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Abstract

There is some ambiguity in the 3D shape of an object

when the number of observed views is small. Because of

this ambiguity, although a 3D object reconstructor can be

trained using a single view or a few views per object, re-

constructed shapes only fit the observed views and appear

incorrect from the unobserved viewpoints. To reconstruct

shapes that look reasonable from any viewpoint, we propose

to train a discriminator that learns prior knowledge regard-

ing possible views. The discriminator is trained to distin-

guish the reconstructed views of the observed viewpoints

from those of the unobserved viewpoints. The reconstructor

is trained to correct unobserved views by fooling the dis-

criminator. Our method outperforms current state-of-the-

art methods on both synthetic and natural image datasets;

this validates the effectiveness of our method.

1. Introduction

Humans can estimate the 3D structure of an object in a

single glance. We utilize this ability to grasp objects, avoid

obstacles, create 3D models using CAD, and so on. This is

possible because we have gained prior knowledge about the

shapes of 3D objects.

Can machines also acquire this ability? This problem

is called single-view 3D object reconstruction in computer

vision. A straightforward approach is to train a reconstruc-

tor using 2D images and their corresponding ground truth

3D models [3, 5, 9, 13, 16, 27, 30]. However, creating 3D

annotations requires extraordinary effort from professional

3D designers. Another approach is to train a reconstructor

using a single view or multiple views of an object without

explicit 3D supervision [15, 17, 18, 31, 36]. We call this

approach view-based training. This approach typically re-

quires annotations of silhouettes of objects and viewpoints,

which are relatively easy to obtain.

Because a ground truth 3D shape is not given in view-

based training, there is some ambiguity in the possible

shapes. In other words, several different 3D shapes can

be projected into the same 2D view, as shown in the up-
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+ View prior learning


Figure 1. When a 3D reconstructor is trained using only a single

view per object, because of ambiguity in the 3D shape of an object,

it reconstructs a shape which only fits the observed view and looks

incorrect from unobserved viewpoints (upper). By introducing a

discriminator that learns prior knowledge of correct views, the re-

constructor is able to generate a shape that is viewed as reasonable

from any viewpoint (lower).

per half and lower half of Figure 1. To reduce this ambi-

guity, twenty or more views per object are typically used in

training [18, 36]. However, this is not practical in many

cases in terms of feasibility and scalability. When creating

a dataset by taking photos, if an object is moving or deform-

ing, it is difficult to take photos from many viewpoints. In

addition, when creating a dataset using a large number of

photos from the Internet, it is not always possible to collect

multiple views of an object. Therefore, it is desirable that

a reconstructor can be trained using a few views or even a

single view of an object.

In this work, we focus on training a reconstructor using a

single view or a few views for single-view 3D object recon-

struction. In this case, the ambiguity in shapes in training

is not negligible. The upper half of Figure 1 shows the re-

sult of single-view 3D reconstruction using a conventional

approach [18]. Although this method originally uses mul-

tiple views per object for training, a single view is used in

this experiment. As a result, the reconstructed shape looks
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Work Class A Class B

(a) [13, 37] Predicted 3D shapes Their corresponding ground truth 3D shapes

(b) [9, 34] Predicted 3D shapes 3D shape collections

(c) Ours Views of predicted 3D shapes from observed viewpoints Views of predicted 3D shapes from random viewpoints

(d) - Views of predicted 3D shapes Views in a training dataset

Table 1. Summary of discriminators in learning-based 3D reconstruction. Discriminator (d) is described in Section 3.2.

correct when viewed from the same viewpoint as the input

image, however, it looks incorrect from other viewpoints.

This is because the reconstructor is unaware of unobserved

views and generates shapes that only fit the observed views.

How can a reconstructor overcome shape ambiguity and

correctly estimate shapes? The hint is shown in Figure 1.

Humans can recognize that the three views of the chair in

the upper-right of Figure 1 are incorrect because we have

prior knowledge of how a chair looks, having seen many

chairs in the past. If machines also have knowledge regard-

ing the correct views, they would use it to estimate shapes

more accurately.

