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Abstract

The recently introduced panoptic segmentation task has

renewed our community’s interest in unifying the tasks of

instance segmentation (for thing classes) and semantic seg-

mentation (for stuff classes). However, current state-of-

the-art methods for this joint task use separate and dis-

similar networks for instance and semantic segmentation,

without performing any shared computation. In this work,

we aim to unify these methods at the architectural level,

designing a single network for both tasks. Our approach

is to endow Mask R-CNN, a popular instance segmenta-

tion method, with a semantic segmentation branch using

a shared Feature Pyramid Network (FPN) backbone. Sur-

prisingly, this simple baseline not only remains effective for

instance segmentation, but also yields a lightweight, top-

performing method for semantic segmentation. In this work,

we perform a detailed study of this minimally extended ver-

sion of Mask R-CNN with FPN, which we refer to as Panop-

tic FPN, and show it is a robust and accurate baseline for

both tasks. Given its effectiveness and conceptual simplic-

ity, we hope our method can serve as a strong baseline and

aid future research in panoptic segmentation.

1. Introduction

Our community has witnessed rapid progress in seman-

tic segmentation, where the task is to assign each pixel a

class label (e.g. for stuff classes), and more recently in in-

stance segmentation, where the task is to detect and segment

each object instance (e.g. for thing classes). These advances

have been aided by simple yet powerful baseline methods,

including Fully Convolutional Networks (FCN) [41] and

Mask R-CNN [24] for semantic and instance segmentation,

respectively. These methods are conceptually simple, fast,

and flexible, serving as a foundation for much of the sub-

sequent progress in these areas. In this work our goal is

to propose a similarly simple, single-network baseline for

the joint task of panoptic segmentation [30], a task which

encompasses both semantic and instance segmentation.

While conceptually straightforward, designing a sin-

gle network that achieves high accuracy for both tasks is

(a) Feature Pyramid Network

(b) Instance Segmentation Branch (c) Semantic Segmentation Branch

Figure 1: Panoptic FPN: (a) We start with an FPN back-

bone [36], widely used in object detection, for extracting

rich multi-scale features. (b) As in Mask R-CNN [24],

we use a region-based branch on top of FPN for instance

segmentation. (c) In parallel, we add a lightweight dense-

prediction branch on top of the same FPN features for se-

mantic segmentation. This simple extension of Mask R-

CNN with FPN is a fast and accurate baseline for both tasks.

challenging as top-performing methods for the two tasks

have many differences. For semantic segmentation, FCNs

with specialized backbones enhanced by dilated convolu-

tions [57, 10] dominate popular leaderboards [18, 14]. For

instance segmentation, the region-based Mask R-CNN [24]

with a Feature Pyramid Network (FPN) [36] backbone

has been used as a foundation for all top entries in re-

cent recognition challenges [37, 60, 43]. While there have

been attempts to unify semantic and instance segmentation

[46, 1, 9], the specialization currently necessary to achieve

top performance in each was perhaps inevitable given their

parallel development and separate benchmarks.

Given the architectural differences in these top methods,

one might expect compromising accuracy on either instance

or semantic segmentation is necessary when designing a

single network for both tasks. Instead, we show a simple,

flexible, and effective architecture that can match accuracy

for both tasks using a single network that simultaneously

generates region-based outputs (for instance segmentation)

and dense-pixel outputs (for semantic segmentation).
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Figure 2: Panoptic FPN results on COCO (top) and Cityscapes (bottom) using a single ResNet-101-FPN network.

Our approach starts with the FPN [36] backbone pop-

ular for instance-level recognition [24] and adds a branch

for performing semantic segmentation in parallel with the

existing region-based branch for instance segmentation, see

Figure 1. We make no changes to the FPN backbone when

adding the dense-prediction branch, making it compatible

with existing instance segmentation methods. Our method,

which we call Panoptic FPN for its ability to generate both

instance and semantic segmentations via FPN, is easy to im-

plement given the Mask R-CNN framework [23].

While Panoptic FPN is an intuitive extension of Mask R-

CNN with FPN, properly training the two branches for si-

multaneous region-based and dense-pixel prediction is im-

portant for good results. We perform careful studies in

the joint setting for how to balance the losses for the two

branches, construct minibatches effectively, adjust learning

rate schedules, and perform data augmentation. We also ex-

plore various designs for the semantic segmentation branch

(all other network components follow Mask R-CNN). Over-

all, while our approach is robust to exact design choices,

properly addressing these issues is key for good results.

