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Abstract

Deep networks consume a large amount of memory by

their nature. A natural question arises can we reduce that

memory requirement whilst maintaining performance. In

particular, in this work we address the problem of memory

efficient learning for multiple tasks. To this end, we propose

a novel network architecture producing multiple networks

of different configurations, termed deep virtual networks

(DVNs), for different tasks. Each DVN is specialized for a

single task and structured hierarchically. The hierarchical

structure, which contains multiple levels of hierarchy corre-

sponding to different numbers of parameters, enables mul-

tiple inference for different memory budgets. The building

block of a deep virtual network is based on a disjoint collec-

tion of parameters of a network, which we call a unit. The

lowest level of hierarchy in a deep virtual network is a unit,

and higher levels of hierarchy contain lower levels’ units

and other additional units. Given a budget on the number

of parameters, a different level of a deep virtual network can

be chosen to perform the task. A unit can be shared by dif-

ferent DVNs, allowing multiple DVNs in a single network.

In addition, shared units provide assistance to the target

task with additional knowledge learned from another tasks.

This cooperative configuration of DVNs makes it possible

to handle different tasks in a memory-aware manner. Our

experiments show that the proposed method outperforms ex-

isting approaches for multiple tasks. Notably, ours is more

efficient than others as it allows memory-aware inference

for all tasks.

1. Introduction

Recently, deep learning methods have made remark-

able progress in computer vision and machine learning

[13, 21, 30]. Although successful in many applications, it

is well-known that many deep neural networks have a high

memory footprint [10, 17]. This limits their practical ap-

plications, such as mobile phones, robots, and autonomous

vehicles of low capacity. The issue has been addressed by

research aimed at reducing the number of parameters of a

Figure 1. (Top left) Multi-task learning [2] for k tasks and (top

right) memory efficient learning [19] for a single task with nh dif-

ferent memory budgets, realized in a single network, respectively.

(Bottom) An overview of the proposed approach. The proposed ar-

chitecture contains multiple deep networks (deep virtual networks)

of different configurations for different tasks. Each deep virtual

network is specialized for a single task and allows multiple in-

ference for different memory budgets. Our approach incorporates

both multi-task and memory efficient learning methods in a single

architecture, producing k × nh inference outputs, which signifi-

cantly reduces the training efforts and network storage.

deep network to create a lightweight network [12, 14].

Unfortunately, developing such a compact network is ac-

companied by a tradeoff between accuracy and the num-

ber of parameters (referred as the memory1) at test time

[11, 16]. This requires efforts to find a proper network that

gives competitive performance under a given memory bud-

get [9]. Besides, when a network model with a different

memory budget is required, we define and train a new net-

work, which incurs additional training cost.

Recently, several studies have been conducted on mul-

tiple inference under different memory budgets in a single

1We call the number of parameters as memory throughout the paper.
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trained architecture [19, 22], called memory efficient infer-

ence. This problem can be achieved by designing a net-

work structure (e.g., nested [19] and fractal [22] structures)

which enables multiple inference corresponding to different

memory budgets. It allows flexible accuracy-memory trade-

offs within a single network and thus can avoid introducing

multiple networks for different memory budget. Note that

memory budget may vary when tasks are performed simul-

taneously in a memory-limited device (e.g., an autonomous

vehicle with real-time visual and non-visual inference tasks

to process at once).

Obviously, memory efficient inference can be an efficient

strategy to provide different predictions in a network. How-

ever, prior works have applied the strategy to a single task

learning problem individually [19,31], and addressing mul-

tiple tasks jointly (often called multi-task learning [2, 29])

with the strategy has been considered less. Learning mul-

tiple tasks2 simultaneously in a network can have a single

training stage and reduce the number of networks [2, 26].

This approach also has the potential to improve generaliza-

tion performance by sharing knowledge that represents as-

sociated tasks [5,7,39]. Despite its compelling benefits, lit-

tle progress has been made so far in connection with mem-

ory efficient inference. This is probably due to the difficulty

of constructing a single network that allows memory effi-

cient inference for different tasks. The difficulty lies in the

structural limitation of a neural network to possess a differ-

ent structure for each task.

In this work, we aim to develop an efficient deep learn-

ing approach that performs memory efficient inference for

multiple tasks in a single network. To this end, we propose

a novel architecture containing multiple networks of dif-

ferent configurations termed deep virtual networks (DVNs).

