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Abstract

We propose a novel regularization algorithm to train

deep neural networks, in which data at training time is

severely biased. Since a neural network efficiently learns

data distribution, a network is likely to learn the bias in-

formation to categorize input data. It leads to poor perfor-

mance at test time, if the bias is, in fact, irrelevant to the

categorization. In this paper, we formulate a regularization

loss based on mutual information between feature embed-

ding and bias. Based on the idea of minimizing this mutual

information, we propose an iterative algorithm to unlearn

the bias information. We employ an additional network to

predict the bias distribution and train the network adversar-

ially against the feature embedding network. At the end of

learning, the bias prediction network is not able to predict

the bias not because it is poorly trained, but because the

feature embedding network successfully unlearns the bias

information. We also demonstrate quantitative and quali-

tative experimental results which show that our algorithm

effectively removes the bias information from feature em-

bedding.

1. Introduction

Machine learning algorithms and artificial intelligence

have been used in wide ranging fields. The growing vari-

ety of applications has resulted in great demand for robust

algorithms. The most ideal way to robustly train a neu-

ral network is to use suitable data free of bias. However

great effort is often required to collect well-distributed data.

Moreover, there is a lack of consensus as to what constitutes

well-distributed data.

Apart from the philosophical problem, the data distribu-

tion significantly affects the characteristics of networks, as

current deep learning-based algorithms learn directly from

the input data. If biased data is provided during training,

Figure 1. Detrimental effect of biased data. The points colored

with high saturation indicate samples provided during training,

while the points with low saturation would appear in test scenario.

Although the classifier is well-trained to categorize the training

data, it performs poorly with test samples because the classifier

learns the latent bias in the training samples.

the machine perceives the biased distribution as meaningful

information. This perception is crucial because it weakens

the robustness of the algorithm and unjust discrimination

can be introduced.

A similar concept has been explored in the literature and

is referred to as unknowns [3]. The authors categorized

unknowns as follows: known unknowns and unknown un-

knowns. The key criterion differentiating these categories

is the confidence of the predictions made by the trained

models. The unknown unknowns correspond to data points

that the model’s predictions are wrong with high confi-

dence, e.g. high softmax score, whereas the known un-

knowns represent mispredicted data points with low confi-

dence. Known unknowns have better chance to be detected

as the classifier’s confidence is low, whereas unknown un-

knowns are much difficult to detect as the classifier gener-

ates high confidence score.

In this study, the data bias we consider has a similar fla-

vor to the unknown unknowns in [3]. However, unlike the

unknown unknowns in [3], the bias does not represent data

points themselves. Instead, bias represents some attributes

9012



of data points, such as color, race, or gender.

Figure 1 conceptually shows how biased data can affect

an algorithm. The horizontal axis represents shape space

of the digits, while the vertical axis represents color space,

which is biased information for digit categorization. In

practice, shape and color are independent features, so a data

point can appear anywhere in Figure 1. However, let us as-

sume that only the data points with high saturation are pro-

vided during training, but the points with low saturation are

present in the test scenario (yet are not accessible during

the training). If a machine learns to categorize the digits,

each solid line is a proper choice for the decision bound-

ary. Every decision boundary categorizes the training data

perfectly, but it performs poorly on the points with low sat-

uration. Without additional information, learning of the de-

cision boundary is an ill-posed problem, multiple decision

boundaries can be determined that perfectly categorize the

training data. Moreover, it is likely that a machine would

utilize the color feature because it is a simple feature to ex-

tract.

To fit the decision boundary to the optimal classifier in

Figure 1, we require simple prior information: Do not learn

from color distribution. To this end, we propose a novel

regularization loss, based on mutual information, to train

deep neural networks, which prevents learning of a given

bias. In other words, we regulate a network to minimize

the mutual information shared between the extracted fea-

ture and the bias we want to unlearn. Hereafter, the bias

that we intend to unlearn is referred to the target bias. For

example, the target bias is the color in Figure 1. Prior to the

unlearning of target bias, we assume that the existence of

data bias is known and that the relevant meta-data, such as

statistics or additional labels corresponding to the semantics

of the biases are accessible. Then, the problem can be for-

mulated in terms of an adversarial problem. In this scenario,

one network has been trained to predict the target bias. The

other network has been trained to predict the label, which

is the main objective of the network, while minimizing the

mutual information between the embedded feature and the

target bias. Through this adversarial training process, the

network can learn how to predict labels independent of the

target bias.