When trained for each task independently, our method

achieves excellent results for both instance and semantic

segmentation on both COCO [37] and Cityscapes [14]. For

instance segmentation, this is expected as our method in this

case is equivalent to Mask R-CNN. For semantic segmen-

tation, our simple dense-prediction branch attached to FPN

yields accuracy on par with the latest dilation-based meth-

ods, such as the recent DeepLabV3+ [12].

For panoptic segmentation [30], we demonstrate that

with proper training, using a single FPN for solving both

tasks simultaneously yields accuracy equivalent to training

two separate FPNs, with roughly half the compute. With

the same compute, a joint network for the two tasks out-

performs two independent networks by a healthy margin.

Example panoptic segmentation results are shown in Fig. 2.

Panoptic FPN is memory and computationally efficient,

incurring only a slight overhead over Mask R-CNN. By

avoiding the use of dilation, which has high overhead, our

method can use any standard top-performing backbone (e.g.

a large ResNeXt [55]). We believe this flexibility, together

with the fast training and inference speeds of our method,

will benefit future research on panoptic segmentation.

We used a preliminary version of our model (semantic

segmentation branch only) as the foundation of the first-

place winning entry in the COCO Stuff Segmentation [6]

track in 2017. This single-branch model has since been

adopted and generalized by several entries in the 2018

COCO and Mapillary Challenges1, showing its flexibility

and effectiveness. We hope our proposed joint panoptic seg-

mentation baseline is similarly impactful.

2. Related Work

Panoptic segmentation: The joint task of thing and stuff

segmentation has a rich history, including early work on

scene parsing [51], image parsing [52], and holistic scene

understanding [56]. With the recent introduction of the joint

panoptic segmentation task [30], which includes a simple

task specification and carefully designed task metrics, there

has been a renewed interest in the joint task.

This year’s COCO and Mapillary Recognition Chal-

lenge [37, 43] featured panoptic segmentation tracks that

proved popular. However, every competitive entry in the

panoptic challenges used separate networks for instance

and semantic segmentation, with no shared computation.1

Our goal is to design a single network effective for both

tasks that can serve as a baseline for future work.

1For details of not yet published winning entries in the 2018 COCO and

Mapillary Recognition Challenge please see: http://cocodataset.

org/workshop/coco-mapillary-eccv-2018.html. TRI-ML

used separate networks for the challenge but a joint network in their recent

updated tech report [33] (which cites a preliminary version of our work).
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Instance segmentation: Region-based approaches to ob-

ject detection, including the Slow/Fast/Faster/Mask R-CNN

family [22, 21, 48, 24], which apply deep networks on

candidate object regions, have proven highly successful.

All recent winners of the COCO detection challenges have

built on Mask R-CNN [24] with FPN [36], including in

2017 [39, 45] and 2018.1 Recent innovations include Cas-

cade R-CNN [7], deformable convolution [15], and sync

batch norm [45]. In this work, the original Mask R-CNN

with FPN serves as the starting point for our baseline, giving

us excellent instance segmentation performance, and mak-

ing our method fully compatible with these recent advances.

An alternative to region-based instance segmentation is

to start with a pixel-wise semantic segmentation and then

perform grouping to extract instances [31, 38, 1]. This di-

rection is innovative and promising. However, these meth-

ods tend to use separate networks to predict the instance-

level information (e.g., [31, 1, 38] use a separate network to

predict instance edges, bounding boxes, and object break-

points, respectively). Our goal is to design a single network

for the joint task. Another interesting direction is to use

position-sensitive pixel labeling [35] to encode instance in-

formation fully convolutionally; [46, 9] build on this.

Nevertheless, region-based approaches remain dominant

on detection leaderboards [37, 60, 43]. While this moti-

vates us to start with a region-based approach to instance

segmentation, our approach would be fully compatible with

a dense-prediction branch for instance segmentation.

Semantic segmentation: FCNs [41] serve as the founda-

tion of modern semantic segmentation methods. To increase

feature resolution, which is necessary for generating high-

quality results, recent top methods [12, 58, 5, 59] rely heav-

ily on the use of dilated convolution [57] (also known as

atrous convolution [10]). While effective, such an approach

can substantially increase compute and memory, limiting

the type of backbone network that can be used. To keep this

flexibility, and more importantly to maintain compatibility

with Mask R-CNN, we opt for a different approach.

As an alternative to dilation, an encoder-decoder [2] or

‘U-Net’ [49] architecture can be used to increase feature

resolution [26, 44, 20, 47]. Encoder-decoders progressively

upsample and combine high-level features from a feedfor-

ward network with features from lower-levels, ultimately

generating semantically meaningful, high-resolution fea-

tures (see Figure 5). While dilated networks are currently

more popular and dominate leaderboards, encoder-decoders

have also been used for semantic segmentation [49, 2, 20].

