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Abstract

We present semantic attribute matching networks (SAM-

Net) for jointly establishing correspondences and transfer-

ring attributes across semantically similar images, which

intelligently weaves the advantages of the two tasks while

overcoming their limitations. SAM-Net accomplishes this

through an iterative process of establishing reliable corre-

spondences by reducing the attribute discrepancy between

the images and synthesizing attribute transferred images us-

ing the learned correspondences. To learn the networks us-

ing weak supervisions in the form of image pairs, we present

a semantic attribute matching loss based on the matching

similarity between an attribute transferred source feature

and a warped target feature. With SAM-Net, the state-of-

the-art performance is attained on several benchmarks for

semantic matching and attribute transfer.

1. Introduction

Establishing correspondences and transferring attributes

across semantically similar images can facilitate a variety

of computer vision applications [35, 34, 25]. In these tasks,

the images resemble each other in contents but differ in vi-

sual attributes, such as color, texture, and style, e.g., the im-

ages with different faces as exemplified in Fig. 1. Numer-

ous techniques have been proposed for the semantic cor-

respondence [15, 24, 42, 19, 43, 23] and attribute trans-

fer [11, 6, 28, 21, 38, 16, 20, 16, 34, 12], but these two

tasks have been studied independently although they can be

mutually complementary.

To establish reliable semantic correspondences, state-

of-the-art methods have leveraged deep convolutional neu-

ral networks (CNNs) in extracting descriptors [7, 53, 24]

and regularizing correspondence fields [15, 42, 19, 43, 23].

This research was supported by R&D program for Advanced

Integrated-intelligence for Identification (AIID) through the National Re-

search Foundation of KOREA (NRF) funded by Ministry of Science and

ICT (NRF-2018M3E3A1057289).
∗Corresponding author

Source

Image

Target 
Image

Matching 
Fields

Stylized 
Source

SAM‐Net

Attribute Transfer Networks

Semantic Matching Networks

…

…

Figure 1. Illustration of SAM-Net: for semantically similar images

having both photometric and geometric variations, SAM-Net re-

currently estimates semantic correspondences and synthesizes at-

tribute transferred images in a joint and boosting manner.

Compared to conventional handcrafted methods [35, 22, 5,

54, 48], they have achieved a highly reliable performance.

To overcome the problem of limited ground-truth supervi-

sions, some methods [42, 19, 43, 23] have tried to learn

deep networks using only weak supervision in the form of

image pairs based on the intuition that the matching cost

between the source and target features over a set of trans-

formations should be minimized at the correct transforma-

tion. These methods presume that the attribute variations

between source and target images are negligible in the deep

feature space. However, in practice the deep features often

show limited performance in handling different attributes

that exist in the source and target images, often degrading

the matching accuracy dramatically.

To transfer the attributes between source and target im-

ages, following the seminal work of Gatys et al. [10], nu-

merous methods have been proposed to separate and re-

combine the contents and attributes using deep CNNs [11,

6, 28, 21, 38, 16, 20, 16, 34, 12]. Unlike the parametric

methods [11, 21, 38, 16] that match the global statistics

of deep features while ignoring the spatial layout of con-

tents, the non-parametric methods [6, 28, 34, 12] directly

find neural patches in the target image similar to the source

patch and synthesize them to reconstruct the stylized image.

These non-parametric methods generally estimate nearest
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neighbor patches between source and target images with

weak implicit regularization methods [6, 28, 34, 12] us-

ing a simple local aggregation followed by a winner-takes-

all (WTA). However, photorealistic attribute transfer needs

highly regularized and semantically meaningful correspon-

dences, and thus existing methods [6, 28, 12] frequently

fail when the images have background clutters and different

attributes while representing similar global feature statis-

tics. A method called deep image analogy [34] has tried to

estimate more semantically meaningful dense corrrespon-

dences for photorealistic attribute transfer, but it still has

limited localization ability with PatchMatch [3].

