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Abstract

We propose and study a task we name panoptic segmen-

tation (PS). Panoptic segmentation unifies the typically dis-

tinct tasks of semantic segmentation (assign a class label

to each pixel) and instance segmentation (detect and seg-

ment each object instance). The proposed task requires

generating a coherent scene segmentation that is rich and

complete, an important step toward real-world vision sys-

tems. While early work in computer vision addressed re-

lated image/scene parsing tasks, these are not currently

popular, possibly due to lack of appropriate metrics or as-

sociated recognition challenges. To address this, we pro-

pose a novel panoptic quality (PQ) metric that captures

performance for all classes (stuff and things) in an inter-

pretable and unified manner. Using the proposed metric,

we perform a rigorous study of both human and machine

performance for PS on three existing datasets, revealing in-

teresting insights about the task. The aim of our work is

to revive the interest of the community in a more unified

view of image segmentation. For more analysis and up-to-

date results, please check the arXiv version of the paper:

https://arxiv.org/abs/1801.00868.

1. Introduction

In the early days of computer vision, things – countable

objects such as people, animals, tools – received the dom-

inant share of attention. Questioning the wisdom of this

trend, Adelson [1] elevated the importance of studying sys-

tems that recognize stuff – amorphous regions of similar

texture or material such as grass, sky, road. This dichotomy

between stuff and things persists to this day, reflected in

both the division of visual recognition tasks and in the spe-

cialized algorithms developed for stuff and thing tasks.

Studying stuff is most commonly formulated as a task

known as semantic segmentation, see Figure 1b. As stuff

is amorphous and uncountable, this task is defined as sim-

ply assigning a class label to each pixel in an image (note

that semantic segmentation treats thing classes as stuff).

In contrast, studying things is typically formulated as the

task of object detection or instance segmentation, where the

(a) image (b) semantic segmentation

(c) instance segmentation (d) panoptic segmentation

Figure 1: For a given (a) image, we show ground truth for: (b)

semantic segmentation (per-pixel class labels), (c) instance seg-

mentation (per-object mask and class label), and (d) the proposed

panoptic segmentation task (per-pixel class+instance labels). The

PS task: (1) encompasses both stuff and thing classes, (2) uses a

simple but general format, and (3) introduces a uniform evaluation

metric for all classes. Panoptic segmentation generalizes both se-

mantic and instance segmentation and we expect the unified task

will present novel challenges and enable innovative new methods.

goal is to detect each object and delineate it with a bound-

ing box or segmentation mask, respectively, see Figure 1c.

While seemingly related, the datasets, details, and metrics

for these two visual recognition tasks vary substantially.

The schism between semantic and instance segmentation

has led to a parallel rift in the methods for these tasks. Stuff

classifiers are usually built on fully convolutional nets [30]

with dilations [51, 5] while object detectors often use object

proposals [15] and are region-based [37, 14]. Overall algo-

rithmic progress on these tasks has been incredible in the

past decade, yet, something important may be overlooked

by focussing on these tasks in isolation.

A natural question emerges: Can there be a reconcilia-

tion between stuff and things? And what is the most effec-

tive design of a unified vision system that generates rich and

coherent scene segmentations? These questions are particu-

larly important given their relevance in real-world applica-

tions, such as autonomous driving or augmented reality.
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Interestingly, while semantic and instance segmentation

dominate current work, in the pre-deep learning era there

was interest in the joint task described using various names

such as scene parsing [42], image parsing [43], or holistic

scene understanding [50]. Despite its practical relevance,

this general direction is not currently popular, perhaps due

to lack of appropriate metrics or recognition challenges.

In our work we aim to revive this direction. We propose

a task that: (1) encompasses both stuff and thing classes, (2)

uses a simple but general output format, and (3) introduces

a uniform evaluation metric. To clearly disambiguate with

previous work, we refer to the resulting task as panoptic

segmentation (PS). The definition of ‘panoptic’ is “includ-

ing everything visible in one view”, in our context panoptic

refers to a unified, global view of segmentation.

The task format we adopt for panoptic segmentation is

simple: each pixel of an image must be assigned a semantic

label and an instance id. Pixels with the same label and id

belong to the same object; for stuff labels the instance id is

ignored. See Figure 1d for a visualization. This format has

been adopted previously, especially by methods that pro-

duce non-overlapping instance segmentations [18, 28, 2].

We adopt it for our joint task that includes stuff and things.

