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Abstract

The goal of human action anticipation is to predict fu-

ture actions. Ideally, in real-world applications such as

video surveillance and self-driving systems, future actions

should not only be predicted with high accuracy but also

at arbitrary and variable time-horizons ranging from short-

to long-term predictions. Current work mostly focuses on

predicting the next action and thus long-term prediction is

achieved by recursive prediction of each next action, which

is both inefficient and accumulates errors. In this paper, we

propose a novel time-conditioned method for efficient and

effective long-term action anticipation. There are two key

ingredients to our approach. First, by explicitly condition-

ing our anticipation network on time allows to efficiently

anticipate also long-term actions. And second, we propose

an attended temporal feature and a time-conditioned skip

connection to extract relevant and useful information from

observations for effective anticipation. We conduct exten-

sive experiments on the large-scale Epic-Kitchen and the

50Salads Datasets. Experimental results show that the pro-

posed method is capable of anticipating future actions at

both short-term and long-term, and achieves state-of-the-

art performance.

1. Introduction

Human action anticipation, which aims to predict future

unseen actions, is very important for many real-world appli-

cations. For example, in surveillance scenarios, early alert

can be produced if abnormal events are anticipated, and in

human-robot interaction scenario, the robots can provide

timely corresponding interactions if they are able to antici-

pate human actions [39, 18].

Most current works investigate anticipation of the next

action or actions after only one second [28, 29, 39, 4]. In

Figure 1. The proposed time-conditioned method for action antici-

pation. By incorporating the time parameter, the proposed method

is capable of anticipating long-term actions efficiently and effec-

tively.

real-world applications such as video surveillance, the sys-

tem is often expected to be able to anticipate long-term ac-

tions (e.g., the action after t seconds of the observation).

Long-term anticipations can be achieved by anticipating the

following actions one by one in an iterative way, e.g., using

RNN models [6]. This indicates that the anticipation at each

time step is achieved based on the anticipation results of the

previous time steps. This iterative method could be effec-

tive for certain scripted activities that contain fixed-order

actions. However, in many real-world activities, the actions

can be stochastic and not well structured. In this situation,

the anticipation may be inaccurate at some steps, and these

anticipation errors will accumulate during the iterative an-

ticipation process. This often leads to performance degrada-

tion of anticipation, especially when anticipating long-term

actions. Besides, if we only want to anticipate an action at

the long-term, the iterative method is often time-consuming

by producing the intermediate anticipations.

In this paper, we introduce a novel method to achieve

accurate and efficient action anticipation. Specifically, our

method performs action anticipation by incorporating the

time parameter to the information of the observation (see

Figure 1). Therefore, it directly anticipates the action at fu-
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ture time t in a one-shot fashion, and thus avoids anticipat-

ing all intermediate actions in the time period before t. Ide-

ally, our method is t times faster than the iterative method

for “sparse anticipation” (anticipating future actions at t).

When performing “dense anticipation”, our method will be

less efficient. The advantage of our method in this case is

that it is capable of generating more accurate future actions

compared to the iterative method, as our method only relies

on the observation for anticipation, bypassing accumulated

anticipation errors.

The contributions of this paper are summarized as fol-

lows: 1) We introduce a new time-conditioned method for

action anticipation; 2) We propose an attended temporal

feature and a time-conditioned skip connection to extract

useful information from the observation; 3) We conduct ex-

tensive experiments and analysis, and achieve state-of-the-

art performance.

2. Related Work

Early action recognition. Many efforts have been de-

veloped for action recognition from RGB and depth videos

[36, 8, 5, 40, 2, 25, 7, 31, 30, 14, 32, 38]. Early action

recognition attracts an increasing attention in recent years

[33, 10, 16, 20, 13, 11, 22, 23, 17, 1, 15, 3, 12, 24]. It is

often referred to as action prediction. The goal of early ac-

tion recognition is to recognize the label of an action from

a partial observation of this action. Kong et al. [17] in-

troduced a deep sequential context networks to reconstruct

missing information of the partial observation for early ac-

tion recognition. Liu et al. [23] proposed a new problem

of online action recognition from untrimmed 3D skeleton

streams and introduced a novel Scale Selection Network,

which is capable of effectively and efficiently selecting the

correct starting points of observed videos from untrimmed

videos, and achieved state-of-the-art performance for early

action recognition.