Our main contributions can be summarized as follows:

Firstly, we propose a novel regularization term, based on

mutual information, to unlearn target bias from the given

data. Secondly, we experimentally show that the proposed

regularization term minimizes the detrimental effects of

bias in the data. By removing information relating to the

target bias from feature embedding, the network was able

to learn more informative features for classification. In

all experiments, networks trained with the proposed regu-

larization loss showed performance improvements. More-

over, they achieved the best performance in the most experi-

ments. Lastly, we propose bias planting protocols for public

datasets. To evaluate bias removal problem, we intention-

ally planted bias to training set while maintaining test set

unbiased.

2. Related Works

The existence of unknown unknowns was experimen-

tally demonstrated by Attenberg et al. in [3]. The au-

thors separated the decisions rendered by predictive models

into four conceptual categories: known knowns, known un-

knowns, unknown knowns, and unknown unknowns. Sub-

sequently, the authors developed and participated in a “beat

the machine challenge”, which challenged the participants

to manually find the unknown unknowns to fool the ma-

chine.

Several approaches for identifying unknown unknowns

have been also proposed [13, 4]. Lakkaraju et al. [13]

proposed an automatic algorithm using the explore-exploit

strategy. Bansal and Weld proposed a coverage-based utility

model that evaluates the coverage of discovered unknown

unknowns [4]. These approaches rely on an oracle for a sub-

set of test queries. Rather than relying on an oracle, Alvi et

al. [1] proposed joint learning and unlearning method to re-

move bias from neural network embedding. To unlearn the

bias, the authors applied confusion loss, which is computed

by calculating the cross-entropy between classifier output

and a uniform distribution. Similar approaches, making net-

works to be confused, have been applied on various appli-

cations [8, 2, 6].

As mentioned by Alvi et al. in the paper [1], the unsu-

pervised domain adaptation (UDA) problem is closely re-

lated to the biased data problem. The UDA problem in-

volves generalizing the network embedding over different

domains [8, 23, 21]. The main difference between our prob-

lem and the UDA problem is that our problem does not as-

sume the access to the target images and instead, we are

aware of the description of the target bias.

Embracing the UDA problem, disentangling feature rep-

resentation has been widely researched in the literature. The

application of disentangled features has been explored in

detail [24, 17]. Using generative adversarial network [9],

more methods to learn disentangled representation [5, 16,

22] have been proposed. In particular, Chen et al. proposed

the InfoGAN [5] method, which learns and preserves se-

mantic context without supervision.

These studies highlighted the importance of feature dis-

entanglement, which is the first step in understanding the

information contained within the feature. Inspired by var-

ious applications, we have attempted to remove certain in-

formation from the feature. In contrast to the InfoGan [5],

we minimize the mutual information in order not to learn.

However, removal of information is an antithetical concept

to learning and is also referred to as unlearning. Although
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Figure 2. Overall architecture of deep neural network. The net-

work g ◦ f is implemented with ResNet-18 [10] for real images

and plain network with four convolution layers for MNIST im-

ages.

the concept itself is the complete opposite of learning, it can

help learning algorithms. Herein, we describe an algorithm

for removing target information and present experimental

results and analysis to support the proposed algorithm.

3. Problem Statement

In this section, we formulate a novel regularization loss,

which minimizes the undesirable effects of biased data, and

describe the training procedure. The notations should be

defined prior to introduction of the formulation. Unless

specifically mentioned, all notation refers to the following

terms hereafter. Assume we have an image x ∈ X and

corresponding label yx ∈ Y . We define a set of bias, B,

which contains every possible target bias that X can pos-

sess. In Figure 1, B is a set of possible colors, while Y rep-

resents a set of digit classes. We also define a latent function

b : X → B, where b(x) denotes the target bias of x. We de-

fine random variables X and Y that have the value of x and

yx respectively.

The input image x is fed into the feature extraction net-

work f : X → R
K , where K is the dimension of the

feature embedded by f . Subsequently, the extracted fea-

ture, f(x), is fed forward through both the label predic-

tion network g : R
K → Y , and bias prediction network

h : RK → B. The parameters of each network are defined

as θf , θg , and θh with the subscripts indicating their spe-

cific network. Figure 2 describes the overall architecture of

the neural networks. However, we do not explicitly desig-

nate a detailed architecture, since our regularization loss is

applicable to arbitrary network architectures.