A fundamental aspect of panoptic segmentation is the

task metric used for evaluation. While numerous existing

metrics are popular for either semantic or instance segmen-

tation, these metrics are best suited either for stuff or things,

respectively, but not both. We believe that the use of disjoint

metrics is one of the primary reasons the community gen-

erally studies stuff and thing segmentation in isolation. To

address this, we introduce the panoptic quality (PQ) metric

in §4. PQ is simple and informative and most importantly

can be used to measure the performance for both stuff and

things in a uniform manner. Our hope is that the proposed

joint metric will aid in the broader adoption of the joint task.

The panoptic segmentation task encompasses both se-

mantic and instance segmentation but introduces new al-

gorithmic challenges. Unlike semantic segmentation, it re-

quires differentiating individual object instances; this poses

a challenge for fully convolutional nets. Unlike instance

segmentation, object segments must be non-overlapping;

this presents a challenge for region-based methods that op-

erate on each object independently. Generating coherent

image segmentations that resolve inconsistencies between

stuff and things is an important step toward real-world uses.

As both the ground truth and algorithm format for PS

must take on the same form, we can perform a detailed

study of human consistency on panoptic segmentation. This

allows us to understand the PQ metric in more detail, in-

cluding detailed breakdowns of recognition vs. segmenta-

tion and stuff vs. things performance. Moreover, measuring

human PQ helps ground our understanding of machine per-

formance. This is important as it will allow us to monitor

performance saturations on various datasets for PS.

Finally we perform an initial study of machine perfor-

mance for PS. To do so, we define a simple and likely sub-

optimal heuristic that combines the output of two indepen-

dent systems for semantic and instance segmentation via

a series of post-processing steps that merges their outputs

(in essence, a sophisticated form of non-maximum suppres-

sion). Our heuristic establishes a baseline for PS and gives

us insights into the main algorithmic challenges it presents.

We study both human and machine performance on

three popular segmentation datasets that have both stuff

and things annotations. This includes the Cityscapes [6],

ADE20k [54], and Mapillary Vistas [35] datasets. For

each of these datasets, we obtained results of state-of-the-

art methods directly from the challenge organizers. In the

future we will extend our analysis to COCO [25] on which

stuff is being annotated [4]. Together our results on these

datasets form a solid foundation for the study of both hu-

man and machine performance on panoptic segmentation.

Both COCO [25] and Mapillary Vistas [35] featured the

panoptic segmentation task as one of the tracks in their

recognition challenges at ECCV 2018. We hope that having

PS featured alongside the instance and semantic segmenta-

tion tracks on these popular recognition datasets will help

lead to a broader adoption of the proposed joint task.

2. Related Work

Novel datasets and tasks have played a key role through-

out the history of computer vision. They help catalyze

progress and enable breakthroughs in our field, and just

as importantly, they help us measure and recognize the

progress our community is making. For example, ImageNet

[38] helped drive the recent popularization of deep learning

techniques for visual recognition [20] and exemplifies the

potential transformational power that datasets and tasks can

have. Our goals for introducing the panoptic segmentation

task are similar: to challenge our community, to drive re-

search in novel directions, and to enable both expected and

unexpected innovation. We review related tasks next.

Object detection tasks. Early work on face detection

using ad-hoc datasets (e.g., [44, 46]) helped popularize

bounding-box object detection. Later, pedestrian detection

datasets [8] helped drive progress in the field. The PAS-

CAL VOC dataset [9] upgraded the task to a more diverse

set of general object classes on more challenging images.

More recently, the COCO dataset [25] pushed detection to-

wards the task of instance segmentation. By framing this

task and providing a high-quality dataset, COCO helped de-

fine a new and exciting research direction and led to many

recent breakthroughs in instance segmentation [36, 24, 14].

Our general goals for panoptic segmentation are similar.

Semantic segmentation tasks. Semantic segmentation

datasets have a rich history [39, 26, 9] and helped drive

9405



key innovations (e.g., fully convolutional nets [30] were de-

veloped using [26, 9]). These datasets contain both stuff

and thing classes, but don’t distinguish individual object in-

stances. Recently the field has seen numerous new segmen-

tation datasets including Cityscapes [6], ADE20k [54], and

Mapillary Vistas [35]. These datasets actually support both

semantic and instance segmentation, and each has opted to

have a separate track for the two tasks. Importantly, they

contain all of the information necessary for PS. In other

words, the panoptic segmentation task can be bootstrapped

on these datasets without any new data collection.

Multitask learning. With the success of deep learning for

many visual recognition tasks, there has been substantial in-

terest in multitask learning approaches that have broad com-

petence and can solve multiple diverse vision problems in a

single framework [19, 32, 34]. E.g., UberNet [19] solves

multiple low to high-level visual tasks, including object de-

tection and semantic segmentation, using a single network.