Early action detection. Early action detection aims to

detect an action as early as possible before the action ends

from untrimmed videos [10]. Ma et al. [27] introduced a

new ranking loss to train a model based on LSTM for early

action detection. The ranking loss encourages the model to

generate non-decreasing detection scores when the model

observes more activities. Shou et al. [35] formulated the

detection of action start as a classification task of sliding

windows and introduced a model based on Generative Ad-

versarial Network to generate hard negative samples to im-

prove the training of the model.

Action anticipation. Several works have investigated

anticipation of the immediate future after the observation

[28, 29, 39]. Vondrick et al. [39] introduced a regression

network to learn the representation of future frames, fol-

lowed by a classifier to anticipate the actions in one sec-

ond. Gao et al. [9] introduced a Reinforced Encoder-

Decoder Network to anticipate future representations using

sequences of visual representations. Mahmud et al. [28]

introduced a hybrid Siamese network to anticipate the next

action label and the starting time. Qi et al. [29] introduced

a spatial-temporal And-Or graph (AOG) to represent events

and used a temporal grammar and early parsing algorithm to

anticipate the next action. Damen et al. [4] leveraged TSN

[40] to anticipate the next action after one second of the ob-

servation. The observation is used as input of the TSN and

the label of the next action segment is set as the output of

the TSN to train the network.

Recently, Farha et al. [6] introduced two methods for

long-term action anticipation. One is based on a RNN

model, which outputs the remaining length of the current

action, the next action and its length. The prediction is con-

ducted in an iterative way, i.e., combine the prediction with

the observation to predict the next action. The limitation of

this method is that it is time-consuming and suffers from

error accumulation. Another method is based on a CNN

model, which outputs a sequence of future actions in a form

of a matrix. The limitation of this method is that it intro-

duces many parameters when predicting long sequences of

future actions. Besides, it needs to pre-define the scale of

the matrix.

Differently, in this paper, we propose a new method that

is capable of anticipating a future action at both short-term

and long-term in a one-shot fashion, which is efficient and

effective.

3. Time-conditioned Action Anticipation in

One Shot

Most of the existing works on action anticipation focus

on anticipating the next action at a short-term time-horizon.

The anticipation of a long-term action can be achieved in an

iterative way by repeatedly predicting each next action. The

limitation of this method is that it is often time-consuming

for the anticipation of long-term actions. In addition, com-

bining the anticipation at each time step for further antici-

pation accumulates the anticipation error and makes long-

term anticipation inaccurate. In this section, we introduce

our proposed time-conditioned method to mitigate the lim-

itations of previous methods and effectively anticipate the

future actions in one shot.

The overall architecture of the proposed method is

shown in Figure 2. It mainly consists of two parts, i.e.,

initial anticipation using an attended temporal feature, and

final anticipation by including a time-conditioned skip con-

nection. Below we describe each part in detail.

3.1. Attended Temporal Feature for Initial Antici­
pation

In order to directly anticipate the action after t seconds of

the observation in one shot, we introduce a time parameter
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Figure 2. Overall architecture of the proposed method. It con-

sists of two parts, i.e., the attended temporal feature for initial

anticipation, and the time-conditioned skip connection for final

anticipation. t denotes the anticipation of future actions after t

seconds of the observation. The action classes of the observation

C = [c0, · · · , cq] and the time representation ut are first concate-

nated to form the time-conditioned observation, which is used to

extract multi-scale temporal feature V . v′ is the sum of V across

the temporal dimension. v′ is used to generate an attention score

a, which is used to multiple V to achieve attended temporal fea-

ture va. va is used to generate initial anticipation of the future

action p1. rt is the skip-connection weight, which is generated

from time representation ut. rt is used to multiply the last action

of the observation cq , which is added to the initial anticipation p1

for final anticipation p2.