3.1. Formulation

The objective of our work is to train a network that per-

forms robustly with unbiased data during test time, even

though the network is trained with biased data. The data

bias has following characteristic:

I(b(Xtrain);Y ) ≫ I(b(Xtest);Y ) ≈ 0, (1)

where Xtrain and Xtest denote the random variable sam-

pled during the training and test procedure, respectively, and

I(·; ·) denotes the mutual information. Biased training data

results in the biased networks, so that the network relies

heavily on the bias of the data:

I(b(X); g(f(X))) ≫ 0. (2)

To this end, we add the mutual information to the objective

function for training networks. We minimize the mutual

information over f(X), instead of g(f(X)). It is adequate

because the label prediction network, g, takes f(X) as its

input. From a standpoint of g, the training data is not biased

if the network f extracts no information of the target bias.

In other words, extracted feature f(x) should contain no

information of the target bias, b(x). Therefore, the training

procedure is to optimize the following problem:

min
θf ,θg

Ex̃∼PX(·)[Lc(yx̃, g(f(x̃)))]+λI(b(X); f(X)), (3)

where Lc(·, ·) represents the cross-entropy loss, and λ is a

hyper-parameter to balance the terms.

The mutual information in Eq. (3) can be equivalently

expressed as follows:

I(b(X); f(X)) = H(b(X))−H(b(X)|f(X)), (4)

where H(·) and H(·|·) denote the marginal and conditional

entropy, respectively. Since the marginal entropy of bias is

constant that does not depend on θf and θg , H(b(X)) can be

omitted from the optimization problem, and we try to mini-

mize the negative entropy, −H(b(X)|f(X)). Eq. (4) is dif-

ficult to directly minimize as it requires the posterior distri-

bution, P (b(X)|f(X)). Since it is not tractable in practice,

minimizing the Eq. (4) is reformulated using an auxiliary

distribution, Q, with an additional equality constraint:

min
θf

Ex̃∼PX(·)[Eb̃∼Q(·|f(x̃))[logQ(b̃|f(x̃))]]

s.t. Q(b(X)|f(X)) = P (b(X)|f(X)).
(5)

The benefit of using the distribution Q is that we can di-

rectly calculate the objective function. Therefore, we can

train the feature extraction network, f , under the equality

constraint.

3.2. Training Procedure

As the equality constraint in Eq. (5) is difficult to meet

(especially in the beginning of the training process), we

modify the equality constraint into minimizing KL diver-

gence between P and Q, so that Q gets closer to P as learn-

ing progresses. We relax the Eq. (5), so that the auxiliary
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distribution, Q, could be used to approximate the posterior

distribution. The relaxed regularization loss, LMI , is as fol-

lows:

LMI = Ex̃∼PX(·)[Eb̃∼Q(·|f(x̃))[logQ(b̃|f(x̃))]]

+ µDKL(P (b(X)|f(X))||Q(b(X)|f(X))),
(6)

where DKL denotes the KL-divergence and µ is hyper-

parameter which balances the two terms. Similar to the

method proposed by Chen et al. [5], we parametrize the

auxiliary distribution, Q, as the bias prediction network, h.

Note that we will train network h, so that the KL-divergence

is minimized. Provided that the distribution Q implemented

by network h converges to P (b(X)|f(X)), we only need to

train network f so that the first term in Eq. (6) is minimized.

Although the posterior distribution, P (b(X)|f(X)), is

not tractable, the bias prediction network, h, is expected to

be trained to stochastically approximate P (b(X)|f(X)), if

we train the network with b(X) as the label with SGD opti-

mizer. Therefore, we relax the KL-divergence of Eq. (6)

with expectation of the cross-entropy loss between b(X)
and h(f(X)), and we train network h so that bias prediction

loss, LB, is minimized.