In our work we adopt an encoder-decoder framework,

namely FPN [36]. In contrast to ‘symmetric’ decoders [49],

FPN uses a lightweight decoder (see Fig. 5). FPN was de-

signed for instance segmentation, and it serves as the default

backbone for Mask R-CNN. We show that without changes,

FPN can also be highly effective for semantic segmentation.

Multi-task learning: Our approach is related to multi-task

learning. In general, using a single network to solve mul-

tiple diverse tasks degrades performance [32], but various

strategies can mitigate this [29, 42]. For related tasks, there

can be gains from multi-task learning, e.g. the box branch in

Mask R-CNN benefits from the mask branch [24], and joint

detection and semantic segmentation of thing classes also

shows gains [3, 8, 17, 46]. Our work studies the benefits of

multi-task training for stuff and thing segmentation.

3. Panoptic Feature Pyramid Network

Our approach, Panoptic FPN, is a simple, single-network

baseline whose goal is to achieve top performance on both

instance and semantic segmentation, and their joint task:

panoptic segmentation [30]. Our design principle is to start

from Mask R-CNN with FPN, a strong instance segmenta-

tion baseline, and make minimal changes to also generate a

semantic segmentation dense-pixel output (see Figure 1).

3.1. Model Architecture

Feature Pyramid Network: We begin by briefly review-

ing FPN [36]. FPN takes a standard network with features

at multiple spatial resolutions (e.g., ResNet [25]), and adds

a light top-down pathway with lateral connections, see Fig-

ure 1a. The top-down pathway starts from the deepest layer

of the network and progressively upsamples it while adding

in transformed versions of higher-resolution features from

the bottom-up pathway. FPN generates a pyramid, typically

with scales from 1/32 to 1/4 resolution, where each pyramid

level has the same channel dimension (256 by default).

Instance segmentation branch: The design of FPN, and

in particular the use of the same channel dimension for all

pyramid levels, makes it easy to attach a region-based object

detector like Faster R-CNN [48]. Faster R-CNN performs

region of interest (RoI) pooling on different pyramid levels

and applies a shared network branch to predict a refined box

and class label for each region. To output instance segmen-

tations, we use Mask R-CNN [24], which extends Faster

R-CNN by adding an FCN branch to predict a binary seg-

mentation mask for each candidate region, see Figure 1b.

Panoptic FPN: As discussed, our approach is to modify

Mask R-CNN with FPN to enable pixel-wise semantic seg-

mentation prediction. However, to achieve accurate predic-

tions, the features used for this task should: (1) be of suit-

ably high resolution to capture fine structures, (2) encode

sufficiently rich semantics to accurately predict class labels,

and (3) capture multi-scale information to predict stuff re-

gions at multiple resolutions. Although FPN was designed

for object detection, these requirements – high-resolution,

rich, multi-scale features – identify exactly the characteris-

tics of FPN. We thus propose to attach to FPN a simple and

fast semantic segmentation branch, described next.
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Figure 3: Semantic segmentation branch. Each FPN level

(left) is upsampled by convolutions and bilinear upsampling

until it reaches 1/4 scale (right), theses outputs are then

summed and finally transformed into a pixel-wise output.

Semantic segmentation branch: To generate the seman-

tic segmentation output from the FPN features, we propose

a simple design to merge the information from all levels of

the FPN pyramid into a single output. It is illustrated in

detail in Figure 3. Starting from the deepest FPN level (at

1/32 scale), we perform three upsampling stages to yield

a feature map at 1/4 scale, where each upsampling stage

consists of 3×3 convolution, group norm [54], ReLU, and

2× bilinear upsampling. This strategy is repeated for FPN

scales 1/16, 1/8, and 1/4 (with progressively fewer upsam-

pling stages). The result is a set of feature maps at the same

1/4 scale, which are then element-wise summed. A final

1×1 convolution, 4× bilinear upsampling, and softmax are

used to generate the per-pixel class labels at the original im-

age resolution. In addition to stuff classes, this branch also

outputs a special ‘other’ class for all pixels belonging to ob-

jects (to avoid predicting stuff classes for such pixels).

Implementation details: We use a standard FPN configu-

ration with 256 output channels per scale, and our seman-

tic segmentation branch reduces this to 128 channels. For

the (pre-FPN) backbone, we use ResNet/ResNeXt [25, 55]

models pre-trained on ImageNet [50] using batch norm

(BN) [28]. When used in fine-tuning, we replace BN with a

fixed channel-wise affine transformation, as is typical [25].