t for this task. The time parameter t is fed to a Multi-layer

Perception with sigmoid activation layers to produce a time

representation ut. As shown in Figure 2, the action classes

of the observed sequence C = [c0, · · · , cq] ∈ R
dc×q and

the time representation ut ∈ R
dt are concatenated for fur-

ther processing. dc and q denote the number of action

classes and the time steps of the observation. dt denotes

the dimension of the time representation. This concatenated

representation is referred to as time-conditioned observa-

tion. One can also add ut to the observation to generate the

time-conditioned observation. In this case, dt needs to be

set to equal to dc.

The next step is to learn temporal information from the

time-conditioned observation for action anticipation. Con-

sidering that the observation generally contains multiple ac-

tions, we hypothesize that the observation contains irrele-

vant information and the temporal information should be

modeled from some particular parts of the observation in

order to effectively anticipate the future action. To this

end, we introduce an attended temporal feature as the rep-

resentation of the time-conditioned observation for antici-

pation. Specifically, we design multi-scale temporal con-

volutions to process the time-conditioned observation, fol-

lowed by an attention mechanism for selectively feature fu-

sion. Attention has achieved great success in many fields

such as caption generation [41], action recognition [34] and

re-identification [26]. The temporal convolution of the ith

scale is formulated as follows:

V i = f(W i
c ∗ C

′ + bic) (1)

where f(·) denotes the activation function (here we use the

ReLU function). C ′ denotes the time-conditioned observa-

tion. W i
c ∈ R

m×ki
×du and bic ∈ R

m are the weight and

bias of the temporal convolution of the ith scale. ki is the

kernel size of the temporal convolution of the ith scale. m

is the number of convolutional filters of all scale, which is

set to the same value for feature fusion. du = dc + dt de-

notes the dimension of C ′ at each time step. ∗ represents

the convolution operator. V i ∈ R
m×ni

. ni = q − ki + 1
is the number of time steps of the temporal feature gener-

ated from the ith scale temporal convolution. The output

temporal features of all scales of temporal convolution are

concatenated in the temporal dimension, which results in a

multi-scale temporal feature V ∈ R
m×n. n =

∑scale

i=1 ni

is the number of time steps of the multi-scale temporal fea-

tures. As shown in Figure 2, vj denotes the temporal feature

at the jth time step, i.e., vj corresponds to jth column of V .

To generate the attended temporal feature, we first use the

sum of vj to generate an attention score for all time steps of

V as follows:

v′ =
∑n

j=1 vj

a = softmax(Wav
′ + ba)

(2)

where Wa ∈ R
n×m and ba ∈ R

n are the weights and bias

of the attention layer. The attended temporal feature is cal-

culated as follows:

va =
n
∑

j=1

ajvj (3)

The attended temporal feature is used to conduct initial an-

ticipation of the future action as follows:

p1 = softmax(Wo1va + bo1) (4)

where Wo1 ∈ R
dc×m and bo1 ∈ R

dc are the weights and

bias. dc denotes the number of action classes as mentioned

above. p1 ∈ R
dc is the probability of the future action. The

ith element of the prediction p
(i)
1 ∈ [0, 1] corresponds to

the ith class. We refer to p1 as initial anticipation.

3.2. Time­conditioned Skip Connection for Final
Anticipation

The initial anticipation is generated using the temporal

information along the sequence of observation. Human ac-

tivities generally evolve continuously. The actions within

short temporal distance are usually relevant to each other.