Each DVN shares parameters of the architecture and per-

forms memory efficient inference for its corresponding task.

A virtual network resembles a virtual machine [28] in a

computer system as multiple virtual machines can share re-

sources of a physical computer. Figure 1 gives an overview

of the proposed approach.

The proposed architecture is based on a backbone archi-

tecture, and we divide the network parameters into multi-

ple disjoint sets along with their corresponding structures

termed units. Specifically, units are collected by dividing

a set of feature maps in each layer into multiple subsets

throughout the layers in the architecture (see Figure 2). A

DVN is structured hierarchically which contains multiple

levels of hierarchy corresponding to different numbers of

units, and a lower level of hierarchy assigns fewer units and

a higher level of hierarchy contains more units. For exam-

ple, the lowest level of the hierarchy has a single unit. Each

level of the hierarchy in a DVN contains all preceding lower

levels’ units and one additional unit. Hence, different levels

2Multiple tasks refer to multiple datasets, unless stated otherwise.

Figure 2. A graphical illustration of the proposed approach which

is based on a backbone architecture (Physical Net) with k preas-

signed disjoint structures, called units. For a simple illustration,

we assume that the number of feature maps and their dimensions

are the same across all layers (here, we omit fully-connected lay-

ers). The proposed architecture produces k deep virtual networks

(Virtual Nets), sharing its units for k tasks. A deep virtual network

has a unique hierarchical structure with a different order of units

and is specialized for a designated task. The number of levels of

hierarchy in a deep virtual network is nh, which corresponds to the

number of different memory budgets. This allows k×nh inference

for k deep virtual networks. (Best viewed in color.)

of hierarchy in a DVN enables multiple inference according

to different memory budgets. In the proposed architecture,

a unit can be shared by different DVNs. This allows multi-

ple DVNs in a single deep network for multiple tasks. Each

deep virtual network has a unique configuration (i.e., a hi-

erarchical structure with a different order of units), and is

specialized for a single task. The unique configuration is de-

termined by the proposed rule discussed in Section 3.2. The

proposed approach can selectively provide an inference out-

put from its DVNs for a given task with the desired memory

budget. The approach is realized in a single training stage

based on a single backbone architecture (e.g., a residual net-

work [13]), which significantly reduces training efforts and

network storage.

We apply our method to joint learning scenarios of mul-

tiple tasks using popular image classification datasets. Our

results show that for all tasks DVNs are learned successfully

under different memory budgets. Even more, the results are

better than other approaches. We also measure the actual

processing time during inference to verify the practicality

of the proposal. In addition, we demonstrate our approach

on the task of sequential learning [24].
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The proposed approach introduces a new concept of vir-

tual networks in deep learning to perform multiple tasks in

a single architecture, making it highly efficient.

2. Related Work

Multi-task learning. The aim of multi-task learning [2]

is to improve the performance of multiple tasks by jointly

learning them. Two popular approaches are learning a

single shared architecture with multiple output branches

[24, 25] and learning multiple different networks according

to tasks [27, 35]. We are particularly interested in multi-

task learning with a single shared network as it is memory

efficient. Recently, a few approaches have been proposed

to perform multiple tasks in a single network by exploiting

unnecessary redundancy of the network [19, 26]. PackNet

[26] divides a set of network parameters into multiple dis-

joint subsets to perform multiple tasks by iteratively prun-

ing and packing the parameters. NestedNet [19] is a col-

lection of networks of different sizes which are constructed

in a network-in-network style manner. However, for a fixed

budget the size of the assigned parameters of each network

will be reduced as the number of tasks increases, which may

cause a decrease in performance. Moreover, they can pro-

duce an inference output for each task. Whereas, our ap-

proach can overcome the issues by introducing deep virtual

networks sharing disjoint subsets of parameters in our archi-

tecture and their different configurations make it possible to

address multiple tasks (see Figure 2).

Multi-task learning can be extended to sequential learn-

ing [3, 24, 38], where tasks are learned sequentially without

accessing the datasets of old tasks. Following the popular

strategy in [24], we apply the proposed approach to sequen-

tial learning problems (see Section 3.3 and 4.5).