3.2. Inference and Training

Panoptic inference: The panoptic output format [30] re-

quires each output pixel to be assigned a single class label

(or void) and instance id (the instance id is ignored for stuff

classes). As the instance and semantic segmentation outputs

from Panoptic FPN may overlap; we apply the simple post-

processing proposed in [30] to resolve all overlaps. This

post-processing is similar in spirit to non-maximum sup-

pression and operates by: (1) resolving overlaps between

different instances based on their confidence scores, (2) re-

solving overlaps between instance and semantic segmenta-

tion outputs in favor of instances, and (3) removing any stuff

regions labeled ‘other’ or under a given area threshold.
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Figure 4: Backbone architecture efficiency. We com-

pare methods for increasing feature resolution for seman-

tic segmentation, including dilated networks, symmetric de-

coders, and FPN, see Figure 5. We count multiply-adds and

memory used when applying ResNet-101 to a 2 megapixel

image. FPN at output scale 1/4 is similar computation-

ally to dilation-16 (1/16 resolution output), but produces a

4× higher resolution output. Increasing resolution to 1/8

via dilation uses a further ∼3× more compute and memory.

Joint training: During training the instance segmentation

branch has three losses [24]: Lc (classification loss), Lb

(bounding-box loss), and Lm (mask loss). The total instance

segmentation loss is the sum of these losses, where Lc and

Lb are normalized by the number of sampled RoIs and Lm is

normalized by the number of foreground RoIs. The seman-

tic segmentation loss, Ls, is computed as a per-pixel cross

entropy loss between the predicted and the ground-truth la-

bels, normalized by the number of labeled image pixels.

We have observed that the losses from these two

branches have different scales and normalization policies.

Simply adding them degrades the final performance for

one of the tasks. This can be corrected by a simple loss

re-weighting between the total instance segmentation loss

and the semantic segmentation loss. Our final loss is thus:

L = λi (Lc + Lb + Lm) + λsLs. By tuning λi and λs it

is possible to train a single model that is comparable to two

separate task-specific models, but at about half the compute.

3.3. Analysis

Our motivation for predicting semantic segmentation us-

ing FPN is to create a simple, single-network baseline

that can perform both instance and semantic segmentation.

However, it is also interesting to consider the memory and

computational footprint of our approach relative to model

architectures popular for semantic segmentation. The most

common designs that produce high-resolution outputs are

dilated convolution (Figure 5b) and symmetric encoder-

decoder models that have a mirror image decoder with lat-

eral connections (Figure 5c). While our primary motiva-

tion is compatibility with Mask R-CNN, we note that FPN

is much lighter than a typically used dilation-8 network,
∼2× more efficient than the symmetric encoder-decoder,

and roughly equivalent to a dilation-16 network (while pro-

ducing a 4× higher resolution output). See Figure 4.
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b3×256×1/8

(a) Original (b) +Dilation (c) +Symmetric Decoder (d) +Assymetric Decoder (FPN)

b5×1024×1/8

b4×512×1/8

b3×256×1/8

b5×1024×1/32

b4×512×1/16

b3×256×1/8

b5×1024×1/32

b4×512×1/16

b3×256×1/8

b5×1024×1/32

b4×512×1/16

b3×256×1/8

1×256×1/32

1×256×1/16

1×256×1/8

Figure 5: Backbone architectures for increasing feature resolution. (a) A standard convolutional network (dimensions are

denoted as #blocks×#channels×resolution). (b) A common approach is to reduce the stride of select convolutions and use

dilated convolutions after to compensate. (c) A U-Net [49] style network uses a symmetric decoder that mirrors the bottom-up

pathway, but in reverse. (d) FPN can be seen as an asymmetric, lightweight decoder whose top-down pathway has only one

block per stage and uses a shared channel dimension. For a comparison of the efficiency of these models, please see Figure 4.

4. Experiments

Our goal is to demonstrate that our approach, Panoptic

FPN, can serve as a simple and effective single-network

baseline for instance segmentation, semantic segmentation,

and their joint task of panoptic segmentation [30]. For in-

stance segmentation, this is expected, since our approach

extends Mask R-CNN with FPN. For semantic segmenta-

tion, as we simply attach a lightweight dense-pixel predic-

tion branch (Figure 3) to FPN, we need to demonstrate it

can be competitive with recent methods. Finally, we must

show that Panoptic FPN can be trained in a multi-task set-

ting without loss in accuracy on the individual tasks.