Particularly, the last action of the observation is generally

relevant to the future actions. In this section, we introduce a

time-conditioned skip connection between the last observed
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action and the initial anticipation in order to incorporate

this complementary ‘short-temporal-distance’ information

and generate an improved final anticipation. Intuitively, the

last observed action is more relevant to short-term future ac-

tions than long-term actions. We therefore apply different

weights ranging from zero to one to the last observed action

before connecting to the initial anticipation. The weights

are learned based on t, as shown in Figure 2. We refer to

the weight as skip-connection weight. Specifically, given

the time representation ut, the skip-connection weight rt is

calculated as follows:

rt = sigmoid(Wsut + bs) (5)

where Ws ∈ R
1×dt and bs are the weights and bias. We

denote the last action of the observation as cq ∈ R
dc . The

time-conditioned skip connection is formulated as:

ps = rtcq + p1 (6)

The time-conditioned skip connection is used to generate

final anticipation as follows:

h = f(Whps + bh)
p2 = softmax(Wo2h+ bo2)

(7)

where Wh ∈ R
dh×dc and bh ∈ R

dh are the weights and

bias of the hidden layer before the output layer. Wo2 ∈
R

dc×dh and bo2 ∈ R
dc are the weights and bias of the out-

put layer. p2 ∈ R
dc is final anticipation of the future action.

3.3. Objective

In Figure 2, the action classes of the observation C are

generated from observed sequences by extracting a local

spatial-temporal feature at each time step, and feeding the

feature to a hidden layer and an output layer for action

recognition. During training, we jointly train the recogni-

tion and anticipation network using the sum of all losses,

which is formulated as:

ℓ = ℓr + ℓp1
+ ℓp2

(8)

where ℓr, ℓp1
and ℓp2

are the loss of the recognition, initial

anticipation and final anticipation, respectively. Each loss

is formulated as follows:

ℓr = −
∑q

j=1

∑dc

i=1 y
(i)
j log

(

c
(i)
j

)

ℓp1
= −

∑dc

i=1 y
(i)
t+q log

(

p
(i)
1

)

ℓp2
= −

∑dc

i=1 y
(i)
t+q log

(

p
(i)
2

)

(9)

where q is the number of time steps of the observation as

mentioned above. yj is the ground-truth label of the action

at the jth time step of the observation. y
(i)
j = 1 if the action

class is i, and y
(i)
j = 0 otherwise. yt+q is the ground-truth

label of the future action.

4. Experiments

The proposed method was evaluated on two datasets, i.e.,

Epic-Kitchen Dataset [4] and 50Salads Dataset [37]. In this

section, we report experimental results and detailed analy-

sis.

4.1. Datasets

Epic-Kitchen Dataset. This dataset is a large first-person

video dataset, which is captured by 32 subjects in 32 differ-

ent kitchens. The videos in this dataset contain daily activ-

ities of the subjects, i.e., no scripts are provided to instruct

the subjects. This makes this dataset very natural and chal-

lenging. There are 272 training videos, which are captured

by 28 subjects. Each video contains multiple action seg-

ments, which are categorized into 125 classes. Since the

annotations of the testing videos are not available, we use

the training videos to perform cross-validation for evalu-

ation. Specifically, we randomly split the training videos

into 7 splits, each containing videos of 4 subjects. We set

the length of the observation to 30s and generate video clips

via a temporal sliding window of 30s. The temporal stride

of the sliding window is set to 1s. The frames without anno-

tations are removed. This results in about 89600 sequences

in total. The average number of testing videos across all

splits is about 12800.

50Salads Dataset. This dataset contains 50 videos which

are performed by 25 subjects. Each subject is preparing

two mixed salads. There are 17 fine-grained action classes.

We perform 5-fold cross-validation for evaluation using the

splits provided by [21]. As in the Epic-Kitchen Dataset, we

set the length of the observation to 30s and generate video

segments using a temporal sliding window with a stride of

1s. This results in about 15100 sequences. The average

number of the testing sequences across all splits is 3020.

4.2. Implementation Details

The scale of the temporal convolution is set to 4, with

kernel sizes of 1,3,7 and 15. The filter sizes of all scales

of the temporal convolution are set to 512. The numbers of

units of all the hidden fully connected layers are set to 512.

The learning rate is set to 0.01 and the batch size is set to 64.