LB(θf , θh) = Ex̃∼PX(·)[Lc(b(x̃), h(f(x̃)))]. (7)

Although training network h alone to minimize Eq. (7) is

enough to make Q closer to P , it will be additionally ben-

eficial to train f to maximize Eq. (7) in an adversarial way,

i.e. to let the networks f and h play the minimax game. The

intuition is that the feature extracted by network f is mak-

ing the bias prediction difficult. As f is trained to minimize

the first term in Eq. (6), we can reformulate Eq. (6) using

LB instead of KL-divergence as follows:

min
θf

max
θh

Ex̃∼PX(·)[Eb̃∼Q(·|f(x̃))[logQ(b̃|f(x̃))]]

− µLB(θf , θh)
(8)

We train h to correctly predict the bias, b(X), from its

feature embedding, f(X). We train f to minimize the nega-

tive conditional entropy. The network h is fixed while min-

imizing the negative conditional entropy. The network f

is also trained to maximize the cross-entropy to restrain h

from predicting b(X). Together with the primal classifica-

tion problem, the minimax game is formulated as follows:

min
θf ,θg

max
θh

Ex̃∼PX(·)[Lc(yx̃, g(f(x̃)))

+ λEb̃∼Q(·|f(x̃))[logQ(b̃|f(x̃))]]

− µLB(x̃, θf , θh)

(9)

In practice, the deep neural networks, f , g and h, are

trained with both adversarial strategy [9, 5] and gradient re-

versal technique [8]. Early in learning, g ◦ f are rapidly

trained to classify the label using the bias information. Then

h learns to predict the bias, and f begins to learn how to ex-

tract feature embedding independent of the bias. At the end

of the training, h regresses to the poor performing network

not because the bias prediction network, h, diverges, but be-

cause f unlearns the bias, so the feature embedding, f(X),
does not have enough information to predict the target bias.

4. Dataset

Most existing benchmarks are designed to evaluate a spe-

cific problem. The collectors often split the dataset into

train/test sets exquisitely. However, their efforts to main-

tain the train/test split to obtain an identical distribution ob-

scures our experiment. Thus, we intentionally planted bias

to well-balanced public benchmarks to determine whether

our algorithm could unlearn the bias.

4.1. Colored MNIST

We planted a color bias into the MNIST dataset [14].

To synthesize the color bias, we selected ten distinct col-

ors and assigned them to each digit category as their mean

color. Then, for each training image, we randomly sampled

a color from the normal distribution of the corresponding

mean color and provided variance, and colorized the digit.

Since the variance of the normal distribution is a parame-

ter that can be controlled, the amount of the color bias in

the data can be adjusted. For each test image, we randomly

choose a mean color among the ten pre-defined colors and

followed the same colorization protocol as for the training

images. Each sub-datasets are denoted as follows:

• Train-σ2: Train images with colors sampled with σ2

• Test-σ2: Test images with colors sampled with σ2

Since the digits in the test sets are colored with random

mean colors, the Test-σ2 sets are unbiased. We varied σ2

from 0.02 to 0.05 with a 0.005 interval. Smaller values of

σ2 indicate more bias in the set. Thus, Train-0.02 is the

most biased set, whereas Train-0.05 is the least biased.

Figure 3 (a) shows samples from the colored MNIST,

where the images in the training set show that the color and

digit class are highly correlated. The color of the digit con-

tains sufficient information to categorize the digits in the

training set, but it is insufficient for the images in the test

set. Recognizing the color would rather disrupt the digit

categorization. Therefore, the color information must be

removed from the feature embedding.

4.2. Dogs and Cats

We evaluated our algorithm with the dogs and cats

database, developed by kaggle [12]. The original database

is a set of 25K images of dogs and cats for training and

12,500 images for testing. Similar to [13], we manually
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Train

Test

TB1 TB2 EB1 EB2
(a) Colored MNIST (b) Dogs and Cats (c) IMDB face

Figure 3. Examples of datasets with intentionally planted bias. (a) We modified the MNIST data [14] to plant color bias to training images.

A mean color has been designated for each class, so a classifier can easily predict the digit with color. (b) TB1 is a set of bright dogs and

dark cats, whereas TB2 contains dark dogs and bright cats. Similar to the colored MNIST, a classifier can predict whether an image is dog

or cat with its color. (c) IMDB face dataset contains age and gender labels. EB1 and EB2 differ on the correlation between age and gender.

Predicting age enables an algorithm to predict gender.

categorized the data according to the color of the animal:

bright, dark, and other. Subsequently, we split the images

into three subsets.

• Train-biased 1 (TB1) : bright dogs and dark cats.

• Train-biased 2 (TB2) : dark dogs and bright cats.

• Test set: All 12,500 images from the original test set.

The images categorized as other are images featuring white

cats with dark brown stripes or dalmatians. They were not

used in our training sets due to their ambiguity. In turn, TB1

and TB2 contain 10,047 and 6,738 images respectively. The

constructed dogs and cats dataset is shown in Figure 3 (b),

with each set containing a color bias. For this dataset, the

bias set B = {dark, bright}. Unlike TB1 and TB2, the test

set does not contain color bias.