In this paper, we present semantic attribute matching net-

works (SAM-Net) for overcoming the aforementioned lim-

itations of current semantic matching and attribute trans-

fer techniques. The key idea is to weave the advantages

of semantic matching and attribute transfer networks in a

boosting manner. Our networks accomplish this through

an iterative process of establishing more reliable seman-

tic correspondences by reducing the attribute discrepancy

between semantically similar images and synthesizing an

attribute transferred image with the learned semantic cor-

respondences. Moreover, our networks are learned from

weak supervision in the form of image pairs using the

proposed semantic attribute matching loss. Experimental

results show that SAM-Net outperforms the latest meth-

ods for semantic matching and attribute transfer on sev-

eral benchmarks, including TSS dataset [48], PF-PASCAL

dataset [14], and CUB-200-2011 dataset [51].

2. Related Work

Semantic correspondence. Most conventional methods

for semantic correspondence that use handcrafted features

and regularization methods [35, 22, 5, 54, 48] have provided

limited performance due to a low discriminative power. Re-

cent approaches have used deep CNNs for extracting their

features [7, 53, 24, 39] and regularizing correspondence

fields [15, 41, 42]. Rocco et al. [41, 42] proposed deep

architecture for estimating a geometric matching model,

but these methods estimate only globally-varying geomet-

ric fields. To deal with locally-varying geometric deforma-

tions, some methods such as UCN [7] and CAT-FCSS [25]

were proposed based on STNs [18]. Recently, PARN [19],

NC-Net [43], and RTNs [23] were proposed to estimate

locally-varying transformation fields using a coarse-to-fine

scheme [19], neighbourhood consensus [43], and an itera-

tion technique [23]. These methods [19, 43, 23] presume

that the attribute variations between source and target im-

ages are negligible in the deep feature space. However, in

practice the deep features often show limited performance

in handling different attributes. Aberman et al. [1] presented

a method to deal with the attribute variations between the

images using a variant of instance normalization [16]. How-

ever, the method does not have an explicit learnable mod-

ule to reduce the attribute discrepancy, thus yielding limited

performance.

Attribute transfer. There have been a lot of works on the

transfer of visual attributes, e.g., color, texture, and style,

from one image to another, and most approaches are tailored

to their specific objectives [40, 47, 8, 2, 52, 9]. Since our

method represents and synthesizes deep features to transfer

the attribute between semantically similar images, the neu-

ral style transfer [11, 6, 21, 20] is highly related to ours. In

general, these approaches can be classified into parametric

and non-parametric methods.

In parametric methods, inspired by the seminal work

of Gatys et al. [10], numerous methods have been pre-

sented, such as the work of Johnson et al. [21], AdaIN [16],

and WCT [31]. Since these methods are globally formu-

lated, they have shown limited performance for photorealis-

tic stylization tasks [32, 38]. To alleviate these limitations,

Luan et al. proposed a deep photo style transfer [38] that

computes and uses the semantic labels. Li et al. proposed

Photo-WCT [32] to eliminate the artifacts using additional

smoothing step. However, these methods still have been for-

mulated without considering semantically meaningful cor-

respondence fields.

Among non-parametric methods, the seminal work of Li

et al. [28] first searches local neural patches, which are sim-

ilar to the patch of content image, in the target style image

to preserve the local structure prior of content image, and

then uses them to synthesize the stylized image. Chen et

al. [6] sped up this process using the feed-forward networks

to decode the synthesize features. Inspired by this, vari-

ous approaches have been proposed to synthesize locally

blended features efficiently [29, 49, 37, 30, 50]. However,

the aforementioned methods are tailored to the artistic style

transfer, and thus they focused on finding the patches to

reconstruct more plausible images, rather than finding se-

mantically meaningful dense correspondences. They gen-

erally estimate the nearest neighbor patches using weak im-

plicit regularization methods such as WTA. Recently, Gu

et al. [12] introduced a deep feature reshuffle technique

to connect both parametric and non-parametric methods,

but they search the nearest neighbor using an expectation-

maximization (EM) that also produces limited localization

accuracy.

More related to our work is a method called deep image

analogy [34] that searches semantic correspondences using

deep PatchMatch [3] in a coarse-to-fine manner. However,

PatchMatch inherently has a limited regularization power as

shown in [27, 36, 33]. In addition, the method still needs the

greedy optimization for feature deconvolution that induces

computational bottlenecks, and only considers the transla-

tional fields, thus having the limitation to handle more com-

plicated deformations.
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Figure 2. Intuition of SAM-Net: (a) methods for semantic matching [41, 42, 23, 19], (b) methods for attribute transfer [11, 21, 28], and (c)

SAM-Net, which recurrently weaves the advantages of both existing semantic matching and attribute transfer techniques.