We implement this idea on machines by using a discrim-

inator and adversarial training [7]. One can see from the

upper half of Figure 1 that, with the conventional method,

views of estimated shapes from observed viewpoints con-

verge to the correct views, while unobserved views do not

always become correct. Therefore, we train the discrimi-

nator to distinguish the observed views of estimated shapes

from the unobserved views. This results in the discriminator

obtaining knowledge regarding the correct views. By train-

ing the reconstructor to fool the discriminator, reconstructed

shapes from all viewpoints become indistinguishable and to

be viewed as reasonable from any viewpoint. The lower half

of Figure 1 shows the results from the proposed method.

Learning prior knowledge of 3D shapes using 3D mod-

els was tackled in other publications [9, 34]. In contrast,

we focus on prior knowledge of 2D views rather than 3D

shapes. Because our method does not require any 3D mod-

els for training, ours can scale to various categories where

3D models are difficult to obtain.

The major contributions can be summarized as follows.

• In view-based training of single-view 3D reconstruc-

tion, we propose a method to predict shapes which are

viewed as reasonable from any viewpoint by learning

prior knowledge of object views using a discriminator.

Our method does not require any 3D models for train-

ing.

• We conducted experiments on both synthetic and nat-

ural image datasets and we observed a significant per-

formance improvement for both datasets. The advan-

tages and limitations of the method are also examined

via extensive experimentation.

2. Related work

A simple and popular approach for learning-based 3D re-

construction is to use 3D annotations. Recent studies focus

on integrating multiple views [3, 16], memory efficiency

problem of voxels [30], point cloud generation [5], mesh

generation [8, 32], advanced loss functions [13], and neural

network architectures [27].

To reduce the cost of 3D annotation, view-based train-

ing has recently become an active research area. The key

of training is to define a differentiable loss function for

view reconstruction. A loss function of silhouettes us-

ing chamfer distance [17], differentiable projection of vox-

els [31, 33, 36, 38], point clouds [11, 23], and meshes [18] is

proposed. Instead of using view reconstruction, 3D shapes

can be reconstructed via view synthesis [29].

As mentioned in the previous section, it is not easy to

train reconstructors using a small number of views. For this

problem, some methods use human knowledge of shapes

as regularizers or constraints. For example, the graph

Laplacian of meshes was regularized [15, 32], and shapes

were assumed to be symmetric [15]. Instead of using

manually-designed constraints, others attempted to acquire

prior knowledge of shapes from data. Learning category-

specific mean shapes [15, 17] is an example. Adversar-

ial training is another way to learn shape priors. Yang et

al. [37] and Jiang et al. [13] used discriminators on an es-

timated shape and its corresponding ground truth shape to

make the estimated shapes more realistic. Gwak et al. [9]

and Wu et al. [34] used discriminators on generated shapes

and a shape collection. In contrast, our method does not re-

quire 3D models to learn prior knowledge. Table 1 lists a

summary of these discriminators.

3. View-based training of single-view 3D object

reconstructors with view prior learning

In this section, we introduce a simple view-based method

to train 3D reconstructors based on [18]. Then, we describe

our main technique, called view prior learning (VPL). We

also explain a technique to further improve reconstruction

accuracy by applying internal pressure to shapes. Figure 2

shows the architecture of our method.

For training, our method requires a dataset that con-

tains single or multiple views of objects, and their silhou-

ette and viewpoint annotations, similar to previous stud-

ies [15, 18, 31, 36]. Additionally, ours can also use class
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Figure 2. Architecture of the proposed method. The main point of our method is the use of discrimination loss to learn priors of views.

While the discriminator aims to minimize discrimination loss, the encoder and decoders try to maximize it using a gradient reversal layer.
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Figure 3. Reconstruction loss in multi-view training. Images A and

B are views of the same object. Although only the loss with respect

to a view reconstructed from image A is shown in this figure, the

loss with respect to image B is also computed.

labels of views if they are available. After training, recon-

struction is performed without silhouette, viewpoint, and

class label annotations.

