi = siVi for i = 1 . . . 3, we get that

F̃ij = sijVi(Ti − Tj)V
T
j = siVi(Ti − Tj)sjV

T
j

= Ṽi(Ti − Tj)Ṽ
T
j

(3)

Therefore F̃ = SFS with S = diag(s1I, s2I, s3I), and

hence it is consistent.

This corollary implies that for 3-view fundamental ma-

trices consistency is invariant under any choice of scale fac-

tors. Our optimization formulation relies on this observa-

tion to avoid the need to estimate the scale factors during op-

timization. In particular, we introduce a global optimization

scheme that enforces the consistency of triplets of views,

while simultaneously enforcing the compatibility of the dif-

ferent triplets. In the rest of this section we first formulate

our optimization problem and discuss how to solve it with

ADMM. Then we discuss how to select minimal subsets of
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triplets to speed up the optimization and finally show how

the results of our optimization can be used to reconstruct the

n cameras.

3.1. Optimization

Our input set of estimated fundamental matrices {F̂ij}
determines a viewing graph G = (V,E) with nodes

v1, ..., vn, corresponding to the n cameras, and eij ∈ E

if F̂ij belongs to the collection of the estimated fundamen-

tal matrices. Let τ denote a collection of m 3-cliques in G,

m ≤
(
n
3

)
. The collection τ may include all the 3-cliques

in G, or a subset, as we explain in Sec. 3.3. We index the

elements of τ by k = 1, ...,m, where τ(k) denotes the kth

triplet. The selection of τ induces a partial selection of es-

timated fundamental matrices, Ω, that participate in the op-

timization process. In our construction, if F̂ij ∈ Ω then

F̂T
ij = F̂ji ∈ Ω.

We define the measurement matrix F̂ ∈ S3n to include

all F̂ij ∈ Ω in their corresponding 3× 3 block while setting

the rest of the blocks to 03×3. In the optimization process,

we look for a matrix F ∈ S3n that is as close as possible

to F̂ under the constraint that its 9 × 9 blocks, induced by

{τ(k)}mk=1 and denoted as {Fτ(k)}mk=1, are consistent. In

general, such an F is inconsistent (since its scale factors are

incompatible across triplets) and incomplete, but, based on

Theorem 2, it uniquely determines the corresponding pro-

jective cameras.

We next introduce our constrained optimization problem

min
F

m∑

k=1

||Fτ(k) − F̂τ(k)||2F (4)

s.t. F = FT

Fii = 03×3 i = 1, . . . , n

rank(Fτ(k)) = 6 k = 1, . . . ,m.

Solving (4) is challenging due to the rank constraints. As

mentioned above, we approach this problem using ADMM.

To that end, 2m auxiliary matrix variables of size 9 × 9
are added: m variables duplicating {Fτ(k)}mk=1, denoted

{Bk}mk=1, and m Lagrange multipliers {Γk}mk=1, yielding

the objective

max
Γk

min
F,B1,...,Bm

m∑

k=1

L(Fτ(k), Bk,Γk) (5)

s.t. F = FT

Fii = 03×3 i = 1, ..., n

rank(Bk) = 6 k = 1, ...,m,

where

L(Fτ(k), Bk,Γk) = α||F̂τ(k)−Fτ(k)||2F +||Bk−Fτ(k)+Γk||2F .

We initialize the auxiliary variables at t = 0 with

B
(0)
k = F̂τ(k), Γ

(0)
k = 0

and then alternate between the following three steps, where

at each step we update the values of the variables at iteration

t given their values at t− 1.

(i) Solving for F .

argmin
F

m∑

k=1

α||F̂τ(k) − Fτ(k)||2F (6)

+ ||B(t−1)
k − Fτ(k) + Γ

(t−1)
k ||2F

s. t. F = FT

Fii = 03×3 i = 1, ..., n.

In practice, we explicitly maintain the equality constraints

over F , i.e., F is symmetric with zero block diagonal.