3. Problem Statement

Let us denote semantically similar source and target im-

ages as Is and It, respectively. The objective of our method

is to jointly establish a correspondence field fi = [ui, vi]
T

between the two images that is defined for each pixel i =
[ix, iy]

T and synthesize an attribute transferred image Is←t

by transferring an attribute of target image It to a content

of source image Is.

CNN-based methods for semantic correspondence [41,

25, 42, 19, 43, 23] involve first extracting deep features [45,

25], denoted by F s
i and F t

i , from Isi and Iti within lo-

cal receptive fields, and then estimating correspondence

field fi of the source image using deep regularization mod-

els [41, 42, 23], as shown in Fig. 2(a). To learn the networks

using only image pairs, some methods [42, 23] formulate

the loss function based on the intuition that the matching

cost between the source feature F s
i and the target feature

F t
i+fi

over a set of transformations should be minimized.

For instance, they formulate the matching loss defined as

LM =
∑

i
‖F s

i − F t
i+fi

‖2F , (1)

where ‖ · ‖2F denotes Frobenius norm. To deal with more

complex deformations such as affine transformation [27,

23], instead of F t
i+fi

, F t(Ti) or F t
i+fi

(Ai) can be used with

a 2 × 3 matrix Ti = [Ai, fi]. Although semantically simi-

lar images can share similar contents but have different at-

tributes, these methods [41, 42, 19, 43, 23] simply assume

that the attribute variations between source and target im-

ages are negligible in the deep feature space. It thus cannot

guarantee measuring a fully accurate matching cost without

an explicit module to reduce the attribute gaps.

To minimize the attribute discrepancy between source

and target images, attribute or style transfer methods [11,

6, 21, 20] separate and recombine the content and attribute.

Unlike the parametric methods [11, 38], the non-parametric

methods [6, 28, 34, 12] directly find neural patches in the

target image similar to the source patch and synthesize them

to reconstruct the stylized feature F s←t and image Is←t, as

shown in Fig. 2(b). Formally, they formulate two loss func-

tions including the content loss defined as

LC =
∑

i
‖F s←t

i − F s
i ‖

2
F , (2)

and the non-parametric attribute transfer loss defined as

LA =
∑

i

∑
j∈Ni

‖F s←t
j − F t

j+fi
‖2F , (3)

where i+ fi is the center point of the patch in It that is

most similar to a patch centered at i in Is. Generally, fi is

determined using the matching scores of normalized cross-

correlation [6, 28] aggregated on Ni over all local patches

followed by the labeling optimization such that

fi = argmax
m

∑
j∈Ni

(F s
j · F t

j+m)/‖F s
j ‖‖F

t
j+m‖, (4)

where the operator · denotes inner product.

However, the hand-designed discrete labeling techniques

such as WTA [6, 28], PatchMatch [34], and EM [12] used to

optimize (4) rely on weak implicit smoothness constraints,

often producing poor matching results. In addition, they

only consider the translational fields, i.e., fi, thus limiting

handling more complicated deformations caused by scale,

rotation and skew that may exist among object instances.

4. Method

4.1. Overview

We present the networks to recurrently estimate seman-

tic correspondences and synthesize the stylized images in a

boosting manner, as shown in Fig. 2(c). In the networks,

correspondences are robustly established by matching the

stylized source and target images, in contrast to existing

methods [42, 23] that directly match source and target im-

ages that have the attribute discrepancy. At the same time,

blended neural patches using the correspondences are used

to reconstruct the attribute transferred image in a semantic-

aware and geometrically aligned manner.

Our networks are split into three parts as shown in Fig. 3:

feature extraction networks to extract source and target fea-

tures F s and F t, semantic matching networks to establish
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Figure 3. Network configuration of SAM-Net, consisting of feature extraction networks, semantic matching networks, and attribute transfer

networks in a recurrent structure. Initially, F s←t,0 = F s and F t,0 = [I2×2, 02×1]. They output T l
i and Is←t,l at each l-th iteration.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 4. Convergence of SAM-Net: (a) source image, (b) target image, iterative evolution of attribute transferred images (c), (e), and (g)

and warped images using dense corresondences (d), (f), and (h) after iteration 1, 2, and 3. In the recurrent formulation of SAM-Net, the

predicted transformation fields and attribute transferred images become progressively more accurate through iterative estimation.

correspondence fields T , and attribute transfer networks to

synthesize the attribute transferred image Is←t. Since our

networks are formulated in a recurrent manner, they output

T l and Is←t,l at each l-th iteration, as exemplified in Fig. 4.

