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Abstract

3D shape generation is a challenging problem due to the

high-dimensional output space and complex part configura-

tions of real-world objects. As a result, existing algorithms

experience difficulties in accurate generative modeling of

3D shapes. Here, we propose a novel factorized generative

model for 3D shape generation that sequentially transitions

from coarse to fine scale shape generation. To this end, we in-

troduce an unsupervised primitive discovery algorithm based

on a higher-order conditional random field model. Using

the primitive parts for shapes as attributes, a parameterized

3D representation is modeled in the first stage. This repre-

sentation is further refined in the next stage by adding fine

scale details to shape. Our results demonstrate improved

representation ability of the generative model and better

quality samples of newly generated 3D shapes. Further, our

primitive generation approach can accurately parse common

objects into a simplified representation.

1. Introduction

‘The objects seen could be constructed out of parts

with which we are familiar.’

L.G. Roberts

Computer vision in its early days saw the emergence

of parts-based representations for object representation and

scene understanding [23]. As early as 1963, Roberts [27]

presented an approach to represent objects using a set of 3D

polyhedral shapes. Subsequently, Guzman [10] introduced

a collection of parts that appear in generic line drawings

and demonstrated how they can be used to recognize 2D

curved shapes. The generalized cylinders based represen-

tation to describe curved objects of Binford [3] was a sig-

nificant breakthrough. It was developed further, including

a pioneering contribution by Biederman, who introduced a

set of basic primitives (termed as ‘geons’ meaning geometri-

cal ions) and linked it with the object recognition in human

cognitive system [2].

Very recently, early research towards automatic discovery

Figure 1: Compared to traditional 3D generative model-

ing approaches (top) that directly generate 3D shape, our

approach (bottom) transitions incrementally from a simple

primitive based representation towards a complete 3D shape.

Such a hierarchical approach provides better control and in-

terpretability for generative networks. Furthermore, a major

novelty of this work is an unsupervised primitive discovery

approach that underpins the proposed generative pipeline.

of shape primitives using deep networks have been reported

in the literature. Tulsiani et al. [39] proposed a CNN model

to predict the size and transformation parameters of primi-

tives that were assembled together to represent generic 3D

shapes. Their main draw-back is the inability to jointly rep-

resent different object categories using a single model. This

requires a class-specific CNN training procedure, that is both

time-consuming and difficult to scale to a large number of

categories. Zou et al. [47] proposed a generative model

based on RNNs to recover a 3D shape defined by primitives

from an input depth image. Their model, however, requires

primitive-level shape labellings for training, requires an ac-

curate depth map as input and works only for a set of three

related classes (i.e., chair, table and night stand).

In this work, we propose to incorporate a generic prim-

itive based representation in the 3D generative modeling

process to enhance the scalability of learned models. Our

first major contribution is the automatic primitive discovery
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in 3D shapes. Such a shape representation can provide sev-

eral key benefits such as: (a) It factorizes the 3D generation

process into a set of simpler steps, that defines a natural top-

down flow in the existing bottom up generation pipelines. (b)

It offers a highly compact representation compared to volu-

metric representations such as a voxel or a TSDF. (c) Shape

primitives provide a level of abstraction in the generation

process, that makes it easy to understand and manipulate the

output from generative models. (d) A global representation

of a shape encoded by a few primitives allows a better intu-

ition about the object parts, their physical properties (e.g.,

stability and solidness) and their mutual relationships (e.g.,

support and contact) [11]. (e) Such a shape description pro-

vides invariance to pose changes - by explicitly estimating

object size and transformation using our proposed primi-

tive Generative Adversarial Network (GAN), the network

separates viewpoint changes from the actual shape changes.

In a nutshell, we introduce the principal of modularity in

the existing generative pipelines. Our main contributions are

summarized below:

• A factorized generative model that improves 3D gener-

ation by introducing a simpler auxiliary task focused

on learning primitive representation.

• A fully unsupervised approach based on a high-order

Conditional Random Field (CRF) model to jointly op-

timize shape abstractions over closely related sub-sets

of 3D models. Our model considers appearance, stabil-

ity and physical properties of the primitives and their

mutual relationships such as overlap and co-occurrence.