We therefore begin our analysis by testing our approach

for semantic segmentation (we refer to this single-task vari-

ant as Semantic FPN). Surprisingly, this simple model

achieves competitive semantic segmentation results on the

COCO [37] and Cityscapes [14] datasets. Next, we ana-

lyze the integration of the semantic segmentation branch

with Mask R-CNN, and the effects of joint training. Lastly,

we show results for panoptic segmentation, again on COCO

and Cityscapes. Qualitative results are shown in Figures 2

and 6. We describe the experimental setup next.

4.1. Experimental Setup

COCO: The COCO dataset [37] was developed with a fo-

cus on instance segmentation, but more recently stuff an-

notations were added [6]. For instance segmentation, we

use the 2017 data splits with 118k/5k/20k train/val/test im-

ages and 80 thing classes. For semantic segmentation, we

use the 2017 stuff data with 40k/5k/5k splits and 92 stuff

classes. Finally, panoptic segmentation [30] uses all 2017

COCO images with 80 thing and 53 stuff classes annotated.

Cityscapes: Cityscapes [14] is an ego-centric street-scene

dataset. It has 5k high-resolution images (1024×2048 pix-

els) with fine pixel-accurate annotations: 2975 train, 500

val, and 1525 test. An additional 20k images with coarse

annotations are available, we do not use these in our exper-

iments. There are 19 classes, 8 with instance-level masks.

Single-task metrics: We report standard semantic and in-

stance segmentation metrics for the individual tasks using

evaluation code provided by each dataset. For semantic seg-

mentation, the mIoU (mean Intersection-over-Union) [18]

is the primary metric on both COCO and Cityscapes. We

also report fIoU (frequency weighted IoU) on COCO [6]

and iIoU (instance-level IoU) on Cityscapes [14]. For in-

stance segmentation, AP (average precision averaged over

categories and IoU thresholds) [37] is the primary metric

and AP50 and AP75 are selected supplementary metrics.

Panoptic segmentation metrics: We use PQ (panoptic

quality) as the default metric to measure Panoptic FPN per-

formance, for details see [30]. PQ captures both recognition

and segmentation quality, and treats both stuff and thing cat-

egories in a unified manner. This single, unified metric al-

lows us to directly compare methods. Additionally, we use

PQSt and PQTh to report stuff and thing performance sepa-

rately. Note that PQ is used to evaluate Panoptic FPN pre-

dictions after the post-processing merging procedure is ap-

plied to the outputs of the semantic and instance branches.

COCO training: We use the default Mask R-CNN 1×
training setting [23] with scale jitter (shorter image side in

[640, 800]). For semantic segmentation, we predict 53 stuff

classes plus a single ‘other’ class for all 80 thing classes.

Cityscapes training: We construct each minibatch from

32 random 512×1024 image crops (4 crops per GPU) af-

ter randomly scaling each image by 0.5 to 2.0×. We train

for 65k iterations starting with a learning rate of 0.01 and

dropping it by a factor of 10 at 40k and 55k iterations. This

differs from the original Mask R-CNN setup [24] but is ef-

fective for both instance and semantic segmentation. For the

largest backbones for semantic segmentation, we perform

color augmentation [40] and crop bootstrapping [5]. For

semantic segmentation, predicting all thing classes, rather

than a single ‘other’ label, performs better (for panoptic in-

ference we discard these predictions). Due to the high vari-

ance of the mIoU (up to 0.4), we report the median perfor-

mance of 5 trials of each experiment on Cityscapes.
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backbone mIoU FLOPs memory

DeeplabV3 [11] ResNet-101-D8 77.8 1.9 1.9

PSANet101 [59] ResNet-101-D8 77.9 2.0 2.0

Mapillary [5] WideResNet-38-D8 79.4 4.3 1.7

DeeplabV3+ [12] X-71-D16 79.6 0.5 1.9

Semantic FPN ResNet-101-FPN 77.7 0.5 0.8

Semantic FPN ResNeXt-101-FPN 79.1 0.8 1.4

(a) Cityscapes Semantic FPN. Performance is reported on the val set and

all methods use only fine Cityscapes annotations for training. The back-

bone notation includes the dilated resolution ‘D’ (note that [12] uses both

dilation and an encoder-decoder backbone). All top-performing methods

other than ours use dilation. FLOPs (multiply-adds ×10
12) and memory

(# activations ×10
9) are approximate but informative. For these larger

FPN models we train with color and crop augmentation. Our baseline is

comparable to state-of-the-art methods in accuracy and efficiency.

backbone mIoU fIoU

Vllab [13] Stacked Hourglass 12.4 38.8

DeepLab VGG16 [10] VGG-16 20.2 47.5

Oxford [4] ResNeXt-101 24.1 50.6

G-RMI [19] Inception ResNet v2 26.6 51.9

Semantic FPN ResNeXt-152-FPN 28.8 55.7

(b) COCO-Stuff 2017 Challenge results. We submitted an early version

of Semantic FPN to the 2017 COCO Stuff Segmentation Challenge held

at ECCV (http://cocodataset.org/#stuff-2017). Our en-

try won first place without ensembling, and we outperformed competing

methods by at least a 2 point margin on all reported metrics.