4.2. Network Architecture

Feature extraction networks. Our model accomplishes

the semantic matching and attribute transfer using deep fea-

tures [45, 25]. To extract the features for source F s and

target F t, the source and target images (Is and It) are first

passed through shared feature extraction networks with pa-

rameters WF such that Fi = F(Ii;WF ), respectively. In

the recurrent formulation, an attribute transferred feature

F s←t,l from target to source images and a warped target

feature F t,l, i.e., F t warped using the transformation fields

T l
i , are reconstructed at each l-th iteration.

Semantic matching networks. Our semantic matching

networks consist of the matching cost computation and in-

ference modules motivated by conventional RANSAC-like

methods [17]. We first compute the correlation volume with

respect to translational motion only [41, 42, 43, 23] and

then pass it to subsequent convolutional layers to determine

dense affine transformation fields Ti.

Unlike existing methods [41, 42, 23], our method com-

putes the matching similarity between not only source and

target features but also synthesized source and target fea-

tures to minimize errors from the attribute discrepancy be-

tween source and target features such that:

Cl
i(p) =(1− λl)(F s

i · F t,l
p )/‖F s

i ‖‖F
t,l
p ‖

+ λl(F s←t,l
i · F t,l

p )/‖F s←t,l
i ‖‖F t,l

p ‖,
(5)

where p ∈ Pi for local search window Pi centered at i. λl

controls the trade-off between content and attribute when

computing the similarity, which is similar to [34]. Note that

when λl = 0, we only consider the source feature F s with-

out considering the stylized feature F s←t. These similari-

ties undergo L2 normalization to reduce errors [42].

Based on this, the matching inference networks with pa-

rameters WG iteratively estimate the residual between the

previous and current transformation fields [23] as

T l
i − T l−1

i = F(Cl
i ;WG). (6)

The current transformation fields are then estimated in a re-
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Figure 5. Visualization of neural patch blending: for source feature

F s in (a), unlike existing methods [34, 28, 12] that blend features

of source F s and target F t using only traslationional fields fi as

in (b), our method blends the features with the learned affine trans-

formation fields T l
i = [Al

i, f
l
i ] as in (c).

current manner [23] as follows:

T l
i = [I2×2, 02×1] +

∑
n∈φ(l)

F(Cn
i ;WG), (7)

where φ(l) = {1, .., l − 1}. Unlike [41, 42] that estimate

a global affine or thin-plate spline transformation field, our

networks are formulated as the encoder-decoder networks

as in [44] to estimate locally-varying transformation fields.

Attribute transfer networks. To transfer the attribute of

target feature F t into the content of source feature F s at

l-th iteration, our attribute transfer networks first blend the

source and target features as Bs←t,l using estimated trans-

formation field T l
i and then reconstruct the stylized source

image Is←t,l using the decoder networks with parameters

WD such that Is←t,l = F(Bs←t,l;WD).
Specifically, our neural patch blending between F s and

F t with the current transformation field T l
i = [Al

i, f
l
i ] is

formulated as shown in Fig. 5 such that

Bs←t,l
i = (1− λl)F s

i + λl
∑

j∈Ni

αl
jF

t
i+gl

j

/
∑

j∈Ni

αl
j ,

(8)

where glj = (Al
j − I2×2)(i− j) + f l

j . αl
i is a confidence of

each pixel i that has T l
i computed similar to [26] such that

αl
i = exp(Cl

i(i))/
∑

p∈Pi

exp(Cl
i(p)). (9)

Our neural patch blending module differs from the exist-

ing methods [34, 28, 12] in the use of learned transforma-

tion fields and consideration of more complex deformations

such as affine transformations. In addition, unlike exisiting

style transfer methods [28, 12], our networks employ the

confidence to transfer the attribute of matchable points only

tailored to our objective, as exemplified in Fig. 6.