For feature representations of videos, we leverage I3D net-

work [2] to extract spatial-temporal features from the videos

of the Epic-kitchen Dataset. Specifically, we down-sample

the videos to 20 frames/second and feed local video vol-

umes at every second to the network. Each local volume

contains 16 frames. For the feature representation of the

50Salads Dataset, we use the features provided by [21] for

simplicity. The same feature is used in all methods for fair

comparisons.
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Methods Top-1 Top-5 AvgCP AvgCR

TSN [4, 40] 23.8% 70.2% 2.9% 5.0%

Proposed 25.6% 71.6% 6.3% 7.3%

Table 1. Next action anticipation for the Epic-Kitchen Dataset.

‘Top-1’, ‘Top-5’, ‘AvgCP’, ’AvgCR’ represent the top-1 accuracy,

top-5 accuracy, average class precision and average class recall,

respectively.

Figure 3. Long-term action anticipation for the Epic-Kitchen

Dataset. The time t in the X axis represents the anticipation of

the future actions after t seconds of the observation.

Figure 4. Long-term action anticipation on the 50Salads Dataset.

The time t in the X axis represents the anticipation of the future

actions after t seconds of the observation.

4.3. Comparison to the State­of­the­art

Epic-Kitchen Dataset. The initial protocol for action an-

ticipation in this dataset is to predict the next action label

after 1s of the observation [4]. We first follow this proto-

col to evaluate the proposed time-conditioned method with-

out skip connection and compare to the Temporal Segment

Networks (TSN) [40] method used in the paper [4] for ac-

tion anticipation. The comparison aims to show that our

basic framework can also work for this protocol, although

our goal is long-term action anticipation. As the proposed

method uses only the RGB frames, we also use RGB frames

to train the TSN model. To evaluate anticipation perfor-

mance using this protocol, we follow [4] and use action

boundaries to generate training and testing data. We eval-

uate the top-1 accuracy, top-5 accuracy, average class pre-

cision and average class recall as [4] and show the results

in Table 1. The proposed method outperforms TSN in all

cases.

The proposed method is compared to the CNN method

[6] and the RNN method [6] for long-term action anticipa-

tion. We report sparse anticipation results within 60 sec-

onds in Figure 3. The performance of the proposed method

is significantly better than the other two methods. The stan-

dard deviation among the 7 splits of the proposed method

is around 0.03 for all time-steps. From Figure 3 it can

also be seen that the improvements of the proposed method

are more significant when anticipating longer-term actions,

e.g., actions after 60s of the observation. The RNN method

anticipates future actions in an iterative way and is inca-

pable to anticipate long-term actions accurately as the an-

ticipation errors accumulate. Although the CNN method

anticipates actions directly from the observation, the net-

work tends to minimize the anticipation loss of short-term

actions and is unable to anticipate long-term actions accu-

rately. Compared to the RNN and CNN method, the pro-

posed time-conditioned method anticipates future actions in

one shot, and achieves the best performance for both short-

term and long-term anticipations.

50Salads Dataset. The anticipation performance of the

50Salads Dataset is shown in Figure 4. The proposed

method significantly outperforms the CNN method [6] and

the RNN method [6] in all anticipation cases. Specifically,

when anticipating future actions after 10s of the observa-

tion, the performance of the proposed method is 50.0%,

which is 11.9% and 12.2% better than the CNN method

(38.1%) and RNN (37.8%) method, respectively. The aver-

age anticipation accuracy of the proposed method is 32.5%.

Compared to the average accuracy of the CNN method

(23.8%) and the RNN method (18.5%), the improvements

of the proposed method are 8.7% and 14%. We also follow

the protocol in [6] to generate the training and testing data

for dense anticipation. In this protocol, the input is set to the

labels of a particular percentage (e.g., 20%) of each video,

and the goal is to anticipate a following sub-sequence with a

percentage (e.g., 10%) of the video. We follow [6] to antic-

ipate future action segments and the duration of each action

for fair comparison with their iterative method. The time

t in this case represents the tth action segment in unseen

videos. The duration is generated in a form of vector that

includes the duration ratios of all unseen segments using an

additional softmax layer. The results are shown in Table 2

and Table 3. We also follow [6] to evaluate dense anticipa-

tion on the Breakfast Dataset [19]. The results are shown

in Table 4 and Table 5. We also achieve better performance

than the RNN method and the CNN method overall.
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(a) (b)

Figure 5. Comparison between different baselines and the proposed TOS AF TSC on the Epic-Kitchen Dataset and the 50Salads Dataset.