Therefore, at each iteration t we can solve only for the tri-

angular upper part of F , i.e., {Fij |F̂ij ∈ Ω, i < j}. This

yields an unconstrained convex quadratic objective in these

variables, and hence it admits a closed form solution. Let

Nij be the number of 3-cliques in τ that include the edge

eij . Then, for each such triplet τ(k) we denote the vari-

ables corresponding to the i, j block as Bk(i, j), Γk(i, j),
and F̂τ(k)(i, j). This yields the following update rule

F
(t)
ij =

1

Nij(1 + α)

Nij∑

k=1

B
(t−1)
k (i, j) + Γ

(t−1)
k (i, j) (7)

+αF̂τ(k)(i, j).

(ii) Solving for Bk. For all k = 1, . . . ,m

B
(t)
k = argmin

Bk

||Bk − F
(t)
τ(k) + Γ

(t−1)
k ||2F (8)

s.t rank(Bk) = 6.

Here, the closed form solution is

B
(t)
k = SV P (F

(t)
τ(k) − Γ

(t−1)
k , 6) (9)

where SV P (A, p) denotes the singular value projection of

the matrix A to rank p.

(iii) Updating Γk. For all k = 1, . . . ,m

Γ
(t)
k = Γ

(t−1)
k + B

(t)
k − F

(t)
τ(k). (10)

Note that the constraints in (4) cover only a subset of the

constraints in Theorem 1, and in particular they do not re-

strict the sign pattern of the eigenvalues of Fτ(k), the rank

2 of Fij , or the rank 3 of Fi. Our experiments, however,

indicate that with the amounts of noise prevalent in existing

datasets, and by removing collinear triplets, our solutions

always satisfy these constraints to a good numerical preci-

sion.
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3.2. Camera recovery

We use the optimized matrix F to recover the corre-

sponding projective cameras. Since F is generally incon-

sistent we cannot use the eigen-decomposition method de-

scribed in Corollary 1. However, the 9 × 9 sub-matrices

Fτ(k) are consistent, and by construction they form a triplet

cover of G. It is therefore straightforward to traverse the

graph Gτ and, using Theorem 2, apply a homography to

each three cameras corresponding to Fτ(k), k = 1, ...,m, to

bring them all to a common projective frame. Note that this

process is exact, since all Fτ(k) are consistent.

3.3. Constructing triangle cover

Eq. (4) enforces the consistency of 3-view sub-matrices.

In principle, this formulation can be applied to all 3-cliques

of G (although outlier and collinear triplet removal may be

needed). It is however more efficient (and suffices for re-

construction) to apply this to a subset of the triplets, pro-

vided the triplets produce a solvable viewing graph.

Given a viewing graph G = (V,E), we consider further

a graph Gτ = (Vτ , Eτ ) whose nodes v′ ∈ Vτ represent

3-clique in G and an edge e′kl ∈ Eτ exists if triangles v′k
and v′

l share two images. We call Gτ a triplet cover of G if

every node vi ∈ V belongs to at least one vertex in Vτ .

Our objective is to find a small and reliable triplet cover

of G. We do this heuristically as follows. We associate a

weight wij with each edge eij ∈ E, where wij counts the

number of inliers of pairwise correspondences, identified

for F̂ij . We then find NG edge-disjoint maximal spanning

trees for G, and use this set to produce a triplet cover for

G, denoted Gτ , in a similar way to [13]. Next, we prune

Gτ greedily, removing triplets whose cameras are collinear

and triplets whose consistency scores are low. To measure

collinearity we divide the distance between the two epipoles

in each image by their average distance from the image cen-

ter and average these ratios over the three images. Denote

this measure by lk we remove triplets with lk < δ1. We fur-

ther measure consistency as ck = ‖Fτ(k)− F̂τ(k)‖F , where

F̂τ(k) is the measured 3-view fundamental matrix associ-

ated with the triplet v′k and Fτ(k) is its closest consistent

triplet calculated using our ADMM optimization for only

this triplet. (This can be done very efficiently.) Finally, we

sort the remaining triplets by their stability scores, defined

as sk = lδ2

k /ck, and greedily remove triplets of low score

while maintaining the connectivity of Gτ and its cover of

G, see an illustration in Fig. 1.