In addition, our decoder networks are formulated as a

symmetric structure to feature extraction networks. Since

the single-level decoder networks as in [16] cannot capture

both complicated structures at high-level features and low-

level information at low-level features, the multi-level de-

coder networks have been proposed as in [31, 32], but they

are not very economic [12]. Instead, we use the skip con-

nection from the source features F s to capture both low-

(a) (b) (c) (d)

Figure 6. Effects on the confidence in neural patch blending: (a)

blending results of Is and It, (b) blending results of F s and F t

followed by the decoder, (c) confidence, and (d) blending results

of F s and F t with the confidence followed by the decoder.

and high-level attribute characteristics [31, 32, 12]. How-

ever, using the skip connection through simple concatena-

tion [44] makes the decoder networks reconstruct an image

using only low-level features. To alleviate this, inspired by a

dropout layer [46], we present a droplink layer such that the

skipped features and upsampled features are stochastically

linked to avoid the overfitting to certain level features:

F s←t,l
h = (1− bh)F(Bs←t,l;WD,h) + bhF

s
h , (10)

where F s←t,l
h and F s

h are the intermediate and skipped fea-

tures at h-th level for h ∈ {1, ..., H}. WD,h is the param-

eters until h-th level. bh is a binary random variable. Note

that if bh = 0, this becomes the no-skip connected layer.

4.3. Loss Functions

Semantic attribute matching loss. Our networks are

learned using weak supervision in the form of image pairs.

Concretely, we present a semantic attribute matching loss

in a manner that the transformation field T and the stylized

image Is←t can be simultaneously learned and inferred to

minimize a single loss function. After the convergence of

iterations at L-th iteration, an attribute transferred feature

F s←t,L and a warped target feature F t,L are used to define

the loss function. This intuition can be realized by minimiz-

ing the following objective:

D(F s←t,L, F t,L) =
∑

i

∑

j∈Ni

‖F s←t,L
j − F t,L

j ‖2F . (11)

In comparison to existing the matching loss LM and the at-

tribute transfer loss LA, this objective enables us to solve

the photometric and geometric variations across semanti-

cally similar images simultaneously.

Although using only this objective provides satisfactory

performance, we extend this objective to consider both pos-

itive and negative samples to enhance network training and

precise localization ability based on the intuition that the

matching score should be minimized at the correct transfor-

mation while keeping the scores of other neighbor transfor-

mation candidates high. Finally, we formulate our semantic

attribute matching loss as a cross-entropy loss as

LAM =
∑

i
max (− log(Ki), τ), (12)
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of iterations and search window sizes on the TSS benchmark [48].
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Figure 8. Ablation study of SAM-Net without (top) and with (bot-

tom) attribute transfer networks as evolving iterations.

where Ki is the softmax probability defined as

Ki =
exp(−D(F s←t,L

i , F t,L
i ))

∑
q∈Qi

exp(−D(F s←t,L
i , F t,L

q ))
. (13)

It makes the center point i within the neighbor Qi become a

positive sample and the other points become negative sam-

ples. In addition, the truncated max operator max(·, τ) is

used to focus on the sailent parts such as objects during

training with the parameter τ .

Other losses. We utilize two additional losses, namely the

content loss LC as in (2) to preserve the structure of source

image and the L2 regularization loss [21, 28] to encourage

spatial smoothness in the stylized image.

5. Experiments

5.1. Training and Implementation Details

To learn our SAM-Net, large-scale semantically similar

image pairs are needed, but such public datasets are limited

quantitatively. To overcome this, we adopt a two-step train-

ing technique, similar to [42]. In the first step, we train our

networks using a synthetic training dataset provided in [41],

where synthetic transformations are randomly applied to a

single image to generate the image pairs, and thus the im-

ages do not have appearance variations. This enables the

attribute transfer networks to be learned in an auto-encoder

manner [31, 16, 32], but the matching networks still have

Methods FG3D JODS PASC. Avg.

Taniai et al. [48] 0.830 0.595 0.483 0.636

PF [13] 0.786 0.653 0.531 0.657

DCTM [27] 0.891 0.721 0.610 0.740

SCNet [15] 0.776 0.608 0.474 0.619

GMat. [41] 0.835 0.656 0.527 0.673

GMat. w/Inl. [42] 0.892 0.758 0.562 0.737

DIA [34] 0.762 0.685 0.513 0.653

RTNs [23] 0.901 0.782 0.633 0.772

SAM-Net w/(11) 0.891 0.789 0.638 0.773

SAM-Net wo/Att. 0.912 0.790 0.641 0.781

SAM-Net 0.961 0.822 0.672 0.818

Table 1. Matching accuracy compared to the state-of-the-art cor-

respondence techniques on the TSS benchmark [48].