Memory efficient learning. Memory efficient learning is a

learning strategy to perform multiple inference according to

different budgets on the number of parameters (called mem-

ory) in a single network [19, 22, 37]. It enables flexible in-

ference under varying memory budget, which is often called

the anytime prediction [40]. To realize the anytime predic-

tion, a self-similarity based fractal structure [22] was pro-

posed. A feedback system based on a recurrent neural net-

work [37] was proposed to perform different predictions ac-

cording to memory or time budgets. A nested network [19],

which consists of multiple networks of different scales, was

proposed to address different memory budget. However,

these approaches are confined to performing an individual

task. In contrast, our method enables the anytime prediction

for multiple tasks using deep virtual networks.

To our knowledge, this work is the first to introduce deep

virtual networks of different configurations from a single

deep network, which enables flexible prediction under vary-

ing memory conditions for multiple tasks.

3. Approach

3.1. Memory efficient learning

We discuss the problem of memory efficient learning to

perform multiple inference with respect to different mem-

ory budgets for a single task. Assume that given a backbone

network we divide the network parameters into k disjoint

subsets, i.e., W = [W1,W2, ...,Wk]. We design the net-

work to be structured hierarchically by assigning the sub-

sets, in a way that the l-th level of hierarchy (l ≥ 2) con-

tains the subsets in the (l − 1)-th level and one additional

subset [19]. The lowest level of the hierarchy (l = 1) as-

signs a single subset and the highest level contains all sub-

sets (i.e., W). For example, when k = 3 we can assign

W1 to the lowest level in the hierarchy, [W1,W2] to the in-

termediate level, and [W1,W2,W3] to the highest level. A

hierarchical structure is determined by an order of subsets,

which is designed by a user before learning. In this work,

the number of levels of hierarchy, denoted as nh, is set to

the number of subsets, k. Each level of hierarchy defines a

network corresponding to the subsets and produces an out-

put. The hierarchical structure thus enables nh inference for

nh different numbers of subsets (memory budgets).

Given a dataset D consisting of image-label pairs and

nh levels of hierarchy , the set of parameters W can be op-

timized by the sum of nh loss functions

min
W

nh
∑

l=1

L
(

hl(W);D
)

, (1)

where hl(W) is a set of parameters of W that are assigned

to the l-th level of hierarchy. There is a constraint on h

such that a higher level set includes a lower level set, i.e.,

hp(W) ⊆ hq(W), p ≤ q, ∀p, q ∈ [1, ..., nh], for a struc-

ture sharing parameters [19]. L(·) is a standard loss func-

tion (e.g., cross-entropy) of a network associated with D.

In addition, we enforce regularization on W (e.g., l2 decay)

for improved learning. By solving (1), a learned network

is collected and can perform nh inference corresponding to

nh memory budgets.

The function hl(W) can be designed by a pruning oper-

ation on W in element-wise [12] or group-wise (for feature

maps) [23]. Since our approach targets a practical time-

dependent inference, we follow the philosophy of group-

wise pruning approaches [14, 33] in this work. Note that

the problem (1) is applied to a single task (here, a dataset

D), rarely considering multiple tasks (or datasets). This is-

sue will be addressed in the following subsection with the

introduction of deep virtual networks.

3.2. Deep virtual network

Building block. Our network architecture is based on a

backbone architecture, and we divide the network parame-

ters into multiple disjoint subsets. Assume that there are k
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Figure 3. An example of constructing three different hierarchical structures in the r-th convolutional layer of a network, denoted as Mr ,

which consists of three disjoint sets of feature maps or units (i.e., Mr = [Mr
1 ,M

r
2 ,M

r
3 ] and the number indicates the unit index). The

number of tasks and the number of levels of hierarchy are three. Different orders of the units construct the hierarchical structures. Here,

hl,j(Mr) is a function that selects the sub-structure of Mr corresponding to the l-th level of hierarchy for the j-th task. S(i, j) returns

the level number at which the i-th unit Mr
i is added to the hierarchy for the j-th task. (Best viewed in color.)

disjoint subsets in a network, which are collected by divid-

ing feature maps in each layer into k subsets across all lay-

ers.3 Formally, a set of network parameters is represented

as W = {Wr}1≤r≤L, where L is the number of layers and

Wr = [W r
1 ,W

r
2 , ...,W

r
k ] ∈ R

wr×hr×cr
I
×cr

o . The i-th sub-

set of Wr is denoted as W r
i ∈ R

wr×hr×cr
I
(i)×cr

o
(i). Here,

wr and hr are the width and height of the convolution ker-

nel of the r-th layer, respectively. crI and cro are the number

of input and output feature maps of the r-th layer, respec-

tively, such that
∑k

j=1 c
r
I(j) = crI and

∑k

j=1 c
r
o(j) = cro.