Width Cityscapes COCO

64 74.1 39.6

128 74.5 40.2

256 74.6 40.1

(c) Ablation (mIoU): Channel width

of 128 for the features in the seman-

tic branch strikes a good balance be-

tween accuracy and efficiency.

Aggr. Cityscapes COCO

Sum 74.5 40.2

Concat 74.4 39.9

(d) Ablation (mIoU): Sum aggre-

gation of the feature maps in the

semantic branch is marginally bet-

ter and is more efficient.

Table 1: Semantic Segmentation using FPN.

4.2. FPN for Semantic Segmentation

Cityscapes: We start by comparing our baseline Seman-

tic FPN to existing methods on the Cityscapes val split

in Table 1a. We compare to recent top-performing meth-

ods, but not to competition entires which typically use en-

sembling, COCO pre-training, test-time augmentation, etc.

Our approach, which is a minimal extension to FPN, is

able to achieve strong results compared to systems like

DeepLabV3+ [12], which have undergone many design iter-

ations. In terms of compute and memory, Semantic FPN is

lighter than typical dilation models, while yielding higher

resolution features (see Fig. 4). We note that adding dila-

tion into FPN could potentially yield further improvement

but is outside the scope of this work. Moreover, in our base-

line we deliberately avoid orthogonal architecture improve-

ments like Non-local [53] or SE [27], which would likely

yield further gains. Overall, these results demonstrate that

our approach is a strong baseline for semantic segmentation.

COCO: An earlier version of our approach won the 2017

COCO-Stuff challenge. Results are reported in Table 1b.

As this was an early design, the the semantic branch dif-

fered slightly (each upsampling module had two 3×3 conv

layers and ReLU before bilinear upscaling to the final reso-

lution, and features were concatenated instead of summed,

please compare with Figure 3). As we will show in the ab-

lations shortly, results are fairly robust to the exact branch

design. Our competition entry was trained with color aug-

mentation [40] and at test time balanced the class distribu-

tion and used multi-scale inference. Finally, we note that

at the time we used a training schedule specific to semantic

segmentation similar to our Cityscapes schedule (but with

double learning rate and halved batch size).

Ablations: We perform a few ablations to analyze our pro-

posed semantic segmentation branch (shown in Figure 3).

For consistency with further experiments in our paper, we

use stuff annotations from the COCO Panoptic dataset

(which as discussed differ from those used for the COCO

Stuff competition). Table 1c shows ResNet-50 Seman-

tic FPN with varying number of channels in the semantic

branch. We found that 128 strikes a good balance between

accuracy and efficiency. In Table 1d we compare element-

wise sum and concatenation for aggregating feature maps

from different FPN levels. While accuracy for both is com-

parable, summation is more efficient. Overall we observe

that the simple architecture of the new dense-pixel labelling

branch is robust to exact design choices.

4.3. MultiTask Training

Single-task performance of our approach is quite effec-

tive; for semantic segmentation the results in the previous

section demonstrate this, for instance segmentation this is

known as we start from Mask R-CNN. However, can we

jointly train for both tasks in a multi-task setting?

To combine our semantic segmentation branch with the

instance segmentation branch in Mask R-CNN, we need

to determine how to train a single, unified network. Pre-

vious work demonstrates that multi-task training is often

challenging and can lead to degraded results [32, 29]. We

likewise observe that for semantic or instance segmentation,

adding the secondary task can degrade the accuracy in com-

parison with the single-task baseline.

In Table 2 we show that with ResNet-50-FPN, using a

simple loss scaling weight on the semantic segmentation

loss, λs, or instance segmentation loss, λi, we can obtain

a re-weighting that improves results over single-task base-

lines. Specifically, adding a semantic segmentation branch

with the proper λs improves instance segmentation, and

vice-versa. This can be exploited to improve single-task

results. However, our main goal is to solve both tasks si-

multaneously, which we explore in the next section.
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λs mIoU AP AP50 AP75 PQTh

0.0 - 33.9 55.6 35.9 46.6

0.1 37.2 34.0 55.6 36.0 46.8

0.25 39.6 33.7 55.3 35.5 46.1

0.5 41.0 33.3 54.9 35.2 45.9

0.75 41.1 32.6 53.9 34.6 45.0

1.0 41.5 32.1 53.2 33.6 44.6

+0.1 +0.0 +0.1 +0.2

(a) Panoptic FPN on COCO for instance segmentation (λi = 1).