• The proposed model is jointly trained on all object cat-

egories and avoids expensive category specific training

procedures adopted by earlier approaches.

The proposed approach can be used to incorporate interme-

diate levels of user input and can render more sophisticated

outputs on top of that. From another perspective, it can be

used to analyze the intermediate part-based representations

learned by GAN that provides better interpretability and

transparent generation process.

2. Related Work

3D Generative Models: Wu et al. [41] were the first to

extend the 2D GAN framework [8] to generate 3D shapes.

They demonstrated that the representations learned by the

discriminator are generalizable and outperform other unsu-

pervised classification methods. Another similar approach

was proposed in [38] that used a Wasserstein loss [1] for

3D GAN. However, [38, 41] do not address primitive based

shape modeling for a hierarchical shape generation pipeline.

Notably, some recent efforts in 2D image generation built

a hierarchy of stacked GANs to generated stage-wise out-

puts [13, 40, 44]. Huang et al. [13] used a combination of

encoder, generator and discriminator blocks to perform joint

top-down and bottom-up information exchange for improved

image generation. However, they operate on learned feature

representations and do not enhance model interpretability.

Besides, a common limitation of above mentioned methods

is the lack of control over the latent representations and re-

sulting difficulties in generating data with desired attributes.

Primitive Discovery: Cuboids have been extensively

used in the previous literature to represent objects, parts

and scene structural elements due to their simple form

[32, 18, 15, 23]. The identification of recurring parts and

objects has also been studied under the problems of co-

segmentation and unsupervised learning [28, 34, 29]. In

3D shapes, some efforts aim at parts discovery and model-

ing their mutual arrangements in large-scale shapes datasets

[45, 6]. Recently, Tulsiani et al. [39] proposed a deep learn-

ing based approach to describe a shape with a combination

of cuboid primitives. Their approach requires learning a

separate model for each set of shapes belonging to the same

category. Therefore, their model is not fully unsupervised

and difficult to scale to a large number of object categories.

In this work, we address these limitations and further propose

a factorized generative model for improved shape generation.

Model Based 3D Reconstruction: The pioneering work

of Roberts [27] lead to several efforts in recovering 3D lay-

out of a scene from a single image. However, the 3D recon-

struction from a single image is still an unsolved problem.

Given the success of deep networks, recent approaches have

proposed several incarnations of these models for 3D recon-

struction. Izadinia et al. [14] generated 3D CAD models

from a single indoor scene by detecting objects class and

its pose using deep CNNs, followed by synthesizing scenes

using CAD models from the ShapeNet library [4]. However,

in contrast to these works, we do not have the prior knowl-

edge about a specified set of primitives, rather we aim to

automatically learn the shared parts across 3D shapes.

3. Primitive Discovery in 3D Shapes

In the first stage, we automatically discover 3D primitives

from generic object shapes. Our goal is to learn common

recurring primitives in 3D shapes in an unsupervised manner.

We introduce a higher-order CRF model that incorporates

several physical and volumetric properties of primitives to

identify a consistent shape description. We propose a multi-

view primitive discovery approach that discretizes the 3D

space without losing much shape information and allows a

computationally efficient alternative to direct 3D primitive

fitting. Furthermore, since our objective is to discover shared

primitives among various models, direct cuboid fitting in

the original 3D space leads to more instance specific and

less category generalizable primitives. Our CRF model is

explained next.
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Figure 2: An overview of the proposed approach. Our model consists of a Primitive GAN that generates a parsimonious

representation that is used by the 3D VAE GAN in the next stage to recover a complete 3D shape.

3.1. Proposed CRF Model

Our goal is to automatically discover 3D primitives to

represent generic 3D shapes without any supervision. For

this purpose, we design a CRF model that allows efficient

inference and adequately incorporates rich relationships be-

tween primitives and complete shapes. Suppose, we have a

dataset D = {x1 . . .xM} consisting of M 3D shapes. For

each shape xm, assume a candidate set of box proposals

generated via bottom-up grouping (see Sec. 3.3), denoted

as B = {b1 . . .bN}, where N is the total number of box

proposals. The segmented regions obtained by grouping

are denoted by R = {r1 . . . rR}. We also use a set of bi-

nary variables V = {v1 . . . vN} and S = {s1 . . . sR}, where

each vi and sr is associated with a box proposal and a seg-

mented region, respectively. The variable vi denotes whether

a cuboid is selected as a representative primitive or not.