Methods
PCK

α = 0.05 α = 0.1 α = 0.15

PF [13] 0.314 0.625 0.795

DCTM [27] 0.342 0.696 0.802

SCNet [15] 0.362 0.722 0.820

GMat. [41] 0.410 0.695 0.804

GMat. w/Inl. [42] 0.490 0.748 0.840

DIA [34] 0.471 0.724 0.811

RTNs [23] 0.552 0.759 0.852

NC-Net [43] - 0.789 -

SAM-Net 0.601 0.802 0.869

Table 2. Matching accuracy compared to the state-of-the-art cor-

respondence techniques on the PF-PASCAL benchmark [14].

limited ability to deal with the attribute variations. To over-

come this, in the second step, we finetune this pretrained

network on public datasets for semantically similar image

pairs from the training set of PF-PASCAL [14] following

the split used in [14].

For feature extraction, we used the ImageNet-pretrained

VGG-19 networks [45], where the activations are extracted

from ‘relu4-1’ layer (i.e., H = 4). We gradually increase

λl until 1 such that λl = 1 − exp(−l). During training,

we set the maximum number of iteration L to 5 to avoid the

gradient vanishing and exploding problem. During testing,

the iteration count is increased to 10. Following [23], the

window sizes of Ni, Pi, and Qi are set to 3× 3, 9× 9, and

9 × 9, respectively. The probability of bh is defined as 0.9

and in testing bh is set to 0.5.

5.2. Experimental Settings

In the following, we comprehensively evaluated SAM-

Net through comparisons to state-of-the-art methods for

semantic matching, including Taniai et al. [48], PF [13],

SCNet [15], DCTM [24], DIA [34], GMat. [41], GMat.

w/Inl. [42], NC-Net [43], RTNs [23], and for attribute trans-

fer, including Gatys et al. [10], CNN-MRF [28], Photo-

WCT [32], Gu et al. [12], and DIA [34]. Performance was
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Figure 9. Qualitative results on the TSS benchmark [48]: (a) source and (b) target images, warped source images using correspondences of

(c) PF [13], (d) DCTM [27], (e) GMat [41], (f) DIA [34], (g) GMat. w/Inl. [42], and (h) SAM-Net.

(a) (b) (c) (d) (e) (f) (g) (h)

Figure 10. Qualitative results on the PF-PASCAL benchmark [13]: (a) source and (b) target images, warped source images using corre-

spondences of (c) DCTM [27], (d) SCNet [15], (e) DIA [34] (f) GMat. w/Inl. [42], (g) RTNs [23], and (h) SAM-Net.

measured on TSS dataset [48], PF-PASCAL dataset [14],

and CUB-200-2011 dataset [51].

In Sec. 5.3, we first analyzed the effects of the compo-

nents within SAM-Net, and then evaluated matching results

with various benchmarks and quantitative measures in Sec.

5.4. We finally evaluated photorealistic attribute transfer re-

sults with various applications in Sec. 5.5.

5.3. Ablation Study

To validate the components within SAM-Net, we eval-

uated the matching accuracy for different numbers of iter-

ations, with various sizes of Pi, and with and without at-

tribute transfer module. For quantitative assessment, we ex-

amined the accuracy on the TSS benchmark [48]. As shown

in Fig. 7, Fig. 8, and Table 1, SAM-Net converges in 2−3 it-

erations. In addition, the results of ‘SAM-Net wo/Att.’, i.e.,

SAM-Net without attribute transfer, show the effectiveness

of attribute transfer module in the recurrent formulation.

The results of ‘SAM-Net wo/(11).’, i.e., SAM-Net with the

loss of (11), show the importance to consider the negative

samples when training. By enlarging the size of Pi, the ac-

curacy improves until 9×9, but larger window sizes reduce

matching accuracy due to greater matching ambiguity. Note

that Qi = Pi following to [23].