The set of the i-th subsets over all layers is written as

Wi = [W 1
i ,W

2
i , ...,W

L
i ]. (2)

We call the corresponding network structure defined by Wi

as unit i, which produces an inference output.

Hierarchical structure. The proposed approach produces

deep virtual networks (DVNs) of different network config-

urations (i.e., hierarchical structures) using shared units in

a network architecture, as illustrated in Figure 2. Each unit

is coupled with other units along the feature map direction

to form a hierarchical structure similar to the strategy de-

scribed in Section 3.1. The number of levels of hierarchy

is nh, where a level of the hierarchy includes all preced-

ing lower levels’ units and one additional unit. A different

hierarchical structure is constructed by a different order of

units. This introduces a unique DVN which is specialized

for a task. Thus, multiple DVNs of different network con-

figurations can be realized in a single network by sharing

units, for different tasks (see Figure 3). Whereas, the prob-

lem (1) is for a single task with a network configuration,

which is equivalent to producing a single DVN.

Rules for configuring virtual networks. In order to deter-

mine different network configurations of deep virtual net-

works, we introduce a simple rule. We assume that datasets

3For simplicity, we omit a fully-connected layer. However, it is ap-

pended on top of the last convolutional layer to produce an output.

are collected sequentially, along with their task ID numbers,

and the datasets with adjacent task ID numbers are from

similar domains. The proposed rule is: (i) The unit i is as-

signed to the task i, and it becomes the lowest level in the

hierarchy for the task. (ii) The unit i is coupled with adja-

cent units that are not coupled. (iii) If there are two adjacent

units, the unit with a lower task ID number is coupled. For

example, assume that hl,j(W) is a function that selects the

subset of W of the l-th level of hierarchy for the task j.

When k = 3 and W = [W1,W2,W3], where Wi denotes

the parameters for the unit i, we construct the following hi-

erarchical structure4 from the rule for the task j

h1,j(W) =Wj , if 1 ≤ j ≤ k,

h2,j(W) =

{

[W1,W2], if j = 1,

[Wj ,Wj−1], if 1 < j ≤ k,

h3,j(W) =











[W1,W2,W3], if j = 1,

[Wj ,Wj−1,Wj+1], if 1 < j < k,

[Wj ,Wj−1,Wj−2], if j = k.

(3)

The configuration is different depending on the order of

units (see Figure 3 for an example).

Objective function. Given datasets for k tasks, T =
[D1,D2, ...,Dk], k deep virtual networks, the set of param-

eters W , and nh levels of hierarchy for each deep virtual

network, the proposed method can be optimized by solving

the sum of k × nh loss functions

min
W

Lk(W) ,
k
∑

j=1

(

nh
∑

l=1

L
(

hl,j(W);Dj
)

)

, (4)

where hl,j(W) is a function that selects the subset of W cor-

responding to the l-th level of hierarchy for the j-th task (or

deep virtual network j), such that hp,j(W) ⊆ hq,j(W), p ≤

4When units are used together, additional parameters (interconnection

between units) are added to parameters of stand-alone units, Wi’s.
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q, ∀p, q ∈ [1, ..., nh], for all j ∈ [1, ..., k]. Note that in the

case when k = 1, the problem (4) reduces to the problem

(1) for a single task [19].