3.1. View­based training for 3D reconstruction

In this section, we describe our baseline method for 3D

reconstruction. We extend a method which uses silhouettes

in training [18] to handle textures using a texture decoder

and perceptual loss [14].

Overview. The common approach to view-based training

of 3D reconstructors is to minimize the difference between

views of a reconstructed shape and views of a ground truth

shape. Let xij be the view of an object oi from a viewpoint

vij , No be the number of objects in the training dataset, Nv

be the number of viewpoints per object, R(·) be a recon-

structor that takes an image and outputs a 3D model, P (·, ·)
be a renderer that takes a 3D model and a viewpoint and out-

puts the view of the given model from the given viewpoint,

and Lv(·, ·) be a function that measures the difference be-

tween two views. Then, reconstruction loss is defined as

Lr(x, v) =

No
∑

i=1

Nv
∑

j=1

Nv
∑

k=1

Lv(P (R(xij), vik), xik). (1)

We call the case where Nv = 1 single-view training. In

this case, the reconstruction loss is simplified to Lr(x, v) =

∑No

i=1 Lv(P (R(xi1), vi1), xi1). We call the case where 2 ≤
Nv multi-view training.

3D representation and renderer. Some works use vox-

els as a 3D representation in view-based training [31, 36].

However, voxels are not well suited to view-based training

because using high-resolution views of voxels is difficult as

voxels are memory inefficient. Recently, this problem was

overcome by Kato et al. [18] by using a mesh as a 3D repre-

sentation and a differentiable mesh renderer. Following this

work, we also use a mesh and their renderer1.

Reconstructor. In this work, a 3D model is represented

by a pair of a shape and a texture. Our reconstructor R(·)
uses an encoder-decoder architecture. An encoder Enc(·)
encodes an input image, and a shape decoder Decs(·) and

texture decoder Dect(·) generate a 3D mesh and a texture

image, respectively. Following recent learning-based mesh

reconstruction methods [15, 18, 32], we generate a shape by

moving the vertices of a pre-defined mesh. Therefore, the

output of the shape decoder is the coordinates of the esti-

mated vertices. The details of the encoder and the decoders

are described in the supplementary material.

View comparison function. Color images (RGB chan-

nels) and silhouettes (alpha channels) are processed sepa-

rately in Lv(·, ·). Let x and x̂ = P (R(x), v) be a ground

truth view and an estimated view, xc, x̂c be the RGB chan-

nels of x, x̂, and xs, x̂s be the alpha channels of x, x̂. The

silhouette at the i-th pixel xsi is set to one if an object ex-

ists at the pixel and to zero if the pixel is part of the back-

ground. xs can take a value between zero and one owing

to anti-aliasing of the renderer. To compare color images

xc, x̂c, we use perceptual loss Lp [14] with additional fea-

ture normalization. Let Fm(·) be the m-th feature map of

Nf maps in a pre-trained CNN for image classification. In

addition, let Cm, Hm, Wm be the channel size, height, and

width of Fm(·), respectively. Specifically, we use the five

1We modified the approximate differentiation of the renderer. Details

are described in the supplementary material.
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feature maps after convolution layers of AlexNet [20] for

Fm(·). Then, using Dm = CmHmWm, the perceptual loss

is defined as

Lc(x̂c, xc) =

Nf
∑

m=1

1

Dm

∣

∣

∣

∣

Fm(x̂c)

|Fm(x̂c)|
−

Fm(xc)

|Fm(xc)|

∣

∣

∣

∣

2

. (2)

For silhouettes xs, x̂s, we use their multi-scale cosine dis-

tance. Let xi
s be an image obtained by down-sampling xs

2i−1 times, and Ns be the number of scales. We define the

loss function as

Ls(xs, x̂s) =

Ns
∑

i=1

(

1−
xi
s · x̂

i
s

|xi
s||x̂

i
s|

)

. (3)

We also use negative intersection over union (IoU) of sil-

houettes, as was used in [18]. Let ⊙ be an elementwise

product. This loss is defined as

Ls(xs, x̂s) = 1−
|xs ⊙ x̂s|1

|xs + x̂x − xs ⊙ x̂s|1
. (4)

The total reconstruction loss is Lv = Ls + λcLc. λc is a

hyper-parameter.