5.4. Semantic Matching Results

TSS benchmark. We evaluated SAM-Net on the TSS

benchmark [48], consisting of 400 image pairs. As in [24,

27], flow accuracy was measured in Table 1. Fig. 9 shows

qualitative results. Unlike existing methods [7, 48, 13, 15,

24, 41, 42, 23] that do not consider the attribute varia-

tions between semantically similar images, our SAM-Net

has shown highly improved preformance qualitatively and

quantitatively. DIA [34] has shown limited matching accu-

racy compared to other deep methods [42, 23], due to their

limited regularization powers. Unlike this, the results of

our SAM-Net shows that our method is more successfully

transferring the attribute between source and target images

to improve the semantic matching accuracy.

PF-PASCAL benchmark. We also evaluated SAM-Net

on the PF-PASCAL benchmark [14], which contains 1,351

image pairs over 20 object categories with PASCAL key-

point annotations [4]. For the evaluation metric, we used the

PCK between flow-warped keypoints and the ground truth

as done in the experiments of [15]. Table 2 summarizes the

PCK values, and Fig. 10 shows qualitative results. Similar

to the experiments on the TSS benchmark [48], CNN-based

methods [15, 41, 42, 42, 23] including our SAM-Net yield

better performance, with SAM-Net providing the highest

matching accuracy.

5.5. Applications

Photorealistic attribute transfer. We evaluated SAM-

Net for photorealistic attribute transfer on the TSS [48] and

PF-PASCAL benchmarks [14]. For evaluatation, we sam-

pled the image pairs from these datasets and transferred

the attribute of target image to the source image as shown

in Fig. 11. Note that SAM-Net is designed to work on

images contain that semantically similar contents and not

effective for generic artistic style transfer applications as

in [10, 21, 16]. As expected, existing methods tailored to
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Figure 11. Qualitative results of the photorealistic attribute transfer on the TSS [48] PF-PASCAL [14] benchmarks: (a) source and (b)

target images, results of (c) Gatys et al. [10], (d) CNN-MRF [28], (e) Photo-WCT [32], (f) Gu et al. [12], (g) DIA [34], and (h) SAM-Net.

(a) (b) (c) (d) (e)

Figure 12. Qualitative results of the mask transfer on the CUB-

200-2011 benchmark [51]: source (a) images and (b) masks and

target (c) images and (d) masks, and (e) warped source masks to

the target images using correspondences from SAM-Net.

artistic stylization such as a method of Gatys et al. [10] and

CNN-MRF [28] produce limited quality images. Moreover,

recent photorealistic stylization methods such as Photo-

WCT [32] and Gu et al. [12] have limited performance for

the images that have background clutters. DIA [34] pro-

vided degraded results due to its weak regularization tech-

nique. Unlike these methods, our SAM-Net has shown

highly accurate and plausible results thanks to their learned

transformation fields to synthesize the images. Note that

some methods such as Photo-WCT [32] and DIA [34] have

used to refine their results using additional smoothing mod-

ules, but SAM-Net does not use any post-processing.

Foreground mask transfer. We evaluated SAM-Net for

mask transfer on the CUB-200-2011 dataset [51], which

contains images of 200 bird categories, with annotated

foreground masks. For semantically similar images that

have very challenging photometric and geometric varia-

(a) (b) (c) (d) (e)

Figure 13. Qualitative results of the object transfiguration on the

CUB-200-2011 benchmark [51]: (a) source and (b) target images,

results of (c) Gu et al. [12], (d) DIA [34], and (e) SAM-Net.

tions, our SAM-Net successfully transfers the semantic la-

bels, as shown in Fig. 12.

Object transfiguration. We finally applied our method to

object transfiguration, e.g., translating a source bird into a

target breed. We used object classes from the CUB-200-

2011 dataset [51]. In this application, our SAM-Net has

shown very plausible results as exemplified in Fig. 13.

6. Conclusion

We presented SAM-Net that recurrently estimates dense

correspondences and transfers the attributes across semanti-

cally similar images in a joint and boosting manner. The key

idea of this approach is to formulate the semantic matching

and attribute transfer networks to complement each other

through an iterative process. For weakly-supervised train-

ing of SAM-Net, the semantic attribute matching loss is pre-

sented, which enables us to alleviate the photometric and

geometric variations across the images simultaneously.
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