Learning. The unit i is learned based on the following gra-

dient with respect to Wi

∂Lk(W)

∂Wi

=

k
∑

j=1





nh
∑

l=S(i,j)

∂Ll,j(W)

∂Wi



 , (5)

where Ll,j(W) , L(hl,j(W);Dj). S(i, j) returns the level

number at which the i-th unit is added to the hierarchy for

the j-th task (see Figure 3). The unit i is learned by aggre-

gating multiple gradients from the hierarchical structures of

deep virtual networks for all k tasks. Note that, for given

nh, the difference |nh − S(i, j)| influences on the amount

of the gradient (significance) of the unit i for the task j as

the gradients from more levels accumulate. As the differ-

ence is larger, the significance of the unit will be higher for

the task j. The proposed approach is trained in a way that

each unit is learned to have different significance (different

S(i, j)) for all tasks. Note that the total amount of gradients

of a unit over all tasks is about same to those of other units

using the proposed configuration rule. This prevents units

from having irregular scales of gradients.

3.3. Deep virtual network for sequential tasks

The proposed approach can also handle sequential tasks

[24]. Assume that the old tasks, from the first to the (k−1)-
th task, have been learned beforehand. For the current (new)

task k, we construct an architecture with k units, where k−1
units correspond to the old tasks and the k-th unit represents

the current task. Based on the units, we construct k deep

virtual networks as described in Section 3.2.

Given a dataset for the task k, Dk, the set of parameters

W , k deep virtual networks, and nh levels of hierarchy, the

problem (k > 1) is formulated as

min
W

k−1
∑

j=1

(

nh
∑

l=1

Lj
D

(

hl,j(W);Dk
)

)

+

nh
∑

l=1

L
(

hl,k(W);Dk
)

,

(6)

where Lj
D(hl,j(W);Dk) is a distillation loss between the

output of a network whose corresponding structure is deter-

mined by hl,j(W) and the output of the task j from the old

network when a new input Dk is given. The only excep-

tion from the problem (4) (which jointly learns k tasks) is

that we use a distillation loss function Lj
D(·) to preserve the

knowledge of the old tasks in the current sequence [24] (due

to the absence of the old datasets). For Lj
D(·), we adopt the

modified cross entropy function [15] following the practice

in [24]. The gradient of (6) with respect to Wi is

k−1
∑

j=1





nh
∑

l=S(i,j)

∂Lj

D(l,j)(W)

∂Wi



+

nh
∑

l=S(i,k)

∂L(l,k)(W)

∂Wi

, (7)

where Lj

D(l,j)(W) , Lj
D(hl,j(W);Dk) and L(l,k)(W) ,

L(hl,k(W);Dk). In the special case where nh = 1 and

hl,j(W) = W , ∀l, j, the problem (6) reduces to the learn-

ing without forgetting (LwF) problem [24], which has the

following gradient

k−1
∑

j=1

∂Lj
D(W;D)

∂W
+

∂L(W;D)

∂W
. (8)

Compared to our gradient in (7), LwF learns a single set

of parameters W , which reveals that the network has no

hierarchical structure and all tasks are performed without

memory efficient inference.

4. Experiments

4.1. Experimental setup

We tested our approach on several supervised learning

problems using visual images. The proposed method was

applied to standard multi-task learning (joint learning) [2],

where we learn multiple tasks jointly, and sequential learn-

ing [24], where we focus on the k-th sequence with the

learned network for old tasks. We also applied the pro-

posed approach to hierarchical classification [34], which is

the problem of classifying coarse-to-fine class categories.

Our approach was performed based on four benchmark

datasets: CIFAR-10 and CIFAR-100 [20], STL-10 [4], and

Tiny-ImageNet5, based on two popular (backbone) models,

WRN-n-s [36] and ResNet-n [13], where n and s are the

number of layers and the scale factor over the number of

feature maps, respectively.

We first organized three scenarios for joint learning of

multiple tasks. We performed a scenario (J1) consisting of

two tasks using the CIFAR-10 and CIFAR-100 datasets and

another scenario (J2) of four tasks whose datasets are col-

lected by dividing the number of classes of Tiny-ImageNet

into four subsets evenly. The third scenario (J3) consists

of three datasets, CIFAR-100, Tiny-ImageNet, and STL-10,

of different image scales (from 32×32 to 96×96). For hi-

erarchical classification (H1), CIFAR-100 was used which

contains coarse classes (20 classes) and fine classes (100

classes). For sequential learning, we considered two scenar-

ios, where a scenario (S1) has two tasks whose datasets are

collected by dividing the number of classes of CIFAR-10

into two subsets evenly, and another scenario (S2) consists

of two tasks using CIFAR-10 and CIFAR-100.