We develop a CRF model to encapsulate the relationships

between primitives both locally as well as globally. The

Gibbs energy formulation of the CRF is given by:

E(V|D) =
∑

i

ψu(vi) +
∑

i<j

ψp(vi, vj) +
∑

ψh(V, T ),

where, ψu, ψp and ψh denote the unary, pairwise and higher-

order potentials respectively and T represents the set of

primitives from similar shapes. Next, we elaborate on each

of the three potentials.

3.1.1 Unary Potential

The unary potential for each primitive candidate denotes

its likelihood for a valid simplified representation of the

3D shape. This potential encodes physical and geometric

properties of each box. We explain the individual cost terms

within the unary potential below.

Volumetric occupancy: This cost (coci ) estimates the empty

volume within the ith primitive. It is defined as coci =

Frontal convex hull

Convex 

part

Concave 

part

(𝑣𝑓)

(𝑎𝑓)Face area

𝑥𝑘
𝑑(𝑥𝑘, Conv(𝑋))

Extended 

cuboid

(a) Compactness (b) Convexity (c) Cuboid support

Figure 3: Visual illustration of costs.

noc
i /n

t
i, where noci and nt

i are the number of empty and

total voxels respectively.

Shape uniformity: This cost (csui ) measures the uniformity

of the shape along the primitive sides that were used to

propose the candidate primitive. It is calculated by taking the

average entropy of the surface normal direction distribution

for the relevant initial segmented regions.

Primitive compactness: The cost (cpci ) estimates how

tightly a 3D shape is enclosed by the primitive. It is calcu-

lated using average ratio between the empty surface area on

each face and the actual face area (af ): cpci =
∑

f∈F

af−vf

af
,

where F is the set of visible faces of primitive (Fig. 3).

Support cost: A valid primitive is likely to be supported by

nearby shape parts. This cost calculates nearby support by

considering a 5% enlarged box and taking the ratio: csci =
nsc
i

nex
i

−nsc
i

, where nex
i and nsc

i denote the number of voxels in

the extended and original box primitive respectively.

Shape convexity: This cost determines the degree to which

a shape-part is convex. For the regions associated with

each primitive proposal, we first obtain a 3D frontal convex

hull that only covers the visible 3D points from a single

view. We then obtain the mean of distances between the

3D points and the frontal convex hull. It is given by: ccoi =
∑

∀views

∑

k
d(xk,Conv(X))

N
, where, xk ∈ X , Conv(X) is

the frontal convex hull for X, d denotes shortest distance

between xk and Conv(X) (see Fig. 3). A large value of

shape convexity cost (ccoi ) denotes that the shape is concave,

while a small value denotes a convex shape. As convex
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shapes are more common in indoor scenes, a soft cost based

on convexity is helpful.

Shape symmetry: For each primitive, we measure the cost

(cssi ) denoting reflective symmetry of its enclosed 3D shape.

For this purpose, we perform SVD decomposition to cal-

culate three principal axis and measure the average overlap

between the original points and their reflected versions. This

overlap is measured as the distance between the neighboring

point’s position and normal direction [16]. Given the three

principal orthogonal directions X = {a, b, c} of maximum

variation and the corresponding Eigenvalues denoted by πx,

the following relation is used to measure symmetry:

cssi =
1

∑

x

πx

∑

x

πx
lx

(

∑

j

‖p
P i

x

j −p
P i

x′

nj ‖+ (1− q
P i

x

j · q
P i

x′

nj )
)

,

where, x∈X , j∈|P i|, P i denotes the point cloud of ith prim-

itive, Px′ denotes the flipped point cloud along x direction,

pj and qj denote the jth point and its normal respectively, lx
denotes the length of primitive along the x direction and nj

is the nearest neighbor of jth point in Px′ .