While there is significant interest in this area, we emphasize

that panoptic segmentation is not a multitask problem but

rather a single, unified view of image segmentation. Specif-

ically, the multitask setting allows for independent and po-

tentially inconsistent outputs for stuff and things, while PS

requires a single coherent scene segmentation.

Joint segmentation tasks. In the pre-deep learning era,

there was substantial interest in generating coherent scene

interpretations. The seminal work on image parsing [43]

proposed a general bayesian framework to jointly model

segmentation, detection, and recognition. Later, approaches

based on graphical models studied consistent stuff and thing

segmentation [50, 41, 42, 40]. While these methods shared

a common motivation, there was no agreed upon task defi-

nition, and different output formats and varying evaluation

metrics were used, including separate metrics for evaluating

results on stuff and thing classes. In recent years this direc-

tion has become less popular, perhaps for these reasons.

In our work we aim to revive this general direction, but in

contrast to earlier work, we focus on the task itself. Specif-

ically, as discussed, PS: (1) addresses both stuff and thing

classes, (2) uses a simple format, and (3) introduces a uni-

form metric for both stuff and things. Previous work on

joint segmentation uses varying formats and disjoint met-

rics for evaluating stuff and things. Methods that generate

non-overlapping instance segmentations [18, 3, 28, 2] use

the same format as PS, but these methods typically only ad-

dress thing classes. By addressing both stuff and things,

using a simple format, and introducing a uniform metric,

we hope to encourage broader adoption of the joint task.

Amodal segmentation task. In [55] objects are annotated

amodally: the full extent of each region is marked, not just

the visible. Our work focuses on segmentation of all visible

regions, but an extension of panoptic segmentation to the

amodal setting is an interesting direction for future work.

3. Panoptic Segmentation Format

Task format. The format for panoptic segmentation is

simple to define. Given a predetermined set of L semantic

classes encoded by L := {0, . . . , L − 1}, the task requires

a panoptic segmentation algorithm to map each pixel i of

an image to a pair (li, zi) ∈ L × N, where li represents

the semantic class of pixel i and zi represents its instance

id. The zi’s group pixels of the same class into distinct seg-

ments. Ground truth annotations are encoded identically.

Ambiguous or out-of-class pixels can be assigned a special

void label; i.e., not all pixels must have a semantic label.

Stuff and thing labels. The semantic label set consists

of subsets LSt and LTh, such that L = LSt ∪ LTh and

LSt ∩ LTh = ∅. These subsets correspond to stuff and thing

labels, respectively. When a pixel is labeled with li ∈ LSt,

its corresponding instance id zi is irrelevant. That is, for

stuff classes all pixels belong to the same instance (e.g., the

same sky). Otherwise, all pixels with the same (li, zi) as-

signment, where li ∈ LTh, belong to the same instance (e.g.,

the same car), and conversely, all pixels belonging to a sin-

gle instance must have the same (li, zi). The selection of

which classes are stuff vs. things is a design choice left to

the creator of the dataset, just as in previous datasets.

Relationship to semantic segmentation. The PS task

format is a strict generalization of the format for semantic

segmentation. Indeed, both tasks require each pixel in an

image to be assigned a semantic label. If the ground truth

does not specify instances, or all classes are stuff, then the

task formats are identical (although the task metrics differ).

In addition, inclusion of thing classes, which may have mul-

tiple instances per image, differentiates the tasks.

Relationship to instance segmentation. The instance

segmentation task requires a method to segment each ob-

ject instance in an image. However, it allows overlapping

segments, whereas the panoptic segmentation task permits

only one semantic label and one instance id to be assigned

to each pixel. Hence, for PS, no overlaps are possible by

construction. In the next section we show that this differ-

ence plays an important role in performance evaluation.

Confidence scores. Like semantic segmentation, but un-

like instance segmentation, we do not require confidence

scores associated with each segment for PS. This makes the

panoptic task symmetric with respect to humans and ma-

chines: both must generate the same type of image anno-

tation. It also makes evaluating human consistency for PS

simple. This is in contrast to instance segmentation, which

is not easily amenable to such a study as human annotators

do not provide explicit confidence scores (though a single

precision/recall point may be measured). We note that con-

fidence scores give downstream systems more information,

which can be useful, so it may still be desirable to have a

PS algorithm generate confidence scores in certain settings.
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4. Panoptic Segmentation Metric

In this section we introduce a new metric for panoptic

segmentation. We begin by noting that existing metrics

are specialized for either semantic or instance segmentation

and cannot be used to evaluate the joint task involving both

stuff and thing classes. Previous work on joint segmenta-

tion sidestepped this issue by evaluating stuff and thing per-

formance using independent metrics (e.g. [50, 41, 42, 40]).