We compared the proposed approach with other recent

approaches handling multiple tasks: Feature Extraction

[6], LwF [24], DA-CNN [32], PackNet [26], and Nested-

Net [19]. We also compared with the backbone networks,

ResNet [13] and WRN [36], as baseline approaches per-

forming an individual task.

5https://tiny-imagenet.herokuapp.com/
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4.2. Implementation details

All the compared architectures were based on ResNet

[13] or WRN [36]. We followed the practice of construct-

ing the number of feature maps in residual blocks in [13] for

all applied scenarios. We constructed the building block of

a network for Tiny-ImageNet based on the practice of Im-

ageNet [13]. All the compared methods were learned from

scratch until the same epoch number and were initialized

using the Xavier method [8]. The proposed network was

trained by the SGD optimizer with Nesterov momentum of

0.9, where the mini-batch sizes were 128 for CIFAR and 64

for Tiny-ImageNet, respectively. We adopted batch normal-

ization [18] after each convolution operation.

We constructed units with respect to feature maps across

the convolution layers, except the first input layer. Our deep

virtual networks have task-specific input layers for different

tasks or input scales, respectively, and the dimensionality

of their outputs are set to the same by varying the stride

size using convolution. When two units are used together,

the feature map size doubles and additional parameters (i.e.,

interconnection between the units) are needed to cover the

increased feature map size, in addition to parameters (intra-

connection) of stand-alone units. We also appended a fully

connected layer of a compatible size on top of each level of

hierarchy. All the proposed approaches were implemented

under the TensorFlow library [1], and their evaluations were

provided based on an NVIDIA TITAN Xp graphics card.

4.3. Joint learning

We conducted experiments for joint learning by compar-

ing with two approaches: PackNet+ (a grouped variant of

PackNet [26] to achieve actual inference speed-up by divid-

ing feature maps into multiple subsets similar to ours), and

NestedNet (with channel pruning) [19] which can perform

either multi-task learning or memory efficient learning.

For the first scenario (J1) using the two CIFAR datasets,

we split the number of parameters almost evenly along the

feature map dimension and assigned the first half and all of

the parameters to the first and second task, respectively, for

PackNet+ and NestedNet. Our architecture contains two

deep virtual networks (DVNs), and each DVN consists of

two units (and two levels of hierarchy) by splitting a set of

feature maps in every layer into two subsets evenly through-

out all associated layers. Here, each stand-alone unit has

25% of the parameter density, since inter-connected param-

eters between the two units are ignored (see Section 4.2).

For this scenario, WRN-32-4 [36] was used for all com-

pared approaches. Table 1 shows the results of the com-

pared approaches. Our approach gives four evaluations ac-

cording to tasks and memory budgets. Among them, the

evaluations using each stand-alone unit (top) do not com-

promise much on performance compared to those using all

units (bottom) on average. PackNet+ and NestedNet give

Table 1. Results of joint learning on CIFAR-10 (task 1) and

CIFAR-100 (task 2). NO and NT are the number of inference

outputs produced by a method and the total number of parame-

ters of a method, respectively. Baseline results are collected from

two independent networks. Ours provides two different inference

using a single unit (top) and all units (bottom) for each task.

Method NO NT Task 1 Task 2 Average

Baseline [36] 1 14.8M 94.8% 76.4% 85.6%
PackNet+ [26] 2 7.4M 94.5% 75.3% 84.9%
NestedNet [19] 2 7.4M 94.7% 76.7% 85.7%

Ours 4 7.4M
94.6% 75.0% 84.8%
95.1% 77.3% 86.2%
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Figure 4. Performance curve of the proposed DVNs for the joint

learning on CIFAR-10 (task 1) and CIFAR-100 (task 2).

the comparable performance to our approach, but their max-

imum performance leveraging the whole network capacity

are poorer than ours. Baseline gives comparable perfor-

mance to the multi-task learning approaches, but it requires

2× larger number of parameters in this problem. The av-

erage inference times (and the numbers of parameters) of

our DVN using single and all associated units are 0.11ms

(1.9M) and 0.3ms (7.4M) for a single image, respectively.

We also provide the performance curve of the proposed ap-

proach on the test sets in Figure 4.