The individual costs listed above are fused together to

obtain the per primitive unary cost as follows:

ψu(vi) = 〈µu,w ◦ ci〉,

where ci = [coci , c
su
i , c

pc
i , c

sc
i , c

co
i , c

ss
i ]. (1)

Here 〈·, ·〉, ◦ denote inner and Hadamard products, µu is the

cost weight vector and w is the normalizing vector calculated

on the validation set to obtain mutually comparable costs.

3.1.2 Pairwise and High-order Potentials

Primitive Overlap: The pairwise potential considers the

intersection relationships between primitive pairs. Since

valid primitives do not significantly overlap each other, the

goal is to penalize a configuration that violates this physical

constraint. This cost cpw is measured as an intersection

between the two cuboids normalized by the volume of the

smaller cuboid: ψp(vi, vj) = µpwc
pwvivj , where µpw >

0 is the weighting parameter. In practice, we introduce

an auxiliary boolean variable yij to linearize the pairwise

intersection cost by replacing vi, vj in the above cost.

Primitive Parsimony: Motivated by the minimum descrip-

tion length principle, we aim to obtain a parsimonious rep-

resentation of 3D shapes. In other words, we discourage

using additional primatives if a small number is adequate

to represent an object. A penalty on the number of active

primitives is therefore introduced as a higher-order potential,

θparh (V) = µpar
∑N

i=1 vi, s.t., µ
par > 0, where µpar is

the weight of the potential.

Coverage Potential: The minimization of costs defined

above will lead to a null primitive assignment. An impor-

tant requisite is to obtain a representation that maximally

covers the 3D shape [39]. This constraint is formulated as

maximizing the surface area enclosed by primitives:

θcovh (V,S) = µcov
∑

k

ccovk sk,

s.t., µcov < 0, sk ≤
∑

i:rk∈bi

vi. (2)

Here, µcov
k denotes weight and the cost ccovk is set equal to

the area of the segmented region rk.

Co-occurrence Potential: We assume a set T of matched

primitives for all vertices vi ∈ V . Each element ti =
{v̂1 . . . v̂J} ∈ T comprises of boolean variables v̂j for all J
primitives identified in similar shapes that are matched to

primitive ‘i’. The co-occurrence potential is defined as:

θcoch (V, T ) = µcoc
∑

ij

ccocij uij ,

s.t., uij = viv̂j , µ
coc < 0, vi ≤

∑

j

v̂j (3)

The variables uij and µcoc denote the auxiliary boolean

variable and the weight respectively. The cost ccocij is defined

as the Intersection over Union (IoU) measure between vi
and v̂j . We next describe the procedure used to find the set

T for each 3D shape.

First, for each 3D volumetric object, a set of similar

shapes is found via k-nearest neighbors in the feature space.

The feature mapping is performed by obtaining a single 2D

rendered image and feeding it forward through an off-the-

shelf deep network [37] pre-trained on the ImageNet dataset.

Afterwards, we form a complete bipartite graph G = {N , E}
with nodes N and edges E . Assume that the capacity of each

edge e connecting nodes p and q is denoted by wp,q = −ce.

The cost ce is defined by the IoU calculated for each edge in

the bipartite graph. A canonical representation is obtained

for 3D shapes by aligning their principal axes and matching

spatial dimensions before primitive IoU calculation. The

goal is to calculate maximum weight matching M between

the disjoint partitions P and Q defined over the mth shape

and its nearest neighbors. As a result, primitives within the

3D shape will have best matches that will preferably co-

occur in similar 3D shapes. This problem can be formulated

as an Integer Program (IP), but its solution is NP hard. To

this end, we alternatively solve the following primal-dual

linear relaxations of the original IP:

Primal: min
∑

p,q

wp,q yp,q, s.t.
∑

p∈P

yp,q = 1,

∑

q∈Q

yp,q = 1, yp,q ≥ 0, p ∈ P, q ∈ Q. (4)