Training. We optimize R(·) using mini-batch gradient

descent. Figure 2 shows the architecture of single-view

training. In multi-view training, we randomly take two

views of an object in one minibatch. The architecture for

computing Lr in this case is shown in Figure 3.

3.2. View prior learning

As described in Section 1, in view-based training, a re-

constructor can generate a shape that looks unrealistic from

unobserved viewpoints. In order to reconstruct a shape that

is viewed as realistic from any viewpoint, it is necessary to

(1) learn the difference between correct views and incorrect

views, and (2) tell the reconstructor how to modify incorrect

views. In view-based training, reconstructed views from

observed viewpoints converge to the real views in a training

dataset by minimizing the reconstruction loss, and views

from unobserved viewpoints do not always become correct.

Therefore, the former can be regarded as correct and real-

istic views, and the latter can be regarded as incorrect and

unrealistic views. Based on this assumption, we propose

to train a discriminator that distinguishes estimated views

at observed viewpoints from estimated views at unobserved

viewpoints to learn the correctness of views. The discrimi-

nator can pass this knowledge to the reconstructor by back-

propagating the gradient of the discrimination loss into the

reconstructor via estimated views and shapes as with adver-

sarial training in image generation [7] and domain adapta-

tion [6].

Concretely, let Dis(·, ·) be a trainable discriminator that

takes a view and its viewpoint and outputs the probability

that the view is correct, and V be the set of all viewpoints

in the training dataset. Using cross-entropy, we define view

disrcimination loss as

Ld(xij , vij) = − log(Dis(P (R(xij), vij), vij))

−
∑

vu∈V,vu 6=vij

log(1− (Dis(P (R(xij), vu), vu)))

|V − 1|
. (5)

In minibatch training, we sample one random view for each

reconstructed object to compute Ld.

Stability of training. Although adversarial training is

generally not stable, training of our proposed method is sta-

ble. It is known that training of GANs fails when the dis-

criminator is too strong to be fooled by the generator. This

problem is explained from the distinction of the supports of

real and fake samples [1]. However, in our case, it is very

difficult to distinguish views correctly in the earlier train-

ing stage because view reconstruction is not accurate and

views are incorrect from any viewpoint. Even in the later

stage, the reconstructor can easily fool the discriminator by

slightly breaking the correct views. Therefore, the discrim-

inator cannot be dominant in our method.

Optimization of the reconstructor. The original proce-

dure of adversarial training requires optimizing a discrim-

inator and a generator iteratively [7]. Subsequently, Ganin

et al. [6] proposed to train a generator using the reversed

gradient of discrimination loss. The proposed gradient re-

versal layer does nothing in the forward pass, although it

reverses the sign of gradients and scales them λd times in

the backward pass. This layer is posed on the right before

a discriminator. Because this optimization procedure is not

iterative, the training time is shorter than in iterative opti-

mization. Furthermore, we experimentally found that the

performance of the gradient reversal and iterative optimiza-

tion are nearly the same in our problem. Therefore, we use

the gradient reversal layer for training the reconstructor.

Image type for the discriminator. The discriminator can

take both RGBA images and silhouette images. We give it

RGBA images when texture prediction is conducted, other-

wise we give it silhouettes.

Class conditioning. In addition, a discriminator can be

conditioned on class labels using the conditional GAN [24]

framework. When class labels are known, view discrimi-

nation becomes easier and the discriminator becomes more

reliable. We use the projection discriminator [26] for class

conditioning. Note that the test phase does not require class

labels even in this case.