Figure 5(a) shows the results for the second scenario (J2)

using Tiny-ImageNet (four tasks). The ratios of parameters

for PackNet+ and NestedNet were 1
4 : 2

4 : 3
4 : 1 from task

1 to task 4, by dividing parameters into four subsets almost

evenly and assigning the first j subsets to task j. Our ar-

chitecture contains four DVNs each of which has four units

and four levels of hierarchy. The ratios of parameters in

each hierarchy were 1
16 : 4

16 : 9
16 : 1 for each DVN. All

compared approaches were based on ResNet-42 [13]. As

shown in the figure, our approach outperforms the competi-

tors under similar memory budgets for all tasks. Moreover,

ours provides additional outputs for different memory bud-

gets, making it highly efficient. Even though NestedNet

has the similar strategy of sharing parameters, it performs

poorer than ours. Unlike the previous example, the base-

line shows unsatisfying results and even requires 4× larger

network storage than ours to perform the same tasks.

In addition, we compared with NestedNet [19] on the

same scenario (J2) for memory efficient inference. Since
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Figure 5. Results of joint learning on the Tiny-ImageNet tasks with respect to parameter density ratios (budgets). (a) Multi-task learning:

Each deep virtual network in our approach provides four evaluations with respect to different parameter density ratios for each task, while

other methods produce an evaluation with a fixed budget. Baseline requires four trained networks to achieve the results. (b) Memory

efficient learning: Our deep virtual networks produce 4 × 4 inference outputs within a single trained network, while NestedNet requires

four different trained networks to perform memory efficient inference for the same tasks, respectively. (·) denotes the task ID.

Table 2. Parameter density and speedup of our method with respect

to levels of hierarchy. l(i) denotes the level containing i units.

l(1) l(2) l(3) l(4)

No. parameters 1.9M 7.5M 16.8M 29.8M

Density 6.4% 25.2% 56.4% 100%
Compression rate 15.7× 4.0× 1.8× 1×

Inference time (ms) 0.18 0.38 0.67 1.05

Practical speed-up 5.8× 2.8× 1.6× 1×

NestedNet performs memory efficient inference for a task,

we trained it four times according to the number of tasks.

Whereas, our architecture was trained once and performed

memory efficient inference for all the tasks from our DVNs.

Figure 5(b) shows that our method gained significant perfor-

mance improvement over NestedNet for all the tasks. Table

2 summarizes the number of parameters and its associated

speed-ups of the proposed network.

For the third scenario (J3) on three different tasks, a set

of feature maps is divided into three subsets for the com-

pared methods. The ratios of parameters were 4
16 : 9

16 : 1
from task 1 (Tiny-ImageNet) to task 3 (STL-10). Each

DVN has the same density ratios in its hierarchical struc-

ture. ResNet-42 [13] was applied by carefully following

the network design and learning strategy designed for Ima-

geNet [13]. Figure 6 shows the results for the tasks. The

proposed method performs better than the compared ap-

proaches on average under similar parameter density ratios.

While PackNet+ and NestedNet give comparable perfor-

mance to ours for Tiny-ImageNet, they perform poorer than

ours for the other two tasks. Moreover, they produce a sin-

gle output for every task with a fixed parameter density con-
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Figure 6. Results on three different datasets (Tiny-ImageNet,

CIFAR-100, and STL-10) of different scales for joint learning.

Table 3. Results of the hierarchical classification on CIFAR-100.

(·) denotes the number of classes. NO is the number of inference

outputs produced by a method. Baseline results are collected from

independent networks. NestedNet provides two different results

according to the number of tasks. Our approach performs four dif-

ferent inference, according to the number of parameters and tasks.

NO Task 1 (20) Task 2 (100)

No. parameters − 1.8M 7.4M 1.8M 7.4M

Baseline [36] 1 82.1% 84.9% 73.4% 75.7%
NestedNet [19] 2 83.7% − − 76.6%

Ours 4 84.1% 86.1% 74.9% 76.9%

dition, while ours provides multiple outputs under different

density conditions for each dataset. The numbers of pa-

rameters and their inference times of our DVN are 0.65ms

(7.5M), 1.02ms (16.8M), and 1.51ms (29.8M), respectively,

for a single image from STL-10.