On the other hand, the ground truth labels for test im-

ages are not accessible, as the data is originally for competi-

tion [12]. Therefore, we trained an oracle network (ResNet-

18 [10]) with all 25K training images. For the test set, we

measured the performance based on the result from the or-

acle network. We presumed that the oracle network could

accurately predict the label.

4.3. IMDB Face

The IMDB face dataset [19] is a publicly available face

image dataset. It contains 460,723 face images from 20,284

celebrities along with information regarding their age and

gender. Each image in the IMDB face dataset is a cropped

facial image. As mentioned in [19, 1], the provided label

contains significant noise. To filter out misannotated im-

ages, we used pretrained networks [15] on Adience bench-

mark [7] designed for age and gender classification. Using

the pretrained networks, we estimated the age and gender

for all the individuals shown in the images in the IMDB

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.02 0.025 0.03 0.035 0.04 0.045 0.05𝜎2
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Figure 4. Evaluation results on colored MNIST dataset. † de-

notes that it is evaluated with grayscale-converted images. The

model denoted as Gray was trained with images converted into

grayscale; it is trained with significantly mitigated bias. Compared

to the baseline and BlindEye algorithm [1], our model shows out-

performing results. Note that our result shows comparable per-

formance with grayscale model. It implies that the network was

successfully trained to extract feature embedding a lot more inde-

pendent of the bias.

face dataset. We then collected images where the both age

and gender labels match with the estimation. From this, we

obtained a cleaned dataset with 112,340 face images, and

the detailed cleaning procedure is described in the supple-

mentary material.

Similar to the protocol from [1], we classified the

cleaned IMDB images into three biased subsets. We first

withheld 20% of the cleaned IMDB images as the test set,

then split the rest of the images as follows:

• Extreme bias 1 (EB1): women aged 0-29, men aged 40+

• Extreme bias 2 (EB2): women aged 40+, men aged 0-29

• Test set: 20% of the cleaned images aged 0-29 or 40+
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Mean

color

Baseline

Ours

Figure 5. Confusion matrices with test images colored by single mean color. Top row denotes the mean colors and their corresponding digit

classes in training data. The confusion matrices of baseline model show the network is biased owing to the biased data. On the contrary,

the networks trained by our algorithm are not biased to the color although they were trained with the same training data with the baseline.

As a result, EB1 and EB2 contain 36,004 and 16,800 facial

images respectively, and the test set contains 13129 images.

Figure 3 (c) shows that both EB1 and EB2 are biased with

respect to the age. Although it is not as clear as the color

bias in Figure 3 (a) and (b), EB1 consists of younger female

and older male celebrities, whereas EB2 consists of younger

male and older female celebrities. When gender is target

bias, B = {male, female}, and when age is target bias, B is

their age.

5. Experiments

5.1. Implementation

In the following experiments, we removed three types

of target bias: color, age, and gender. The age and gen-

der labels were provided in IMDB face dataset, therefore

LB(θf , θh) was optimized with supervision. On the other

hand, the color bias was removed via self-supervision. To

construct color labels, we first sub-sampled the images by

factor of 4. In addition, the dynamic range of color, 0-255,

was quantized into eight even levels.

For the network architecture, we used ResNet-18 [10] for

real images and plain network with four convolution layers

for the colored MNIST experiments. The network archi-

tectures correspond to the parametrization of g ◦ f . In the

case we used ResNet-18, g was implemented as two resid-

ual blocks on the top, while f represents the rest. For plain

network for colored MNIST, both g and f consist of two

convolution layers. ResNet-18 was pretrained with Ima-

genet data [20] except for the last fully connected layer. We

implemented h with two convolution layers for color bias

and single fully connected layer for gender and age bias.

Every convolution layer is followed by batch normalization

[11] and ReLU activation layers. All the evaluation results

were averaged to be presented in this paper.

5.2. Results

We compare our training algorithm with other methods

that can be used for this task. The performance of the al-

gorithms mentioned in this section were re-implemented

based on the literature.