4. Experiments

4.1. Structure from motion pipeline

We used our method to construct a projective SFM

pipeline. The pipeline obtains pairwise fundamental ma-

trices computed with RANSAC. As described in Sec. 3, we

Algorithm 1: Projective SFM Pipeline

Input : Fundamental matrices Ω = {F̂ij}
Viewing Graph: G = (V,E)
Tracks of point matches (for BA)

Output: Projective reconstruction of Cameras and

Points

Gτ ←Select a triplet cover for G (Sec. 3.3)

Form the n-view measurement matrix F̂ ← {F̂ij}
Solve (4) using ADMM:

Initialize B
(0)
k = F̂τ(k), Γ

(0)
k = 0, t = 1

for t = 1, ..., Nit do

Update F (t) using (7)

For k = 1, ...,m, update B
(t)
k using (9)

For k = 1, ...,m, update Γ
(t)
k using (10)

end

For k = 1, ...,m, retrieve camera matrices for triplet

τ(k) (Corollary 1)

P ← Bring cameras to a global projective frame of

reference (Sec. 3.2)

X ← Triangulate points from points tracks

P,X ← Refine solution using Bundle Adjustment

Return P,X

Figure 1: Building a triplet cover for the House dataset (10 cam-

eras). From left to right, the viewing graph, the final viewing

graph, and the corresponding triplet cover.

first construct a reliable triangle cover. We next use ADMM

to solve (4), obtaining consistent 3-view submatrices, and

use them to construct camera matrices. In postprocessing

we use projective bundle adjustment (BA) to improve our

camera recovery and 3D point reconstruction. Note that,

similar to global Euclidean SFM methods [2, 7, 11, 18, 27],

we only apply BA once at the end of the pipeline. For

this step we triangulate point tracks and apply projective

bundle adjustment to the camera matrices and the point

matches. Similar to [21], after convergence, 3D points are

re-triangulated and a few additional iterations of BA are ap-

plied for better convergence. Our pipeline is summarized in

Alg. 1.

4.2. Implementation details

Before optimization we normalize the input fundamental

matrices F̂ij , as in [9], by F̂n
ij = N−T

i F̂ijN
−1
j , where Ni ∈
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Table 1: Reprojection error and run time obtained in our experiments.

Dataset #points #Images
Error(pixels) Time(s)