Since the relaxed LP does not guarantee an optimal solu-

tion, we also construct a dual to the original LP where both
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are solved alternatively to find the optimal matching. The

following lower-bound is maximized in the dual formulation:

Dual: max
∑

p∈P

zp +
∑

q∈Q

zq

s.t. zp + zq ≤ wp,q, (p, q) ∈ E (5)

The algorithm runs in several iterations maintaining a feasi-

ble solution to the dual problem, and tries to find a feasible

solution to the primal problem that satisfies complementary

slackness i.e., a perfect matching M with only tight edges

[31]. Note that if the matching is not perfect, the exposed

nodes in the graph do not have corresponding co-occurrence

constraints during the final optimization.

3.2. Model Inference

For a given 3D shape dataset D, the proposed CRF model

represents each shape xm with a set of primitive shapes.

The CRF inference is formulated as a Mixed Integer Linear

Program (MILP):

V∗ = argmin
V

E(V|D)

s.t. vi = {0, 1}, yi,j ≥ 0, yij ≤ vi, yij ≤ vj ,

yij ≥ vi + vj − 1, sk ≤
∑

i:rk∈bi

vi, sk ≤ 1, µpar > 0,

µpar > 0, µpar > 0, µcov < 0, µcoc < 0,

uij ≥ 0, uij ≤ vi, uij ≤ v̂j , uij ≥ vi + v̂j − 1,

vi ≤
∑

j

v̂j ∀i, ∀i, j, ∀k (6)

We use branch and bound algorithm [21] to efficiently solve

the MILP based inference procedure.

3.3. Primitive Proposal Generation

Here, we describe our proposed multi-view approach to

generate primitive candidates. Given a polygon mesh of

a 3D CAD model, we obtain rendered depth views of the

model from six equi-spaced virtual viewpoints around the

object. The virtual camera viewpoints were divided into two

groups, one looking horizontally at the center of the upright

object and the second camera viewpoint was chosen at an

upward elevation of 150 such that the camera points towards

the volume. These viewpoints were alternatively applied to

get six rendered depth images that were subsequently used to

obtain bottom-up polyhedron proposals. The rendered views

provide sparse incomplete point clouds of the 3D shape that

are mapped in the same frame of reference using a projective

transformation.

As an initial step, we generate a set of 3D box proposals

via bottom-up grouping. First, a normal image is calculated

based on the 3D sparse point cloud for each view. Next,

rough surface segmentations are obtained by clustering the

3D points that are co-located, have similar appearance and

whose normals point in the same direction. Spurious seg-

mented regions are removed by dropping regions with a

small number of 3D points. We then calculate all closely

lying region pairs, that can potentially form the two visible

surfaces of a bounding box enclosing a part of the 3D shape.

For each pair, a bounding box is tightly fit to generate a

candidate primitive.

4. Generative Modeling for Shape Generation

The primitives discovered in an unsupervised manner al-

low us to factorize the shape generation process into two

stages. The first GAN learns to generate novel primitive

configurations that represent 3D shapes. The second GAN

builds on this initial representation and fills in local details to

generate a complete 3D shape. A Variational Auto-encoder

(VAE) connects the two generative models. The overall

pipeline therefore transitions from simple shape parametriza-

tion to more complex 3D shape generation. By introduc-

ing a simpler auxiliary task in the generative modeling, we

achieve three key advantages: (a) In contrast to existing 3D

generative models that are separately trained for each object

category, our model is jointly trained on all shape classes, (b)

It provides better interpretability of generator’s latent space

and can incorporate user input to generate desired shapes,

(c) The learned model achieves better 3D generation results

and demonstrates highly discriminative features. We explain

the generative modeling pipeline below.
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Figure 4: Primitive GAN Architecture.