4.4. Benefit of Time­conditioned One­shot Antici­
pation

In this paper, we incorporate the time parameter to an-

ticipate actions of any future time in one shot. We con-

duct the following baselines to demonstrate the benefit of

this method for long-term action anticipation. 1) Time-

conditioned One-shot Anticipation (TOS). In this baseline,

we simply average the temporal features and incorporate the

time parameter for future action anticipation. This baseline

does not contain the attended temporal feature or the time-

conditioned skip connection in order to show the benefit of

the time-conditioned method for long-term action anticipa-

tion. 2) Iterative Anticipation (Iterative). In this baseline,

we do not incorporate the time parameter for future action

anticipation. Instead, we use the same feature as the TOS

baseline to anticipate future actions in next time step. This

baseline is similar to the RNN method [6]. Particularly, the

anticipation of first time step is combined with the observa-

tion to predict the next time step. This process is repeated

t times in an iterative way to anticipate the actions in the

tth time step. As the anticipation is combined with the ob-

servation for anticipation of the next time step, the length

of the anticipating time step is set to the same frame rate of

the observation. In our case, the length of each time step is

1s. The results of these two baselines are shown in Figure 5.

The one-shot baseline significantly outperforms the iterative

baseline for long-term action anticipation on both datasets.

The iterative baseline anticipates long-term future actions

by repeatedly combining the prediction of next step with the

observation. This process accumulates the predicting error

of each step and results in worse performance for long-term

action anticipation. From Figure 5(b) it can be seen that the

iterative baseline outperforms the one-shot baseline on the

50Salad dataset for the anticipation of future actions within

10s. This could be due to that this dataset contains scripted

actions, making it easy to anticipate actions in short term.

In this case, there is less error for the anticipation of the

short-term actions. The TOS method outperforms iterative

method when anticipating actions after 20s of the observa-

tion. It clearly shows the advantage of conditioning on time

for long-term action anticipation.

4.5. Benefit of Attended Temporal Feature

In this work, we use an attended temporal feature for ac-

tion anticipation. In order to demonstrate the benefit of this

method, we further conduct the following baseline: Time-

conditioned One-shot Anticipation using Attended Tempo-

ral Feature (TOS AF). This baseline is used to compare

to the TOS baseline. In this baseline, we also incorpo-

rate time parameter to anticipate future actions. Instead

of equally using the observation by averaging the tempo-

ral features, we use the attended temporal feature for action

anticipation. The results on the Epic-Kitchen Dataset and

the 50Salads Dataset are shown in Figure 5. The TOS AF

baseline improves the TOS baseline in both datasets, espe-

cially for shot-term action anticipation. When anticipating

long-term actions, the improvement of the TOS AF base-

line compared to the TOS baseline is not that significant.

For anticipating long-term actions, it is better to use all the

observed actions to obtain a high-level concept of the future

activities. In this case, the averaged temporal feature pro-

vides useful information, which makes the TOS baseline

achieve a similar performance to the TOS AF baseline.