However, this introduces challenges in algorithm develop-

ment, makes comparisons more difficult, and hinders com-

munication. We hope that introducing a unified metric for

stuff and things will encourage the study of the unified task.

Before going into further details, we start by identifying

the following desiderata for a suitable metric for PS:

Completeness. The metric should treat stuff and thing

classes in a uniform way, capturing all aspects of the task.

Interpretability. We seek a metric with identifiable

meaning that facilitates communication and understanding.

Simplicity. In addition, the metric should be simple to

define and implement. This improves transparency and al-

lows for easy reimplementation. Related to this, the metric

should be efficient to compute to enable rapid evaluation.

Guided by these principles, we propose a new panoptic

quality (PQ) metric. PQ measures the quality of a predicted

panoptic segmentation relative to the ground truth. It in-

volves two steps: (1) segment matching and (2) PQ compu-

tation given the matches. We describe each step next then

return to a comparison to existing metrics.

4.1. Segment Matching

We specify that a predicted segment and a ground truth

segment can match only if their intersection over union

(IoU) is strictly greater than 0.5. This requirement, together

with the non-overlapping property of a panoptic segmenta-

tion, gives a unique matching: there can be at most one pre-

dicted segment matched with each ground truth segment.

Theorem 1. Given a predicted and ground truth panoptic

segmentation of an image, each ground truth segment can

have at most one corresponding predicted segment with IoU

strictly greater than 0.5 and vice verse.

Proof. Let g be a ground truth segment and p1 and p2 be

two predicted segments. By definition, p1 ∩ p2 = ∅ (they

do not overlap). Since |pi ∪ g| ≥ |g|, we get the following:

IoU(pi, g) =
|pi ∩ g|

|pi ∪ g|
≤

|pi ∩ g|

|g|
for i ∈ {1, 2} .

Summing over i, and since |p1 ∩ g|+ |p2 ∩ g| ≤ |g| due to

the fact that p1 ∩ p2 = ∅, we get:

IoU(p1, g) + IoU(p2, g) ≤
|p1 ∩ g|+ |p2 ∩ g|

|g|
≤ 1 .

Ground Truth Prediction

person

person dog

grass

sky
person

grass

sky

person

person

person

Person — TP: {         ,       }; FN: {   }; FP: {  }

grass

Figure 2: Toy illustration of ground truth and predicted panoptic

segmentations of an image. Pairs of segments of the same color

have IoU larger than 0.5 and are therefore matched. We show how

the segments for the person class are partitioned into true positives

TP , false negatives FN , and false positives FP .

Therefore, if IoU(p1, g) > 0.5, then IoU(p2, g) has to be

smaller than 0.5. Reversing the role of p and g can be used

to prove that only one ground truth segment can have IoU

with a predicted segment strictly greater than 0.5.

The requirement that matches must have IoU greater

than 0.5, which in turn yields the unique matching theorem,

achieves two of our desired properties. First, it is simple

and efficient as correspondences are unique and trivial to

obtain. Second, it is interpretable and easy to understand

(and does not require solving a complex matching problem

as is commonly the case for these types of metrics [13, 49]).

Note that due to the uniqueness property, for IoU > 0.5,

any reasonable matching strategy (including greedy and op-

timal) will yield an identical matching. For smaller IoU

other matching techniques would be required; however, in

the experiments we will show that lower thresholds are un-

necessary as matches with IoU ≤ 0.5 are rare in practice.

4.2. PQ Computation

We calculate PQ for each class independently and aver-

age over classes. This makes PQ insensitive to class im-

balance. For each class, the unique matching splits the

predicted and ground truth segments into three sets: true

positives (TP ), false positives (FP ), and false negatives

(FN ), representing matched pairs of segments, unmatched

predicted segments, and unmatched ground truth segments,

respectively. An example is illustrated in Figure 2. Given

these three sets, PQ is defined as:

PQ =

∑
(p,g)∈TP

IoU(p, g)

|TP |+ 1
2 |FP |+ 1

2 |FN |
. (1)

PQ is intuitive after inspection: 1
|TP|

∑
(p,g)∈TP

IoU(p, g)

is simply the average IoU of matched segments, while
1
2 |FP | + 1

2 |FN | is added to the denominator to penalize

segments without matches. Note that all segments receive

equal importance regardless of their area. Furthermore, if

we multiply and divide PQ by the size of the TP set, then
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PQ can be seen as the multiplication of a segmentation qual-

ity (SQ) term and a recognition quality (RQ) term:

PQ =

∑

(p,g)∈TP
IoU(p, g)

|TP |
︸ ︷︷ ︸

segmentation quality (SQ)

×
|TP |

|TP |+ 1
2
|FP |+ 1

2
|FN |

︸ ︷︷ ︸

recognition quality (RQ)

. (2)

Written this way, RQ is the familiar F1 score [45] widely

used for quality estimation in detection settings [33]. SQ

is simply the average IoU of matched segments. We find

the decomposition of PQ = SQ × RQ to provide insight for

analysis. We note, however, that the two values are not inde-

pendent since SQ is measured only over matched segments.