4.1. Primitive GAN

Network Architecture: The primitive GAN consists of

a generator and a discriminator network (Fig. 4) [17]. The

training process is framed as a game between the two com-

peting networks. The generator maps a random sample (e.g.,

from a Gaussian distribution) to the original data space. The

discriminator operates in the data space and predicts whether

an input sample is real or fake. The interesting aspect of our

design is that an arbitrary number of primitives, t ∈ [1, N ]
(N = 6 in our case), are predicted for each 3D shape. This

flexibility is crucial because different object types are rep-

resented by different number of part primitives. N can be

set higher at the cost of slower inference. Each primitive
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Figure 5: 3D Shape

GAN Architecture. It

first uses a VAE to

encode the parametric

representation of

primitives and then

learns to generate

complete 3D shapes

with an adversarial

objective. Output

tensors are shown

with dotted lines.
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is encoded by a shape parameter set θs ∈ R
15 including

the box dimensions (i.e., height, width, depth), translation

(along x, y and z axes) and the rotation matrix (with nine pa-

rameters). An additional parameter θl is included to denote

the likelihood whether the primitive will be selected in the

overall shape or not. This likelihood is used as a parameter

to obtain a sample from Bernoulli distribution that denotes

the existence of a primitive [39]. In this way, a 3D shape

is encoded as a significantly lower dimensional parametric

representation.

Loss Function: To allow a stable training of GAN, we

used an improved form of Wasserstein GAN [1]. The

WGAN exhibits better convergence behavior by employing

Wasserstein distance as an objective. It enforces the dis-

criminator model to remain within the space of 1-Lipschitz

functions by weight clipping that can lead to sub-optimal

convergence behavior. Instead of weight clipping, we used

the gradient penalty introduced in [9] to restrict the norm of

the gradients of the discriminator’s output with respect to

its input. The game between D and G is formulated as the

following min-max objective function:

min
G

max
D

E
x∼Pr

[D(x)]− E
x̃∼Pg

[D(x̃)]−

λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1)2], (7)

where Pr is the real data distribution, Pg is the generator

distribution modeled as x̃ = G(z) such that z is a random

sample from a fixed distribution and Px̂ is the distribution

defined with uniformly sampled points between the pairs of

samples belonging to Pr and Pg .

4.2. 3D Shape VAE­GAN

Network Architecture: The generative model for 3D

shape generation consists of a combination of a variational

auto-encoder and an adversarial network (Fig. 5). The com-

plete architecture consists of three blocks, an encoder, a

generator and a discriminator. The parametric shape repre-

sentation is first converted to a coarse 3D shape in the form

of a voxelized grid. The encoder maps this representation

to the parameters of a variational distribution by applying a

series of 3D convolutional and down-sampling operations.

The generator then operates on this a random sample from

this parameterized distribution and generates a new 3D shape

to deceive discriminator, while the discriminator is trained

to correctly categorize the real and fake 3D shapes. Remark-

ably, in contrast to primitive GAN, the shape GAN consists

of 3D operations to accurately model the data distribution of

3D shapes.

Loss Function: The loss function has the same form as

for the case of primitive GAN, however, a regularization

is applied on the input latent representation of generator

to match it to a fixed known distribution (a unit Gaussian).

This constraint is formulated as minimizing the Kullback-

Leibler (KL) divergence between the Gaussian and encoded

distribution as follows:

Lvae = KL(N(µ, σ)||N(0, I)). (8)

The reparametrization trick proposed in [19] is used to per-

form back-propagation through the stochastic sampling from

the distribution N(µ, σ).

5. Experiments

Primitive Discovery: We evaluate the primitive detec-

tion accuracy on ModelNet10 dataset and report results in

Table 1. Specifically, we convert the shapes and the 3D

primitive representations to a 50x50x50 voxelized output.

Evaluation is performed by accounting for the matched voxel

predictions for both outputs. We obtain a high recall rate of

83% that confirms the correct enclosure of shape parts by

primitives. In contrast, a lower precision is obtained because

shape parts are often hollow, that give rise to unmatched

empty voxels. In our case, recall is a more accurate mea-

sure to asses the quality of primitives. Example results for

primitive generation are shown in Fig. 7.

Unsupervised Shape Classification: To illustrate the

improved performance of proposed generative model, we
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Figure 6: Qualitative

results for 3D shape

generation. Left:

Generated shapes

from our model. Right:

Comparisons with

[42], [41] and [38]

respectively from

bottom to top.
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Evaluation Measure Performance

Recall 83.0%

Precision 19.9%

Accuracy 60.8%

F-measure 0.321

Table 1: Results for the primitive genera-

tion approach on ModelNet. A high recall

shows that the predicted primitives gener-

ally tightly enclose the original 3D shape.