Another possible discriminator. We propose to train a

discriminator on views of reconstructed shapes at observed

and unobserved viewpoints. Another possible approach is
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to distinguish reconstructed views from real views in a train-

ing dataset. In fact, this discriminator does not work well

because generating a view that is difficult to distinguish

from the real view is very difficult. This is caused by the

limitation of the representation ability of the reconstructor

and renderer. Table 1 shows a summary of the discrimina-

tors we have explained thus far.

3.3. Internal pressure

One of the most popular methods in multi-view 3D re-

construction is visual hull [21]. In visual hull, a point inside

all silhouettes is assumed to be inside the object. In other

words, in terms of shape ambiguity, visual hull produces the

shape with the largest volume. Following this policy, we

inflate the volume of the estimated shapes by giving them

internal pressure in order to maximize their volume. Con-

cretely, we add a gradient along the normal of the face for

each vertex of a triangle face. Let pi be one of the vertices

of a triangle face, and n be the normal of the face. We add

a loss term Lp that satisfies
∂Lp(pi)

∂pi
= −n.

3.4. Summary

In addition to using reconstruction loss Lr = Ls+λcLc,

we propose to use view discrimination loss Ld to recon-

struct realistic views and internal pressure loss Lp to inflate

reconstructed shapes. The total loss is L = Ls + λcLc +
Ld + λpLp. The hyperparameters of loss weighting are λc,

λp, and λd. Because λd is used in the gradient reversal

layer, it does not appear in L. The entire architecture is

shown in Figure 2.

4. Experiments

We tested our proposed view prior learning (VPL) on

synthetic and natural image datasets. We conducted an ex-

tensive evaluation of our proposed method using a synthetic

dataset because it consists of a large number of objects with

accurate silhouette and viewpoint annotations.

As a metric of the reconstruction accuracy, we used

intersection over union (IoU) of a predicted shape and

a ground truth that was used in many previous publica-

tions [3, 5, 15, 16, 18, 27, 30, 31, 36]. To fairly compare

our results with those in the literature, we computed IoU

after converting a mesh into a volume of 323 voxels2.

4.1. Synthetic dataset

As a synthetic dataset, we used ShapeNet [2], a large-

scale dataset of 3D CAD models. We use 43, 784 objects in

thirteen categories from ShapeNet. By using ShapeNet and

2Another popular metric is the chamfer distance of point clouds. How-

ever, this metric is not suitable for use in view-based learning. Because

it commonly assumes that points are distributed on surfaces, it is influ-

enced by invisible structures inside shapes, which are impossible to learn

in view-based training. This problem does not arise when using IoU be-

cause it commonly assumes that the interior of a shape is filled.

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

(a) (b) (c) (d) (e)

Figure 4. Examples of single-view training on the ShapeNet

dataset. (a) Input images. (b) Reconstructed shapes viewed from

the original viewpoints. (c–e) Reconstructed shapes viewed from

other viewpoints.

a renderer, a dataset of views, silhouettes, viewpoints, and

ground truth 3D shapes can be synthetically created. We

used ground truth 3D shapes only for validation and testing.

We used rendered views and train/val/test splits provided by

Kar et al. [16]. In this dataset, each 3D model is rendered

from twenty random viewpoints. Each image has a resolu-

tion of 224 × 224. We augmented the training images by

random color channel flipping and horizontal flipping, as

was used in [16, 27]3. We use all or a subset of views for

training, and all views were used for testing.

We used Batch Normalization [12] and Spectral Normal-

ization [25] in the discriminator. The parameters were op-

timized with the Adam optimizer [19]. The architecture of

the encoder and decoders, hyperparameters, and optimizers

are described in the supplementary material. The hyper-

parameters were tuned using the validation set. We used

Equation 3 as the view comparison function for silhouettes.