4.6. Benefit of Time­conditioned Skip Connection

The proposed method (TOS AF TSC) contains a time-

conditioned skip connection to provide useful ’short-

temporal-distance’ information of the last observed action

for action anticipation. We compare the proposed method

with the TOS AF baseline. In order to demonstrate the

benefit of conditioning on time for skip connection, we

further conduct the following baseline: Time-conditioned

One-shot Anticipation using Attended Temporal Feature

and Skip Connection (TOS AF SC). This baseline is used
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Observation 20% 30%

Prediction 10% 20% 30% 50% 10% 20% 30% 50%

RNN [6] 0.3006 0.2543 0.1874 0.1349 0.3077 0.1719 0.1479 0.0977

CNN [6] 0.2124 0.1903 0.1598 0.0987 0.2914 0.2014 0.1746 0.1086

Proposed 0.3251 0.2761 0.2126 0.1599 0.3512 0.2705 0.2205 0.1559

Table 2. Dense anticipation mean over classes accuracy on the

50Salads Dataset (without ground-truth observation).

Observation 20% 30%

Prediction 10% 20% 30% 50% 10% 20% 30% 50%

RNN [6] 0.4230 0.3119 0.2522 0.1682 0.4419 0.2951 0.1996 0.1038

CNN [6] 0.3608 0.2762 0.2143 0.1548 0.3736 0.2478 0.2078 0.1405

Proposed 0.4512 0.3323 0.2759 0.1727 0.4640 0.3480 0.2524 0.1384

Table 3. Dense anticipation mean over classes accuracy on the

50Salads Dataset (with ground-truth observation).

Observation 20% 30%

Prediction 10% 20% 30% 50% 10% 20% 30% 50%

RNN [6] 0.1811 0.1720 0.1594 0.1581 0.2164 0.2002 0.1973 0.1921

CNN [6] 0.1790 0.1635 0.1537 0.1454 0.2244 0.2012 0.1969 0.1876

Proposed 0.1841 0.1721 0.1642 0.1584 0.2275 0.2044 0.1964 0.1975

Table 4. Dense anticipation mean over classes accuracy on the

Breakfast Dataset (without ground-truth observation).

Observation 20% 30%

Prediction 10% 20% 30% 50% 10% 20% 30% 50%

RNN [6] 0.6035 0.5044 0.4528 0.4042 0.6145 0.5025 0.4490 0.4175

CNN [6] 0.5797 0.4912 0.4403 0.3926 0.6032 0.5014 0.4518 0.4051

Proposed 0.6446 0.5627 0.5015 0.4399 0.6595 0.5594 0.4914 0.4423

Table 5. Dense anticipation mean over classes accuracy on the

Breakfast Dataset (with ground-truth observation).

to compared to the TOS AF baseline and the TOS AF TSC

method. In this baseline, besides using the attended fea-

ture for future action anticipation, we also incorporate skip

connection to anticipate future actions. Compared to the

TOS AF TSC method, this baseline does not use the time

parameter to generate the skip-connection weight. The re-

sults of the TOS AF SC and the TOS AF TSC methods are

shown in Figure 5. The skip connection improves the per-

formance of the TOS AF baseline, especially for the short-

term action anticipation. However, when predicting future

actions after 60s of the observation, the accuracy of the

TOS AF SC baseline is 15.5%, which is 5% worse than

the TOS AF baseline (20.5%). The TOS AF SC baseline

directly adds the last observed action to the initial antici-

pation for the final anticipation of the actions in any future

time. Intuitively, the information of the last observed action

is more beneficial for anticipating short-term actions as ac-

tions generally change continuously and the neighbour ac-

tions are usually relevant. For long-term action anticipation,

the information of the last observed action is less important.

In this case, directly adding the last observed action makes

the performance worse. The proposed TOS AF TSC, on

the other hand, uses the time parameter to generate a weight

for skip connection, which improves the performances of

both short-term and long-term action anticipation.

Future time

Number 1s 5s 10s 30s 50s

1 33.9% 31.6% 29.8% 26.4% 25.3%

2 33.5% 31.1% 29.1% 25.5% 24.1%

3 33.4% 31.1% 29.2% 25.7% 24.2%

4 33.5% 31.1% 29.4% 25.7% 24.5%

5 33.8% 31.4% 29.6% 25.8% 24.7%

Table 6. Anticipation accuracy on the Epic-kitchen Dataset.

‘Number’ represents the numbers of observations used for skip

connection in the proposed method.