Ours PPSFM Sengupta Var-Pro Ours PPSFM Sengupta Var-Pro

Dino 319 319 36 0.4314 0.5042 0.6134 0.6157 3.07 3.24 46.40 5.48

Dino 4983 4983 36 0.4205 0.4442 0.5795 0.5961 4.80 15.19 50.35 384.01

Corridor 737 11 0.2596 0.276 0.2765 0.2741 1.12 1.31 21.05 45.16

House 672 10 0.3399 0.3687 0.5984 0.3719 0.95 0.70 18.10 55.19

Gustav Vasa 4249 18 0.1564 0.1687 0.2591 0.1671 3.18 7.06 32.93 326.48

Folke Filbyter 21150 40 0.258 – – 26.6054 6.07 – – 2.33E+04

Park Gate 9099 34 0.3109 0.3447 0.3288 0.5489 11.33 25.85 62.6 1600

Nijo 7348 19 0.3901 0.4412 0.4173 0.417 5.70 10.33 32.22 148.74

Drinking Fountain 5302 14 0.2806 0.3125 0.2942 0.2942 2.85 5.80 26.35 82.07

Golden Statue 39989 18 0.223 0.24 0.2368 0.2272 7.07 20.45 86.8 3890

Jonas Ahls 2021 40 0.1845 0.2108 0.1979 0.197 5.29 15.22 46.64 90.81

De Guerre 13477 35 0.2609 0.2891 0.2728 0.2715 13.79 27.92 103.70 282.87

Dome 84792 85 0.2354 0.2507 1.8991 0.2413 109.83 171.83 970 3.78E+04

Alcatraz Courtyard 23674 133 0.5162 0.5592 5.3641 0.5366 65.04 113.17 537 3210

Alcatraz Water Tower 14828 172 0.4704 0.5972 0.5003 3.0353 87.11 68.31 539 1080

Cherub 72784 65 0.7408 0.7921 – Out of memory (16GB) 34.87 81.42 – –

Pumpkin 69335 195 0.5959 – – Time Limit (12H) 130.74 – – –

Sphinx 32668 70 0.3366 0.3669 0.3508 0.3486 23.36 49.05 191 2.53E+04

Toronto University 7087 77 0.5417 0.2588 0.2557 0.2556 25.65 100.27 779.5 335.9708

Sri Thendayuthapani 88849 98 0.6113 0.3517 0.3204 Out of memory (16GB) 248.72 418.21 1070 –

Porta san Donato 25490 141 0.3992 0.4352 4.5186 0.4155 78.22 87.84 771 2060

Buddah Tooth 27920 162 0.5957 0.8583 1.7853 0.6245 62.17 84.44 792 5530

Tsar Nikolai I 37857 98 0.2897 0.309 0.3021 0.3013 62.71 95.68 422 8700

Smolny Cathedral 51115 131 0.4639 0.5079 0.4773 Out of memory (16GB) 197.72 264.04 640.87 –

Skansen Kronan 28371 131 0.4424 0.4414 0.4477 0.4291 102.75 165.77 1000 2610

R
3×3 normalizes the location of interest points in image Ii

to have zero mean and unit variance. In data sets where the

point matches distribute non-isotropically, we normalize the

variance separately in each axis. After the optimization Fij

is denormalized by NT
i FijNj .

For the optimization, we set α = 0.001 (in (6)) and per-

form Nit = 1000 iterations of ADMM updates. For the

triplet selection procedure (Sec. 3.3) we set NG = 5 and

δ1 = 0.03. We set δ2 by the following condition, if the aver-

age non-collinearity measure, lk, exceeds 0.5 we set δ2 = 0.

Otherwise, it means the data is highly collinear, and so we

set δ2 = 1.2.

To produce 3D points from multiview tracks we used the

Matlab linear triangulation code of [8]. We implemented

projective bundle adjustment using the Ceres [1] non lin-

ear least squares optimization package and used Huber loss

(with parameter 0.1) for robustness. We performed up to

100 iterations of bundle adjustment. Our code is imple-

mented in Matlab on an Intel processor i-7 7700 with 16GB

RAM.

4.3. Results

We tested the method on several projective datasets from

[17] and VGG [26] and compared the results to state-of-the-

art projective reconstruction pipelines, including:

P2SfM [15]. This recent method solves for projective struc-

ture incrementally by solving linear least squares systems

that incorporate constraints on the sought projective depths.

The paper demonstrated both superior re-projection accu-

racy and running time, compared to existing methods.

VarPro [10]. This method first applies affine bundle ad-

justment followed by projective BA. It further uses variable

projection to improve the solution of BA.

Sengupta et. al [22]. Similar to our method, this method

applies rank constraints to n-view matrices, but it explic-

itly recovers the scale factors. As the authors acknowledge,

their algorithm is sensitive, and so it was suggested as a re-

finement to a calibrated method [18]. To avoid calibration,

for a fair comparison, we initialized the method with P2SfM

[15]. Moreover, as the method does not suggest a way to

produce projective reconstruction, we used Corollary 1 to

obtain camera matrices from its output.