λs mIoU AP AP50 PQTh

0.0 - 32.2 58.7 51.3

0.1 68.3 32.5 59.2 52.9

0.25 71.8 32.8 59.6 52.7

0.5 72.0 32.7 59.5 52.9

0.75 73.4 32.8 58.8 52.3

1.0 74.2 33.2 59.7 52.4

+1.0 +1.0 +1.1

(b) Panoptic FPN on Cityscapes for instance segmentation (λi = 1).

λi AP mIoU fIoU PQSt

0.0 - 40.2 67.2 27.9

0.1 20.1 40.6 67.5 28.4

0.25 25.5 41.0 67.8 28.6

0.5 29.2 41.3 68.0 28.9

0.75 30.8 41.1 68.2 28.9

1.0 32.1 41.5 68.2 29.0

+1.2 +1.0 +1.1

(c) Panoptic FPN on COCO for semantic segmentation (λs = 1).

λi AP mIoU iIoU PQSt

0.0 - 74.5 55.8 62.4

0.1 27.4 75.3 57.6 62.5

0.25 30.5 75.5 58.3 62.5

0.5 32.0 75.0 58.2 62.2

0.75 32.6 74.3 58.2 61.7

1.0 33.2 74.2 57.4 61.4

+1.0 +2.5 +0.1

(d) Panoptic FPN on Cityscapes for semantic segmentation (λs = 1).

Table 2: Multi-Task Training: (a,b) Adding a semantic segmentation branch can slightly improve instance segmentation

results over a single-task baseline with properly tuned λs (results bolded). Note that λs indicates the weight assigned to the

semantic segmentation loss and λs = 0.0 serves as the single-task baseline. (c,d) Adding an instance segmentation branch

can provide even stronger benefits for semantic segmentation over a single-task baseline with properly tuned λi (results

bolded). As before, λi indicates the weight assigned to the instance segmentation loss and λi = 0.0 serves as the single-task

baseline. While promising, we are more interested in the joint task, for which results are shown in Table 3.

backbone AP PQTh mIoU PQSt PQ

COCO

R50-FPN×2 33.9 46.6 40.2 27.9 39.2

R50-FPN 33.3 45.9 41.0 28.7 39.0

-0.6 -0.7 +0.8 +0.8 -0.2

Cityscapes

R50-FPN×2 32.2 51.3 74.5 62.4 57.7

R50-FPN 32.0 51.6 75.0 62.2 57.7

-0.2 +0.3 +0.5 -0.2 +0.0

(a) Panoptic Segmentation: Panoptic R50-FPN vs. R50-FPN×2. Us-

ing a single FPN network for solving both tasks simultaneously yields

comparable accuracy to two independent FPN networks for instance

and semantic segmentation, but with roughly half the compute.

backbone AP PQTh mIoU PQSt PQ

COCO

R50-FPN×2 33.9 46.6 40.2 27.9 39.2

R101-FPN 35.2 47.5 42.1 29.5 40.3

+1.3 +0.9 +1.9 +1.6 +1.1

Cityscapes

R50-FPN×2 32.2 51.3 74.5 62.4 57.7

R101-FPN 33.0 52.0 75.7 62.5 58.1

+0.8 +0.7 +1.3 +0.1 +0.4

(b) Panoptic Segmentation: Panoptic R101-FPN vs. R50-FPN×2.

Given a roughly equal computational budget, a single FPN network for

the panoptic task outperforms two independent FPN networks for in-

stance and semantic segmentation by a healthy margin.

loss AP PQTh mIoU PQSt PQ

COCO

alternate 31.7 43.9 40.2 28.0 37.5

combine 33.3 45.9 41.0 28.7 39.0

+1.6 +2.0 +0.8 +0.7 +1.5

Cityscapes

alternate 32.0 51.4 74.3 61.3 57.4

combine 32.0 51.6 75.0 62.2 57.7

+0.0 +0.2 +0.7 +0.9 +0.3

(c) Training Panoptic FPN. During training, for each minibatch we can

either combine the semantic and instances loss or we can alternate which

loss we compute (in the latter case we train for twice as long). We find

that combining the losses in each minibatch performs much better.