4.4. Hierarchical classification

As another application of joint learning, we experi-

mented with the scenario (H1), hierarchical classification

[34]. The aim is to model multiple levels of hierarchy of
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Table 4. Results of the sequential learning on the CIFAR-10 tasks. The proposed architecture contains two deep virtual networks each of

which provides two different evaluations using a single unit (right column) and all the units (left column) for each task.

Method Feature Extraction [6] DA-CNN [32] LwF [24] NestedNet [19] Ours

Task 1 96.3% 96.3% 95.3% 93.9% 95.4% 95.8%
Task 2 85.7% 90.1% 97.1% 98.2% 97.7% 98.1%

Average 91.0% 93.2% 96.2% 96.05% 96.55% 96.95%

Table 5. Results of the sequential learning on the CIFAR-10 (task 1) and CIFAR-100 (task 2) datasets.

Method Feature Extraction [6] DA-CNN [32] LwF [24] NestedNet [19] Ours

Task 1 94.9% 94.9% 93.4% 93.1% 93.1% 93.4%
Task 2 53.2% 57.4% 77.2% 77.9% 78.0% 78.7%

Average 74.05% 76.15% 85.3% 85.5% 85.55% 86.05%

class category for a dataset, and each level is considered as

a task. We evaluated on CIFAR-100 which has two-level

hierarchy of class category as described in Section 4.1. Our

architecture contains two deep virtual networks, and each

contains two units by dividing feature maps equally into

two sets. Thus, it produces four different inference outputs.

We compared with NestedNet [19] which can perform hi-

erarchical classification in a single network. The backbone

network was WRN-32-4.

Table 3 shows the results of the applied methods. We

also provide the baseline results by learning an individual

network (WRN-32-2 or WRN-32-4) for the number of pa-

rameters and the number of classes. Overall, our approach

performs better than other compared methods for all cases.

Ours and NestedNet outperform the baseline probably due

to their property of sharing parameters between the tasks

as they are closely related to each other. The proposed ap-

proach produces a larger number of inference outputs than

NestedNet while keeping better performance.

4.5. Sequential learning

We conducted the scenario (S1) which consists of two

sequential tasks based on CIFAR-10, where the old (task

1) and new (task 2) tasks consist of the samples from the

first and last five classes of the dataset, respectively. We

compared our approach with other methods that can per-

form sequential tasks: Feature Extraction [6], LwF [24],

DA-CNN [32] (with two additional fully-connected layers),

and NestedNet [19] (whose low- and high-level of hierarchy

in the network represent old and new tasks, respectively).

The proposed network consists of two units by divid-

ing feature maps into two subsets evenly (each stand-alone

unit has 25% parameter density ratio). It constructs two

deep virtual networks providing four inference outputs. We

applied the WRN-32-4 architecture for all compared ap-

proaches. Table 4 shows the results of the compared meth-

ods. We observe that the proposed approach outperforms

other approaches. Notably, the results using stand-alone

units are better than others on average. Feature Extrac-

tion and DA-CNN nearly preserve the performance for the

first task by maintaining the parameters of the first task un-

changed, but their performances give the unsatisfactory re-

sults for the following task. Whereas, the results from LwF

and NestedNet are much better than those mentioned above

for the second task, but their results are worse than ours.

We also applied the proposal to another scenario (S2)

consisting of CIFAR-10 (old, task 1) and CIFAR-100 (new,

task 2). All the compared approaches were performed based

on WRN-32-8. Our DVNs were constructed and trained un-

der the same strategy to (S1). The results of the scenario

are summarized in Table 5. Our result using all units (right

column) gives the best performance on average among the

compared approaches. Moreover, our result using a stand-

alone unit (left column) also performs better than the best

competitors, LwF and NestedNet, which use the same dis-

tillation loss function [15].

5. Conclusion

In this work, we have presented a novel architecture pro-

ducing deep virtual networks (DVNs) to address multiple

objectives with respect to different tasks and memory bud-

gets. Each DVN has a unique hierarchical structure for a

task and enables multiple inference for different memory

budgets. Based on the proposed network, we can adap-

tively choose a DVN and one of its level of hierarchy for

a given task with the desired memory budget. The efficacy

of the proposed method has been demonstrated under vari-

ous multi-task learning scenarios. To the best of our knowl-

edge, this is the first work introducing the concept of virtual

networks in deep learning for multi-task learning.
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