Supervised Unsupervised

Methods Accuracy Methods Accuracy

PointNet (CVPR’17) [24] 86.2% T-L Net (ECCV’16) [7] 74.4%

OctNet (CVPR’17) [26] 83.8% 3D-GAN (NIPS’16) [41] 83.3%

Vol-CNN (Arxiv’19) [25] 86.5% Vconv-DAE (ECCV’16)[33] 75.5%

EC-CNNs (CVPR’17)[35] 83.2% 3D-DescripNet (CVPR’18) [43] 83.8%

Kd-Net (ICCV’17) [20] 88.5% 3D-GAN (Ours) 84.5%

SO-Net (CVPR’18) [22] 90.8% Primitive GAN (Ours) 86.4%

Table 2: Classification performance on the ModelNet40 dataset.

Type Method Accuracy

S
u

p
er

v
is

ed

3D ShapeNets (CVPR’15) [42] 93.5%

EC-CNNs (CVPR’17) [35] 90.0%

Kd-Net (ICCV’17) [20] 93.5%

LightNet (3DOR’17) [46] 93.4%

SO-Net (CVPR’18) [22] 95.5%

U
n

su
p

er
v

is
ed

Light Field Descriptor (CGF’03) [5] 79.9%

Vconv-DAE (ECCV’16) [33] 80.5%

3D-GAN (NIPS’16) [41] 91.0%

3D-DescripNet (CVPR’18) [43] 92.4%

3D-WINN (AAAI’19) [12] 91.9%

3D-GAN (Ours) 91.2%

Primitive GAN (Ours) 92.2%

Table 3: Classification performance on the ModelNet10.

evaluate the representations learned by our discriminator

(convergence plot is shown in Fig. 8). A typical way of

evaluating representations learned without supervision is to

use them as features for classification. Note that the Primitive

GAN model is only trained in an unsupervised manner on

the ModelNet10 dataset, but tested on both ModelNet10

and ModelNet40 datasets. We extract intermediate feature

layers from the discriminator, concatenate them and train

a single layer neural network classifier. The classification

results are shown in Tables 2 and 3. Our method beats

all other unsupervised techniques by a fair margin of 1.9%
on ModelNet40 dataset. On ModelNet10, we achieve a

competitive performance as compared to the state-of-the-

Table 4: Incep-

tion scores for 3D

shape generation.

Best and Second-

best scores are

shown in color.

Method IS

3D-ShapeNet (CVPR’15) [42] 4.13±0.19

3D-VAE (ICLR’15) [19] 11.02±0.42

3D-GAN (NIPS’16) [41] 8.66±0.45

3D-DescripNet (CVPR’18) [43] 11.77±0.42

3D-WINN (AAAI’19) [12] 8.81±0.18

Ours (Primitive GAN) 11.52±0.33

art [43]. Note that some unsupervised methods have used

class specific models, extra datasets (such as ShapeNet) and

higher feature dimensions compared to ours. The proposed

method also compares well with recent best performing fully

supervised methods on both datasets. These approaches

employ other tricks e.g., EC-CNNs [36] performs voting

over 12 views of each test model at test time.

Inception Scores: To quantitatively evaluate the gener-

ated 3D shapes, we report Inception Score (IS) in Table 4.

The IS characterizes generated objects based on two dis-

tinct criterion: the quality of 3D outputs and their diversity

[30]. The quality of generated outputs is measured by the

conditional probability p(y|x), where y is the output label

and x is the input shape. The diversity of a sample is com-

puted by the marginal distribution
∫

z
p(y|x = G(z))dz. The

KL-divergence between the two gives the Inception score:

IS = exp(E[KL(p(y|x)||p(y))]). Notably, using a single

model for shape generation, our model achieves the second

best IS score on ModelNet10 which denotes the diversity

and the quality of generates shapes.