FPN AP PQTh mIoU PQSt PQ

COCO

original 33.3 45.9 41.0 28.7 39.0

grouped 33.1 45.7 41.2 28.4 38.8

-0.2 -0.2 +0.2 -0.3 -0.2

Cityscapes

original 32.0 51.6 75.0 62.2 57.7

grouped 32.0 51.8 75.3 61.7 57.5

+0.0 +0.2 +0.3 -0.5 -0.2

(d) Grouped FPN. We test a variant of Panoptic FPN where we group

the 256 FPN channels into two sets and apply the instance and semantic

branch to its own dedicated group of 128. While this gives mixed gains,

we expect better multi-task strategies can improve results.

Table 3: Panoptic FPN Results.
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Figure 6: More Panoptic FPN results on COCO (top) and Cityscapes (bottom) using a single ResNet-101-FPN network.

PQ PQTh PQSt

Artemis 16.9 16.8 17.0

LeChen 26.2 31.0 18.9

MPS-TU Eindhoven [16] 27.2 29.6 23.4

MMAP-seg 32.1 38.9 22.0

Panoptic FPN 40.9 48.3 29.7

(a) Panoptic Segmentation on COCO test-dev. We submit Panoptic FPN

to the COCO test-dev leaderboard (for details on competing entries, please

see http://cocodataset.org/#panoptic-leaderboard).

We only compare to entires that use a single network for the joint task.

We do not compare to competition-level entires that utilize ensembling

(including methods that ensemble separate networks for semantic and

instance segmentation). For methods that use one network for panoptic

segmentation, our approach improves PQ by an ∼9 point margin.

coarse PQ PQTh PQSt mIoU AP

DIN [1, 34] X 53.8 42.5 62.1 80.1 28.6

Panoptic FPN 58.1 52.0 62.5 75.7 33.0

(b) Panoptic Segmentation on Cityscapes. For Cityscapes, there is no

public leaderboard for panoptic segmentation at this time. Instead, we com-

pare on val to the recent work of Arnab and Torr [1, 34] who develop a novel

approach for panoptic segmentation, named DIN. DIN is representative of

alternatives to region-based instance segmentation that start with a pixel-

wise semantic segmentation and then perform grouping to extract instances

(see the related work). Panoptic FPN, without extra coarse training data or

any bells and whistles, outperforms DIN by a 4.3 point PQ margin.

Table 4: Comparisons of ResNet-101 Panoptic FPN to the state of the art.

4.4. Panoptic FPN

We now turn to our main result: testing Panoptic FPN

for the joint task of panoptic segmentation [30], where the

network must jointly and accurately output stuff and thing

segmentations. For the following experiments, for each set-

ting we select the optimal λs and λi from {0.5, 0.75, 1.0},

ensuring that results are not skewed by fixed choice of λ’s.

Main results: In Table 3a we compare two networks

trained separately to Panoptic FPN with a single backbone.

Panoptic FPN yields comparable accuracy but with roughly

half the compute (the backbone dominates compute, so the

reduction is almost 50%). We also balance computational

budgets by comparing two separate networks with ResNet-

50 backbones each and Panoptic FPN with ResNet-101,

see Table 3b. Using roughly equal computational budget,

Panoptic FPN significantly outperforms two separate net-

works. Taken together, these results demonstrate that the

joint approach is strictly beneficial, and that our Panoptic

FPN can serve as a solid baseline for the joint task.

Ablations: We perform additional ablations on Panoptic

FPN with ResNet-50. First, by default, we combine the

instance and semantic losses together during each gradi-

ent update. A different strategy is to alternate the losses on

each iteration (this may be useful as different augmentation

strategies can be used for the two tasks). We compare these

two options in Table 3c; the combined loss demonstrates

better performance. Next, in Table 3d we compare with an

architecture where FPN channels are grouped into two sets,

and each task uses one of the two features sets as its input.

While the results are mixed, we expect more sophisticated

multi-task approaches could give stronger gains.

Comparisons: We conclude by comparing Panoptic FPN

with existing methods. For these experiments, we use

Panoptic FPN with a ResNet-101 backbone and without

bells-and-whistles. In Table 4a we show that Panoptic FPN

substantially outperforms all single-model entries in the re-

cent COCO Panoptic Segmentation Challenge. This estab-

lishes a new baseline for the panoptic segmentation task. On

Cityscapes, we compare Panoptic FPN with an approach for

panoptic segmentation recently proposed in [1] in Table 4b.

Panoptic FPN outperforms [1] by a 4.3 point PQ margin.

5. Conclusion

We introduce a conceptually simple yet effective base-

line for panoptic segmentation. The method starts with

Mask R-CNN with FPN and adds to it a lightweight se-

mantic segmentation branch for dense-pixel prediction. We

hope it can serve as a strong foundation for future research.
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