Our definition of PQ achieves our desiderata. It measures

performance of all classes in a uniform way using a simple

and interpretable formula. We conclude by discussing how

we handle void regions and groups of instances [25].

Void labels. There are two sources of void labels in the

ground truth: (a) out of class pixels and (b) ambiguous or

unknown pixels. As often we cannot differentiate these two

cases, we don’t evaluate predictions for void pixels. Specifi-

cally: (1) during matching, all pixels in a predicted segment

that are labeled as void in the ground truth are removed from

the prediction and do not affect IoU computation, and (2)

after matching, unmatched predicted segments that contain

a fraction of void pixels over the matching threshold are re-

moved and do not count as false positives. Finally, outputs

may also contain void pixels; these do not affect evaluation.

Group labels. A common annotation practice [6, 25] is

to use a group label instead of instance ids for adjacent in-

stances of the same semantic class if accurate delineation

of each instance is difficult. For computing PQ: (1) during

matching, group regions are not used, and (2) after match-

ing, unmatched predicted segments that contain a fraction

of pixels from a group of the same class over the matching

threshold are removed and do not count as false positives.

4.3. Comparison to Existing Metrics

We conclude by comparing PQ to existing metrics for

semantic and instance segmentation.

Semantic segmentation metrics. Common metrics for

semantic segmentation include pixel accuracy, mean accu-

racy, and IoU [30]. These metrics are computed based only

on pixel outputs/labels and completely ignore object-level

labels. For example, IoU is the ratio between correctly pre-

dicted pixels and total number of pixels in either the predic-

tion or ground truth for each class. As these metrics ignore

instance labels, they are not well suited for evaluating thing

classes. Finally, please note that IoU for semantic segmen-

tation is distinct from our segmentation quality (SQ), which

is computed as the average IoU over matched segments.

Instance segmentation metrics. The standard metric for

instance segmentation is Average Precision (AP) [25, 13].

AP requires each object segment to have a confidence score

to estimate a precision/recall curve. Note that while confi-

dence scores are quite natural for object detection, they are

not used for semantic segmentation. Hence, AP cannot be

used for measuring the output of semantic segmentation, or

likewise of PS (see also the discussion of confidences in §3).

Panoptic quality. PQ treats all classes (stuff and things)

in a uniform way. We note that while decomposing PQ

into SQ and RQ is helpful with interpreting results, PQ is

not a combination of semantic and instance segmentation

metrics. Rather, SQ and RQ are computed for every class

(stuff and things), and measure segmentation and recogni-

tion quality, respectively. PQ thus unifies evaluation over all

classes. We support this claim with rigorous experimental

evaluation of PQ in §7, including comparisons to IoU and

AP for semantic and instance segmentation, respectively.

5. Panoptic Segmentation Datasets

To our knowledge only three public datasets have both

dense semantic and instance segmentation annotations:

Cityscapes [6], ADE20k [54], and Mapillary Vistas [35].

We use all three datasets for panoptic segmentation. In ad-

dition, in the future we will extend our analysis to COCO

[25] on which stuff has been recently annotated [4]1.

Cityscapes [6] has 5000 images (2975 train, 500 val, and

1525 test) of ego-centric driving scenarios in urban settings.

It has dense pixel annotations (97% coverage) of 19 classes

among which 8 have instance-level segmentations.

ADE20k [54] has over 25k images (20k train, 2k val,

3k test) that are densely annotated with an open-dictionary

label set. For the 2017 Places Challenge2, 100 thing and 50

stuff classes that cover 89% of all pixels are selected. We

use this closed vocabulary in our study.

Mapillary Vistas [35] has 25k street-view images (18k

train, 2k val, 5k test) in a wide range of resolutions. The

‘research edition’ of the dataset is densely annotated (98%

pixel coverage) with 28 stuff and 37 thing classes.

6. Human Consistency Study

One advantage of panoptic segmentation is that it en-

ables measuring human annotation consistency. Aside from

this being interesting as an end in itself, human consistency

studies allow us to understand the task in detail, including

details of our proposed metric and breakdowns of human

consistency along various axes. This gives us insight into

intrinsic challenges posed by the task without biasing our

analysis by algorithmic choices. Furthermore, human stud-

ies help ground machine performance (discussed in §7) and

allow us to calibrate our understanding of the task.