Colored MNIST. The amount of bias in the data was con-

trolled by adjusting the value of σ2. A network was trained

for each σ2 value from 0.02 to 0.05 and was evaluated with

the corresponding test set with the same σ2. Since a color

for each image was sampled with a given σ2, smaller σ2

implies severer color bias. Figure 4 shows the evaluation re-

sults of the colored MNIST. The baseline model represents

a network trained without additional regularization and the

baseline performance can roughly be used as an indication

of training data bias. The algorithm denoted as “Blind-

Eye” represents a network trained with confusion loss [1]

instead of our regularization. The other algorithm, denoted

as “Gray”, represents a network trained with grayscale im-

ages and it was also tested with grayscale images. For the

given color biased data, we converted the color digits into

grayscale. Conversion into grayscale is a trivial approach

that can be used to mitigate the color bias. We presume that

the conversion into grayscale does not reduce the informa-

tion significantly since the MNIST dataset was originally

provided in grayscale.

The results of our proposed algorithm outperformed the

BlindEye [1] and baseline model with all values of σ2. No-

tably, we achieved similar performance as the model trained

and tested with grayscale images. Since we converted im-

ages in both training and test time, the network is much less

biased. In most experiments, our model performed slightly

better than the gray algorithm, suggesting that our regula-

tion algorithm can effectively remove the target bias and

encourage a network to extract more informative features.

To analyze the effect of the bias and proposed algorithm,

we re-colored the test images. We sampled with the same

protocol, but with fixed mean color, which was assigned to

one of the ten digit classes of the biased training data. Fig-

ure 5 shows the confusion matrices drawn by the baseline

and our models with the re-colored test images. The digits

illustrated in the top row denotes the mean colors and their

corresponding digit class in training set. For example, the
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first digit, red zero, signifies the confusion matrices below

are drawn by test images colored reddish regardless of their

true label. It also stands for a fact that every digit of cate-

gory zero in training data is colored reddish.

In Figure 5, the matrices of the baseline show vertical

patterns, some of which are shared, such as digits 1 and 3.

The mean color for class 1 is teal; in RGB space it is (0,

128, 128). The mean color for class 3 is similar to that of

class 1. In RGB space, it is (0, 149, 182) and is called bondi

blue. This indicates that the baseline network is biased to

the color of digit. As observed from the figure, the confu-

sion matrices drawn by our algorithm (bottom row) show

that the color bias was removed.

Dogs and Cats. Table 1 presents the evaluation results,

where the baseline networks perform admirably, consider-

ing the complexity of the task due to the pretrained param-

eters. As mentioned in [18], neural networks prefer to cat-

egorize images based on shape rather than color. This en-

courages the baseline network to learn shapes, but the eval-

uation results presented in Table 1 imply that the networks

remain biased without regularization.

Similar to the experiment on the colored MNIST, sim-

plest approach for reducing the color bias is to convert the

images into grayscale. Unlike the MNIST dataset, conver-

sion would remove a significant amount of information. Al-

though the networks for grayscale images performed better

than the baseline, Table 1 shows that the networks remain

biased to color. This is likely because of the criterion that

was used to implant the color bias. Since the original dataset

is categorized into bright and dark, the converted images

contain a bias in terms of brightness.

We used gradient reversal layer (GRL) [8] and adversar-

ial training strategy [5, 9] as components of our optimiza-

tion process. To analyze the effect of each component, we

ablated the GRL from our algorithm. We also trained net-

works with both confusion loss [1] and GRL, since they

can be used in conjunction with each other. Although the

GRL was originally proposed to solve unsupervised domain

adaptation problem [8], Table 1 shows that it is beneficial

for bias removal. Together with either confusion loss or our

regularization, we obtained the performance improvements.

Furthermore, GRL alone notably improved the performance

suggesting that GRL itself is able to remove bias.

Figure 6 shows the qualitative effect of our proposed reg-

ularization. The prediction results of the baseline networks

do not change significantly regardless of whether the query

image is cat or dog if the colors are similar. If a network is

trained with TB1, the network predicts a dark image to be

a cat and a bright image to be a dog. If another network is

trained with TB2, the network predicts a bright image to be

a cat and a dark image to be a dog. This implies that the

baseline networks are biased to color. On the other hand,

networks trained with our proposed algorithm successfully

Trained on TB1 Trained on TB2

Method TB2 Test TB1 Test

Baseline .7498 .9254 .6645 .8524

Gray† .8366 .9483 .7192 .8687

BlindEye [1] .8525 .9517 .7812 .9038

GRL [8] .8356 .9462 .7813 .9012

BlindEye+GRL .8937 .9582 .8610 .9291

Ours-adv .8853 .9594 .8630 .9298

Ours .9029 .9638 .8726 .9376

Table 1. The evaluation results on dogs and cats dataset. All net-

works were evaluated with test set. Moreover, the networks trained

with TB1 were additionally evaluated with TB2, and vice versa. †
denotes that the network was tested with images converted into

grayscale. The Ours-adv denotes a model trained with Eq. (9)

without using gradient reversal layer. The best performing result

on each column is denoted as boldface and the second best result

is underlined.