Primitive Based Reconstruction: In order to evaluate

the reconstruction performance of the proposed GAN model,

we test our approach on the IKEA dataset (Table 5). Previ-
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Figure 7: Automatically discovered prim-

itive representations of 3D shapes in

an unsupervised manner. Example re-

sults are shown for common indoor ob-

jects such as chair, table, desk, bathtub,

sofa, monitor, toilet and nightstand. Our

approach learns to represent common

shapes in a parsimonious form that is

consistent for examples belonging to the

same category.

Figure 8: Discriminator loss during 3D

GAN training on the ModelNet dataset.

Method Bed Bookcase Chair Desk Sofa Table Overall

AlexNet-fc8† [7] 29.5 17.3 20.4 19.7 38.8 16.0 23.6

AlexNet-conv4† [7] 38.2 26.6 31.4 26.6 69.3 19.1 35.2

T-L Network† [7] 56.3 30.2 32.9 25.8 71.7 23.3 40.0

3D-VAE-GAN [41] 49.1 31.9 42.6 34.8 79.8 33.1 45.2

VAE-IWGAN [38] 65.7 44.2 49.3 50.6 68.0 52.2 55.0

Primitive GAN∗ 68.4 52.2 47.5 56.9 77.1 60.0 60.4

Table 5: Reconstruction results for voxel prediction on IKEA dataset (AP is

reported). †Accuracies are reported from [41]. ∗Primitive GAN uses primitive

representations obtained from 3D shapes and therefore has more supervision

relative to compared methods that propose shapes from 2D images.

ous works e.g., [41] aim to reconstruct a 3D model from a

single color image. However, in our case, the VAE-GAN

model is trained on parametric inputs representing a set of

basic primitives instead of image inputs. Therefore, we first

run our proposed primitive discovery algorithm on the IKEA

dataset to estimate primitive representations and afterwards

use these to reconstruct full shapes. Note that this dataset

consists of 759 images with 1039 object crops and corre-

sponding models that belong to six objects classes namely

bed, bookcase, chair, desk, sofa, and table. Since the dataset

shapes are at 20x20x20, we downscale the original network

output to lower resolution for evaluation.

Ablation study on cuboid detection: It is important to

note that the proposed CRF formulation is an integrated

framework where several potentials are optimized jointly.

For example, useful primitives that are shared across sim-

ilar shapes cannot be detected if we exclude any of the

co-occurrence, coverage, parsimony or overlap potentials.

Intuitively, one can understand that potentials like shape cov-

erage and parsimony have opposite goals and they balance

each other to get an optimal representation. However, we do

run an ablation study with different types of unary potentials

whose results are provided in Table 6 below. We also include

a case where only unary costs are used to pick up the top

four (average primitive number in dataset) primitives. We

note that all potentials contribute to final performance and

excluding one or some of them leads to lower recall rates.

Table 6: Ablation study

on ModelNet10 for unsu-

pervised primitive detec-

tion. The unary cost it-

self is insufficient to gener-

ate a good primitive repre-

sentation. The best result

is achieved with our full

model.

Method Recall

w/o Volumetric occupancy 72.8

w/o Shape uniformity 81.5

w/o Primitive compactness 77.2

w/o Support cost 82.9

w/o Shape symmetry 80.0

Unary only (top 4 boxes) 51.6

Full model 83.0

6. Conclusion

We factorized the generative image modeling problem

to a set of simpler but interconnected tasks. Such a decom-

position of problem allows GAN to generate realistic and

high quality 3D voxelized representations. Our approach is

motivated by the fact that common 3D objects can be repre-

sented in terms of a set of simple volumetric primitives, e.g.,

cuboids, spheres and cones. We first decompose a shape into

a set of primitives that provide a parsimonious description

with significantly less number of tunable parameters. Using

this representation, we break-down the operation of GANs

into simpler steps, that helps in learning better representa-

tions for data in an unsupervised fashion and makes it possi-

ble to easily incorporate user feedback if available. Such a

high level supervision is helpful for complex image genera-

tion tasks such as 3D image generation and provides better

interpretability and control over the outputs from GAN.
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