4.1.1 Single-view training

At first, we trained reconstructors in single-view training

described in Section 3.1. Namely, we used only one ran-

domly selected view out of twenty views for each object in

training.

Figure 4 shows examples of reconstructed shapes with

and without VPL. When viewed from the original view-

points (b), the estimated shapes appear valid in all cases.

However, without VPL, the shapes appear incorrect when

3When flipping images, we also flip the corresponding viewpoints.
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viewed from other viewpoints (c–e). For example, the back-

rest of the chair is too thick, the car is completely broken,

and the airplane has a strange prominence in the center.

When VPL is used, the shapes look reasonable from any

viewpoint. These results clearly indicate that the discrim-

inator informed the reconstructor regarding knowledge of

feasible views.

Table 2 shows a quantitative evaluation of single-view

training. VPL provides significantly improved reconstruc-

tion performance. This improvement is further boosted

when the discriminator is class conditioned. We can tell

that conducting texture prediction also helps train accurate

reconstructors.

VPL is particularly effective with the phone, display,

bench, and sofa categories. In contrast, VPL is not effec-

tive with the lamp category. Typical examples in these cate-

gories are shown in the supplementary material. In the case

of phone and display categories, because the silhouettes are

very simple, the shapes are ambiguous and various shapes

can fit into one view. Although integrating texture predic-

tion reduces the ambiguity, VPL is much more effective. In

the case of bench and sofa categories, learning their long

shapes is difficult without considering several views. Be-

cause the shapes in the lamp category are diverse and the

training dataset is relatively small, the discriminator cannot

learn meaningful priors.

4.1.2 Multi-view training

Second, we trained reconstructors using multi-view training

as described in Section 3.1. Namely, we used two or more

views out of twenty views for each object in training.

Table 3 shows the relationship between the reconstruc-

tion accuracy and the number of views per object Nv

used for training. Texture prediction was not conducted in

this experiment, and the difference between the proposed

method and the baseline is the use of VPL with class con-

ditioning. Our proposed method outperforms the baseline

in all cases, which indicates that VPL is also effective in

multi-view training. The effect of VPL increases as Nv de-

creases, as expected. Figure 5 shows reconstructed shapes

with texture prediction when Nv = 2. When VPL is used,

the shape details become more accurate.

4.1.3 Discriminator and optimization

We discussed two types of discriminators in the last para-

graph of Section 3.2 and emphasized the importance of dis-

criminating between estimated views rather than estimated

views and real views. We validated this statement with an

experiment. We ran experiments in single-view training us-

ing the discriminator of Table 1 (d). We also tested the iter-

ative optimization used in GAN [7] instead of using a gra-

dient reversal layer [6]. However, in both cases, we were

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

(a) (b) (c) (d) (e)

Figure 5. Examples of multi-view training on ShapeNet (Nv = 2).

Panels (a–e) are the same as in Figure 4.

unable to observe any meaningful improvements from the

baseline by tuning λd. This fact indicates that the discrim-

inator in Figure 1 (d) does not work well in practice, and

discriminating estimated views is key to effective training.

4.1.4 Comparison with manually-designed priors

Our proposed internal pressure (IP) loss and some regulariz-

ers and constraints used in [15, 32] were designed using hu-

man knowledge regarding shapes. Table 4 shows a compar-

ison with VPL. This experiment was conducted in single-

view training without texture prediction.

This result shows that IP loss improves performance.

The symmetricity constraint also improves the perfor-

mance, however, some objects in ShapeNet are actually not

symmetric. By regularizing the graph Laplacian and the

edge length of meshes, although the visual quality of the

generated meshes became better, improvement of IoU was

not observed.

VPL cannot be compared with the learning-based 3D

shape priors detailed by Gwak et al. [9] and Wu et al. [34]

because these methods require additional 3D models for

training, and their methods are applicable to voxels rather

than meshes.