1COCO instance segmentations contain overlaps. We collected depth

ordering for all pairs of overlapping instances in COCO to resolve these

overlaps: http://cocodataset.org/#panoptic-2018.
2http://placeschallenge.csail.mit.edu
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Figure 3: Segmentation flaws. Images are zoomed and cropped.

Top row (Vistas image): both annotators identify the object as

a car, however, one splits the car into two cars. Bottom row

(Cityscapes image): the segmentation is genuinely ambiguous.

PQ PQSt PQTh SQ SQSt SQTh RQ RQSt RQTh

Cityscapes 69.7 71.3 67.4 84.2 84.4 83.9 82.1 83.4 80.2

ADE20k 67.1 70.3 65.9 85.8 85.5 85.9 78.0 82.4 76.4

Vistas 57.5 62.6 53.4 79.5 81.6 77.9 71.4 76.0 67.7

Table 1: Human consistency for stuff vs. things. Panoptic, seg-

mentation, and recognition quality (PQ, SQ, RQ) averaged over

classes (PQ=SQ×RQ per class) are reported as percentages. Per-

haps surprisingly, we find that human consistency on each dataset

is relatively similar for both stuff and things.

Human annotations. To enable human consistency anal-

ysis, dataset creators graciously supplied us with 30 doubly

annotated images for Cityscapes, 64 for ADE20k, and 46

for Vistas. For Cityscapes and Vistas, the images are an-

notated independently by different annotators. ADE20k is

annotated by a single well-trained annotator who labeled

the same set of images with a gap of six months. To mea-

sure panoptic quality (PQ) for human annotators, we treat

one annotation for each image as ground truth and the other

as the prediction. Note that the PQ is symmetric w.r.t. the

ground truth and prediction, so order is unimportant.

Human consistency. First, Table 1 shows human con-

sistency on each dataset, along with the decomposition of

PQ into segmentation quality (SQ) and recognition qual-

ity (RQ). As expected, humans are not perfect at this task,

which is consistent with studies of annotation quality from

[6, 54, 35]. Visualizations of human segmentation and clas-

sification errors are shown in Figures 3 and 4, respectively.

We note that Table 1 establishes a measure of annotator

agreement on each dataset, not an upper bound on human

consistency. We further emphasize that numbers are not

comparable across datasets and should not be used to assess

dataset quality. The number of classes, percent of annotated

pixels, and scene complexity vary across datasets, each of

which significantly impacts annotation difficulty.

floor rug ✔  

building tram ✔  

Figure 4: Classification flaws. Images are zoomed and cropped.

Top row (ADE20k image): simple misclassification. Bottom row

(Cityscapes image): the scene is extremely difficult, tram is the

correct class for the segment. Many errors are difficult to resolve.

PQS PQM PQL SQS SQM SQL RQS RQM RQL

Cityscapes 35.1 62.3 84.8 67.8 81.0 89.9 51.5 76.5 94.1

ADE20k 49.9 69.4 79.0 78.0 84.0 87.8 64.2 82.5 89.8

Vistas 35.6 47.7 69.4 70.1 76.6 83.1 51.5 62.3 82.6

Table 2: Human consistency vs. scale, for small (S), medium (M)

and large (L) objects. Scale plays a large role in determining hu-

man consistency for panoptic segmentation. On large objects both

SQ and RQ are above 80 on all datasets, while for small objects

RQ drops precipitously. SQ for small objects is quite reasonable.

Stuff vs. things. PS requires segmentation of both stuff

and things. In Table 1 we also show PQSt and PQTh which

is the PQ averaged over stuff classes and thing classes, re-

spectively. For Cityscapes and ADE20k human consistency

for stuff and things are close, on Vistas the gap is a bit larger.

Overall, this implies stuff and things have similar difficulty,

although thing classes are somewhat harder. We refer to the

arXiv version of the paper for further analysis of the metric.

Small vs. large objects. To analyze how PQ varies with

object size we partition the datasets into small (S), medium

(M), and large (L) objects by considering the smallest 25%,

middle 50%, and largest 25% of objects in each dataset,

respectively. In Table 2, we see that for large objects hu-

man consistency for all datasets is quite good. For small

objects, RQ drops significantly implying human annotators

often have a hard time finding small objects. However, if a

small object is found, it is segmented relatively well.