4.7. Comparison of Attended Temporal Feature and
Time­conditioned Skip Connection

The attended temporal feature aims to select relative

temporal information from the whole observation for initial

anticipation, while the time-conditioned skip connection in-

corporates the last observed action to the initial anticipa-

tion for final anticipation. We have shown that the time-

conditioned skip connection improves the initial anticipa-

tion of the attended temporal feature. In order to show that

the attended temporal feature is indispensable for anticipa-

tion, we also conduct the following baseline: using only the

last observed action for anticipation, i.e., the time represen-

tation is concatenated with the last observed action to gener-

ate initial anticipation. The time-conditioned skip connec-

tion is also incorporated for final anticipation. Compared to

the proposed TOS AF TSC, there is no attended temporal

feature. We refer to this baseline as TOS TSC. The results

are shown in Figure 5. It can be seen that the performance

of TOS TSC is worse than the proposed method. When

anticipating future actions after 60s of the observation, the

performance of the TOS TSC baseline is 22.3%, which is

2.3% worse than the proposed method with attended tem-

poral feature. From Figure 5 it can also be seen that the

TOS AF baseline outperforms the TOS TSC baseline, es-

pecially for long-term action anticipation. The TOS TSC

baseline uses only the last observed action to anticipate fu-

ture actions. It does not contain the temporal information

of the observation. While the last action could be useful for

short-term action anticipation, the temporal information is

more useful to anticipate long-term actions.

4.8. Analysis on the Number of Observations for
Skip Connection

In the proposed method, we use only the last observation

in the skip connection for anticipation. We further conduct

the experiments of including more observations to the last

one in the skip connection. The results on the Epic-kitchen

Dataset are shown in Table 6. There is no much difference

among the performance of the methods that use different

numbers of observations. One possible reason is that the

last few observations might belong to the same action class

and including more observations does not add more infor-

mation.
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Figure 6. Visualization of future action anticipation on the Epic-Kitchen Dataset. We show the results of the proposed method and the

iterative method for anticipating future actions after t seconds of the observation. Each column corresponds to one t value, which is

indicated in the first row. Incorrect anticipations are shown in red.

Figure 7. Average attention maps of anticipating actions at (a) fu-

ture 1s and (b) future 30s on the Epic-kitchen Dataset. Each row

corresponds to the feature of one scale of temporal convolution.

The bottom row corresponds to the feature of the largest scale of

temporal convolution, which contains less time steps than the fea-

tures of other smaller scales due to the larger kernel size of tempo-

ral convolution.

4.9. Visualization of Future Action Anticipation

Figure 6 shows some examples of future action anticipa-

tion on the Epic-Kitchen Dataset. It can be seen that the pro-

posed method generates more diverse anticipations of future

actions, while the iterative method tends to generate the

same anticipation for different future time steps. Besides,

when the anticipations of short-term actions are incorrect,

the proposed method can still generate correct anticipations

of long-term actions, as shown in the last example in Figure

6. This is because the proposed method does not rely on the

anticipations of previous time steps to anticipate actions.

4.10. Visualization of Attention Map

Figure 7 shows average attention maps (a in Figure 2)

of anticipating actions at future 1s and future 30s on the

Epic-kitchen dataset. The brighter color denotes attention

of a larger weight. The attention of anticipating 1s is more

selective, and focuses on different time steps of the multi-

scale temporal features, while the attention of anticipating

30s is less selective and includes all time steps of the fea-

tures.

5. Conclusions

In this paper, we have introduced a novel method for ac-

tion anticipation. The proposed method explicitly condi-

tions the anticipation on time, which is more efficient and

effective for long-term action anticipation. Moreover, we

have introduced an attended temporal feature to extract use-

ful temporal information of the observation. We have also

introduced a time-conditioned skip connection to incorpo-

rate the information of the last observed action to enhance

the anticipation. We have conduct extensive experiments

and have shown the advantages of the proposed method for

anticipating future actions at both short-term and long-term.
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