To compare all the methods, we ran them with the code

supplied by the authors. For [22] we counted only its run-

ning time (excluding the running time of the initialization

method). For [10] we set a time limit of 12 hours. We ran

all the methods on the same computer under the same con-

ditions.

Table 1 shows the mean reprojection error (in pix-

els) across all scene points and the total running time (in

seconds) obtained with our method compared to P2SfM,

VarPro, and Sengupta et al. It can be seen that our method

achieved superior accuracies to all the other methods in

22 of the 25 data sets tested. Moreover, for certain com-

plex scene structures (e.g., Pumpkin and Folk Filbyter) our

method managed to reconstruct the scene, whereas all the

other methods failed to obtain a reconstruction (we tried

with many different hyper-parameters). In almost all cases

our method was also faster, improving runtime in 22 out

of 25 data sets. The best compared method (separately for

each dataset) had a median of 4.8% reprojection error worse

than our method and required an additional median runtime

of 74% compared to our method. The quality of our recon-

struction can also be appreciated by the recovered 3D point
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Figure 2: Enforcing rank constraints. The plot shows (in log10

scale) the ratio between the seventh and sixth singular value of

Fτ(k) averaged for all triplets.

clouds shown in Fig 3.

We believe the improved accuracy is partly explained by

the effective enforcement of the rank 6 constraint for all

triplets. We demonstrate this in Fig. 2, which shows the

ratio between the 7th and 6th singular values of Fτ(k) aver-

aged over all triplets for the House model. Our optimization

reduces this ratio to near machine precision, indicating that

indeed rank 6 is achieved in all runs.

4.4. Graph consistency simulations

Since our optimization (4) only enforces a subset of the

consistency constraints in Theorem 1 we next test the con-

sistency of our recovered fundamental matrices (with no

bundle adjustment) in synthetic experiments. We generated

10 camera matrices and 15,000 three dimensional points.

We then projected the points and perturbed them by Gaus-

sian noise. Finally, we selected 15 matching triplets at

random and used them to compute fundamental matrices,

which we gave to our algorithm.

The results are shown in Fig. 4. We evaluated consis-

tency using the symmetric epipolar distance associated with

the term e
T
ikFijejk, where eik denotes the projected loca-

tion of camera k onto camera i. Denote this distance by

Sijk, then Sijk + Sjki + Skij = 0 implies that cameras

i, j, k are consistent ([8], p. 384). Additionally, we show the

quality of recovering the ground truth fundamental matri-

ces (measured by average Frobenius norm), and the average

symmetric epipolar distance of the ground truth matches.

It can be seen that our method maintains consistency un-

der all error levels while achieving high quality recovery of

Figure 3: Visualization of the result of our projective structure

from motion pipeline after applying self-calibration of [4] . From

left to right: Tsar Nikolai I, Sphinx, Dome.
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Figure 4: Synthetic experiments. Average symmetric epipo-

lar distance of corresponding epipoles (left), error in fundamen-

tal matrix recovery, compared to ground truth (average Frobenius

norm, middle), and symmetric epipolar distance for ground truth

matches. Our method (in blue) is compared against [24].

fundamental matrices compared to ground truth. We com-

pare our results with [24]’s consistency optimization (Sec.

3 therein).

5. Conclusion

We considered the problem of recovering projective

camera matrices from collections of fundamental matrices.

We derived a complete algebraic characterization of n-view

fundamental matrices in the form of conditions that are

both necessary and sufficient to enable the recovery of cam-

era matrices. We further introduced an algorithm that uses

this characterization for global recovery of camera matrices

from measured fundamental matrices. Our algorithm is effi-

cient and requires no initialization. We tested the algorithm

on a large number of datasets and compared it to existing,

state-of-the-art methods, showing both improved accuracy

and runtime.

In future work we plan to explore ways to relate our alge-

braic constraints with the question of solvability of viewing

graphs. In addition, we plan to similarly characterize col-

lections of essential matrices.
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