7. Machine Performance Baselines

We now present simple machine baselines for panoptic

segmentation. We are interested in three questions: (1) How

do heuristic combinations of top-performing instance and

semantic segmentation systems perform on panoptic seg-

mentation? (2) How does PQ compare to existing metrics

like AP and IoU? (3) How do the machine results compare

to the human results that we presented previously?
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Cityscapes AP APNO PQTh SQTh RQTh

Mask R-CNN+COCO [14] 36.4 33.1 54.0 79.4 67.8

Mask R-CNN [14] 31.5 28.0 49.6 78.7 63.0

ADE20k AP APNO PQTh SQTh RQTh

Megvii [31] 30.1 24.8 41.1 81.6 49.6

G-RMI [10] 24.6 20.6 35.3 79.3 43.2

Table 3: Machine results on instance segmentation (stuff classes

ignored). Non-overlapping predictions are obtained using the pro-

posed heuristic. APNO is AP of the non-overlapping predictions.

As expected, removing overlaps harms AP as detectors benefit

from predicting multiple overlapping hypotheses. Methods with

better AP also have better APNO and likewise improved PQ.

Algorithms and data. We want to understand panoptic

segmentation in terms of existing well-established methods.

Therefore, we create a basic PS system by applying reason-

able heuristics (described shortly) to the output of existing

top instance and semantic segmentation systems.

We obtained algorithm output for three datasets. For

Cityscapes, we use the val set output generated by the cur-

rent leading algorithms (PSPNet [53] and Mask R-CNN

[14] for semantic and instance segmentation, respectively).

For ADE20k, we received output for the winners of both

the semantic [12, 11] and instance [31, 10] segmentation

tracks on a 1k subset of test images from the 2017 Places

Challenge. For Vistas, which is used for the LSUN’17 Seg-

mentation Challenge, the organizers provide us with 1k test

images and results from the winning entries for the instance

and semantic segmentation tracks [29, 52].

Using this data, we start by analyzing PQ for the instance

and semantic segmentation tasks separately, and then exam-

ine the full panoptic segmentation task. Note that our ‘base-

lines’ are very powerful and that simpler baselines may be

more reasonable for fair comparison in papers on PS.

Instance segmentation. Instance segmentation algo-

rithms produce overlapping segments. To measure PQ, we

must first resolve these overlaps. To do so we develop a sim-

ple non-maximum suppression (NMS)-like procedure. We

first sort the predicted segments by their confidence scores

and remove instances with low scores. Then, we iterate over

sorted instances, starting from the most confident. For each

instance we first remove pixels which have been assigned to

previous segments, then, if a sufficient fraction of the seg-

ment remains, we accept the non-overlapping portion, oth-

erwise we discard the entire segment. All thresholds are se-

lected by grid search to optimize PQ. Results on Cityscapes

and ADE20k are shown in Table 3 (Vistas is omitted as it

only had one entry to the 2017 instance challenge). Most

importantly, AP and PQ track closely, and we expect im-

provements in a detector’s AP will also improve its PQ.

Semantic segmentation. Semantic segmentations have

no overlapping segments by design, and therefore we can

Cityscapes IoU PQSt SQSt RQSt

PSPNet multi-scale [53] 80.6 66.6 82.2 79.3

PSPNet single-scale [53] 79.6 65.2 81.6 78.0

ADE20k IoU PQSt SQSt RQSt

CASIA IVA JD [12] 32.3 27.4 61.9 33.7

G-RMI [11] 30.6 19.3 58.7 24.3

Table 4: Machine results on semantic segmentation (thing

classes ignored). Methods with better mean IoU also show better

PQ results. Note that G-RMI has quite low PQ. We found this is

because it hallucinates many small patches of classes not present

in an image. While this only slightly affects IoU which counts

pixel errors it severely degrades PQ which counts instance errors.

directly compute PQ. In Table 4 we compare mean IoU,

a standard metric for this task, to PQ. For Cityscapes, the

PQ gap between methods corresponds to the IoU gap. For

ADE20k, the gap is much larger. This is because whereas

IoU counts correctly predicted pixel, PQ operates at the

level of instances. See the Table 4 caption for details.

Panoptic segmentation. To produce algorithm outputs

for PS, we start from the non-overlapping instance seg-

ments from the NMS-like procedure described previously.

Then, we combine those segments with semantic segmenta-

tion results by resolving any overlap between thing and stuff

classes in favor of the thing class (i.e., a pixel with a thing

and stuff label is assigned the thing label and its instance

id). This heuristic is imperfect but sufficient as a baseline.

Table 5 compares PQSt and PQTh computed on the com-

bined (‘panoptic’) results to the performance achieved from

the separate predictions discussed above. For these results

we use the winning entries from each respective competi-

tion for both the instance and semantic tasks. Since overlaps

are resolved in favor of things, PQTh is constant while PQSt

is slightly lower for the panoptic predictions. Visualizations

of panoptic outputs are shown in Figure 5.