4.1.5 Comparison with state-of-the-arts

Our work also shows the effectiveness of view-based train-

ing. Table 5 shows the reconstruction accuracy (IoU) on the

ShapeNet dataset using our method and that presented in re-
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.479 .266 .466 .550 .367 .265 .454 .524 .382 .367 .342 .337 .439 .403

X .500 .347 .583 .673 .413 .399 .443 .578 .481 .464 .423 .583 .486 .490

X X .513 .376 .591 .701 .444 .425 .422 .596 .479 .500 .436 .595 .485 .505

X .483 .284 .544 .535 .356 .372 .443 .534 .386 .370 .361 .529 .448 .434

X X .524 .378 .581 .705 .442 .422 .441 .561 .510 .475 .443 .625 .490 .508

X X X .531 .385 .591 .701 .454 .423 .441 .570 .521 .508 .444 .601 .498 .513

Table 2. IoU of single-view training on the ShapeNet dataset. VPL: proposed view prior learning. CC: class conditioning in the discrimi-

nator. TP: texture prediction.

Nv 2 3 5 10 20

Baseline .575 .596 .620 .641 .652

Proposed .583 .600 .624 .644 .655

Table 3. The relation between the number of views per object Nv

and the reconstruction accuracy (IoU) in multi-view training.

Prior IoU

None .387

Internal pressure (IP, ours) .403

IP & Symmetricity [15] .420

IP & Regularizing graph Laplacian [15, 32] .403 ∗

IP & Regularizing edge length [32] .403 ∗

IP & View prior learning (ours) .505

Table 4. Comparison of our learning-based prior with manually-

designed shape regularizers and constraints. ∗No meaningful im-

provement was observed.

Nv IoU

Single-view training

Our best model♯ 1 .513

Multi-view training

PTN [36] 24 .574

NMR [18] 24 .602

Our best model♯ 20 .655

3D supervision

3D-R2N2♯ [16] 20 .551

3D-R2N2♭ [3] 24 .560

OGN♭ [30] 24 .596

LSM♯ [16] 20 .615

Matryoshka♭ [27] 24 .635

PSGN♭ [5] 24 .640

VTN♭ [27] 24 .641

Table 5. Comparison of our method and state-of-the-art methods

on ShapeNet (3D-R2N2) dataset using IoU. Although supervision

is weaker, our proposed method outperforms the other models

trained using 3D models. ♯♭Models denoted with the same symbol

use the same rendered images.

cent papers45. Our method outperforms existing view-based

4The most commonly used dataset of ShapeNet for 3D reconstruction

was provided by Choy et al. [3]. However, we found that this dataset is not

training methods [18, 36]. The main differences between

our baseline and [18] are the internal pressure and the train-

ing dataset. Because the resolution of our training images

(224× 224) is larger than theirs (64× 64) and the elevation

range in the viewpoints ([−20◦, 30◦]) is wider than that of

theirs (30◦ only), more accurate and detailed 3D shapes can

be learned in our experiments.

It may be surprising that our view-based method outper-

forms reconstructors trained using 3D models. Although

view-based training is currently less popular than 3D-based

training, one can say that view-based training has much

room for further study.

4.2. Natural image dataset

If a 3D model is available, we can synthetically create

multiple views with accurate silhouette and viewpoint anno-

tations. However, in practical applications, it is not always

possible to obtain many 3D models, and datasets must be

created using natural images. In this case, generally, multi-

view training is not possible, and silhouette and viewpoint

annotations are noisy. Therefore, to measure the practicality

of a given method, it is important to evaluate such a case.

Thus, we used the PASCAL dataset preprocessed by Tul-

siani et al. [31]. This dataset is composed of images in

PASCAL VOC [4], annotations of 3D models, silhouettes,

and viewpoints in PASCAL 3D+ [35], and additional im-

ages in ImageNet [28] with silhouette and viewpoint an-

notations automatically created using [22]. We conducted

single-view training because there is only one view per ob-

ject. Because this dataset is not large, the variance in the

training results is not negligible. Therefore, we report the

mean accuracy from five runs with different random seeds.