Trained on EB1 Trained on EB2

Method EB2 Test EB1 Test

Learn Gender, Unlearn Age

Baseline .5986 .8442 .5784 .6975

BlindEye [1] .6374 .8556 .5733 .6990

Ours .6800 .8666 .6418 .7450

Learn Age, Unlearn Gender

Baseline .5430 .7717 .4891 .6197

BlindEye [1] .6680 .7513 .6416 .6240

Ours .6527 .7743 .6218 .6304

Table 2. Evaluation results on IMDB face dataset. All networks

were evaluated with test set and the other training set. The best

performing result on each column is denoted as boldface.

classified the query images independent of their colors. In

particular, Figure 6 (c) and (f) were identically predicted by

the baseline networks depending on their color. After re-

moving the color information from the feature embedding,

the images were correctly categorized according to their ap-

pearance.

IMDB face. For the IMDB face dataset, we conducted two

experiments; one to train the networks to classify age inde-

pendent of gender, and one to train the networks to classify

gender independent of age. Table 2 shows the evaluation

results from both experiments. The networks were trained

with either EB1 or EB2 and since they are extremely biased,

the baseline networks are also biased. By removing the tar-

get bias information from the feature embedding, overall

performances are improved. On the other hand, considering

that gender classification is a two class problem, where ran-

dom guessing achieves 50% accuracy, the networks perform

poorly on gender classification. Although Table 2 shows

that the performance improves after removing the target

bias from the feature embedding, the performance improve-

ment achieved using our algorithm is marginal compared to
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Figure 6. Qualitative results of dogs and cats dataset. The oracle model was trained with not only both TB1 and TB2, but also with images
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charts below the figures visualize prediction results by each model. The baseline models tend to predict depending on the color, whereas

our model ignores the color information.
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Figure 7. Qualitative results of gender classification with IMDB face dataset. As in the Figure 6, the stacked bar charts represent the

prediction results. They show that the baseline models are biased to the age. On the other hand, the networks trained with proposed

algorithm predict the gender independent of their age.

previous experiments with other datasets. We presume that

this is because of the correlation between age and gender. In

the case of color bias, the bias itself is completely indepen-

dent of the categories. In other words, an effort to unlearn

the bias is purely beneficial for digit categorization. Thus,

removing color bias from feature embedding improved the

performance significantly because the network is able to fo-

cus on learning shape features. Unlike the color bias, age

and gender are not completely independent features. There-

fore, removing bias information from feature embedding

would not be completely beneficial. This suggests that a

deep understanding of the specific data bias must precede

the removal of bias.

Figure 7 shows the qualitative effect of regularization on

the gender classification task. Young, mid-age, and old in-

dividuals with both male and female are presented. Similar

to Figure 6, it implies that the baseline networks are biased

toward age. The baseline network trained with EB1 pre-

dicted both young male and young female images (Figure 7

(a) and (d)) as female with high confidence. Meanwhile, the

network trained with EB2 predicted the same images as the

exact opposite gender with high confidence. Upon removal

of age bias, the networks were trained to correctly predict

the gender.

6. Conclusion

In this paper, we propose a novel regularization term to

train deep neural networks when using biased data. The

core idea of using mutual information is inspired by Info-

Gan [5]. In constrast to the inspiring approach, we rather

minimize the mutual information in order not to learn. By

letting networks play minimax game, networks learn to cat-

egorize, while unlearning the bias. The experimental re-

sults showed that the networks trained with the proposed

regularization can extract bias-independent feature embed-

ding, achieving the best performance in the most of the ex-

periments. Furthermore, our model performed better than

“Gray” model which was trained with almost unbiased data,

indicating the feature embedding becomes even more infor-

mative. To conclude, we have demonstrated in this paper

that the proposed regularization improves the performance

of neural networks trained with biased data. We expect this

study to expand the usage of various data and to contribute

to the field of feature disentanglement.
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