Human vs. machine panoptic segmentation. To com-

pare human vs. machine PQ, we use the machine panoptic

predictions described above. For human results, we use the

dual-annotated images described in §6 and use bootstrap-

ping to obtain confidence intervals since these image sets

are small. These comparisons are imperfect as they use dif-

ferent test images and are averaged over different classes

(some classes without matches in the dual-annotated tests

sets are omitted), but they can still give some useful signal.

We present the comparison in Table 6. For SQ, ma-

chines trail humans only slightly. On the other hand, ma-

chine RQ is dramatically lower than human RQ, especially

on ADE20k and Vistas. This implies that recognition, i.e.,

classification, is the main challenge for current methods.

Overall, there is a significant gap between human and ma-

chine performance. We hope that this gap will inspire future

research for the proposed panoptic segmentation task.
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Figure 5: Panoptic segmentation results on Cityscapes (left two) and ADE20k (right three). Predictions are based on the merged outputs

of state-of-the-art instance and semantic segmentation algorithms (see Tables 3 and 4). Colors for matched segments (IoU>0.5) match

(crosshatch pattern indicates unmatched regions and black indicates unlabeled regions). Best viewed in color and with zoom.

Cityscapes PQ PQSt PQTh

machine-separate n/a 66.6 54.0

machine-panoptic 61.2 66.4 54.0

ADE20k PQ PQSt PQTh

machine-separate n/a 27.4 41.1

machine-panoptic 35.6 24.5 41.1

Vistas PQ PQSt PQTh

machine-separate n/a 43.7 35.7

machine-panoptic 38.3 41.8 35.7

Table 5: Panoptic vs. independent predictions. The ‘machine-

separate’ rows show PQ of semantic and instance segmentation

methods computed independently (see also Tables 3 and 4). For

‘machine-panoptic’, we merge the non-overlapping thing and stuff

predictions obtained from state-of-the-art methods into a true

panoptic segmentation of the image. Due to the merging heuristic

used, PQTh stays the same while PQSt is slightly degraded.

8. Future of Panoptic Segmentation

Our goal is to drive research in novel directions by invit-

ing the community to explore the new panoptic segmenta-

tion task. We believe that the proposed task can lead to

expected and unexpected innovations. We conclude by dis-

cussing some of these possibilities and our future plans.

Motivated by simplicity, the PS ‘algorithm’ in this paper

is based on the heuristic combination of outputs from top-

performing instance and semantic segmentation systems.

This approach is a basic first step, but we expect more inter-

esting algorithms to be introduced. Specifically, we hope to

see PS drive innovation in at least two areas: (1) Deeply in-

tegrated end-to-end models that simultaneously address the

dual stuff-and-thing nature of PS. A number of instance seg-

mentation approaches including [28, 2, 3, 18] are designed

Cityscapes PQ SQ RQ PQSt PQTh

human 69.6
+2.5
−2.7 84.1

+0.8
−0.8 82.0

+2.7
−2.9 71.2

+2.3
−2.5 67.4

+4.6
−4.9

machine 61.2 80.9 74.4 66.4 54.0

ADE20k PQ SQ RQ PQSt PQTh

human 67.6
+2.0
−2.0 85.7

+0.6
−0.6 78.6

+2.1
−2.1 71.0

+3.7
−3.2 66.4

+2.3
−2.4

machine 35.6 74.4 43.2 24.5 41.1

Vistas PQ SQ RQ PQSt PQTh

human 57.7
+1.9
−2.0 79.7

+0.8
−0.7 71.6

+2.2
−2.3 62.7

+2.8
−2.8 53.6

+2.7
−2.8

machine 38.3 73.6 47.7 41.8 35.7

Table 6: Human vs. machine performance. On each of the con-

sidered datasets human consistency is much higher than machine

performance (approximate comparison, see text for details). This

is especially true for RQ, while SQ is closer. The gap is largest on

ADE20k and smallest on Cityscapes. Note that as only a small set

of human annotations is available, we use bootstrapping and show

the the 5th and 95th percentiles error ranges for human results.

to produce non-overlapping instance predictions and could

serve as the foundation of such a system. (2) Since a PS

cannot have overlapping segments, some form of higher-

level ‘reasoning’ may be beneficial, for example, based on

extending learnable NMS [7, 16] to PS. We hope that the

panoptic segmentation task will invigorate research in these

areas leading to exciting new breakthroughs in vision.

Finally we note that the panoptic segmentation task was

featured as a challenge track by both the COCO [25] and

Mapillary Vistas [35] recognition challenges and that the

proposed task has already begun to gain traction in the com-

munity (e.g. [23, 47, 48, 27, 22, 21, 17] address PS).
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