We used the pre-trained ResNet-18 model [10] as the en-

coder as with [15, 31]. The parameters were optimized with

suitable for view-based training because there are large occluded regions

in the views owing to the narrow range of elevation in the viewpoints.

Therefore, we used a dataset by Kar et al. [16], in which images were

rendered from a variety of viewpoints. A comparison of the results from

both datasets is not so unfair because the performance of 3D-R2N2 [3] is

close in both datasets.
5This table only compares papers that report IoU on 3D-R2N2 dataset.

On other metrics and datasets, some works [8, 32] outperform PSGN [5].
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airplane car chair mean

Category-agnostic models

DRC [31] .415 .666 .247 .443

Baseline (s) .448 .652 .272 .458

Proposed (s) .450 .672 .292 .471

Baseline .440 .640 .280 .454

Proposed .460 .662 .296 .473

Category-specific models

CSDM [17] .398 .600 .291 .429

CMR [15] .46 .64 n/a n/a

Baseline (s) .449 .679 .289 .472

Proposed (s) .472 .689 .303 .488

Baseline .450 .669 .293 .470

Proposed .475 .679 .304 .486

Table 6. IoU of single-view 3D reconstruction on the PASCAL

dataset. The difference between the proposed method and the

baseline is the use of view prior learning. (s) indicates silhouette

only training without texture prediction (λc = 0).

the Adam optimizer [19]. The architecture of decoders, dis-

criminators, and other hyperparameters are described in the

supplementary material. We constrained estimated shapes

to be symmetric, as was the case in a previous study [15].

We used Equation 4 as the view comparison function for

silhouettes.

Table 6 shows the reconstruction accuracy on the PAS-

CAL dataset. Our proposed method consistently outper-

forms the baseline and provides state-of-the-art perfor-

mance for this dataset, which validates the effectiveness

of our proposed method. Category-specific models outper-

form category-agnostic models because the object shapes

in these three categories are not very similar and multitask

learning is not beneficial. The performance difference when

texture prediction is used is primarily caused by the relative

weight of the internal pressure loss.

Figure 6 shows typical improvements that can be gained

using our method. Improvements are prominent on the

wings of the airplane, the tires of the car, and the front legs

of the chair when viewed from unobserved viewpoints.

In this experiment, internal pressure loss plays an im-

portant role because observed viewpoints are not diverse.

Figure 7 shows a reconstructed shape without internal pres-

sure. The trunk of the car is hollowed, and this hollow can-

not be filled by VPL because there are few images taken

from viewpoints such as (c–e) in the dataset.

5. Conclusion

In this work, we proposed a method to learn prior knowl-

edge of views for view-based training of 3D object recon-

structors. We verified our approach in single-view training

on both synthetic and natural image datasets. We also found

that our method is effective, even when multiple views are

available for training. The key to our success involves us-

Baseline

Proposed

Baseline

Proposed

Baseline

Proposed

(a) (b) (c) (d) (e)

Figure 6. Examples on the PASCAL dataset. Panels (a–e) are the

same as in Figure 4.

Proposed

w/o IP

(a) (b) (c) (d) (e)

Figure 7. An example of reconstruction without internal pressure

(IP). Panels (a–e) are the same as in Figure 4.

ing a discriminator with two estimated views from observed

and unobserved viewpoints. Our data-driven method works

better than existing manually-designed shape regularizers.

We also showed that view-based training works as well as

methods that use 3D models for training. The experimental

results clearly validate these statements.

Our method significantly improves reconstruction accu-

racy, especially in single-view training. This is important

progress because it is easier to create a single-view dataset

than to create a multi-view dataset. This fact may enable

3D reconstruction of diverse objects beyond the existing

synthetic datasets. The most important limitation of our

method is that it requires silhouette and viewpoint anno-

tations. Training end-to-end 3D reconstruction, viewpoint

prediction, and silhouette segmentation would be a promis-

ing future direction.
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