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Abstract

Modern inexpensive imaging sensors suffer from inher-

ent hardware constraints which often result in captured im-

ages of poor quality. Among the most common ways to deal

with such limitations is to rely on burst photography, which

nowadays acts as the backbone of all modern smartphone

imaging applications. In this work, we focus on the fact that

every frame of a burst sequence can be accurately described

by a forward (physical) model. This, in turn, allows us to

restore a single image of higher quality from a sequence

of low-quality images as the solution of an optimization

problem. Inspired by an extension of the gradient descent

method that can handle non-smooth functions, namely the

proximal gradient descent, and modern deep learning tech-

niques, we propose a convolutional iterative network with a

transparent architecture. Our network uses a burst of low-

quality image frames and is able to produce an output of

higher image quality recovering fine details which are not

distinguishable in any of the original burst frames. We fo-

cus both on the burst photography pipeline as a whole, i.e.,

burst demosaicking and denoising, as well as on the tra-

ditional Gaussian denoising task. The developed method

demonstrates consistent state-of-the art performance across

the two tasks and as opposed to other recent deep learning

approaches does not have any inherent restrictions either to

the number of frames or their ordering.

1. Introduction

With more than one billion smartphones sold each year,

smartphone cameras have dominated the photography mar-

ket. However, to allow for small and versatile sensors, in-

evitably manufacturers of such cameras need to make sev-

eral compromises. As a result, the quality of images cap-

tured by smartphone cameras is significantly inferior com-

pared to the quality of images acquired by sophisticated

hand-held cameras like DSLRs. The most common hard-

ware restrictions in smartphone cameras are the lack of

large aperture lens and the small sensors that consist of

fewer photodiodes. To overcome such inherent hardware

restrictions, the focus is thus shifted towards the software

of the camera, i.e., the Image Processing Pipeline (ISP).

The shortcomings of mobile photography can be mit-

igated by the use of burst photography, where a camera

firstly captures a burst of images, milliseconds apart, and

afterward fuses them in a sophisticated manner to produce a

higher-quality image. Therefore, burst photography allows

inexpensive hardware to overcome mechanical and physical

constraints and thus achieving higher imaging quality in the

expense of computation time. While ideally, we would like

each frame of the burst to capture precisely the same scene,

this is not possible due to camera motion (e.g. hand shake),

scene motion by dynamic moving objects and finally ineffi-

ciencies of Optical Image Stabilization (OIS) hardware that

may cause a slight drift even for completely static scenes.

Therefore, homography estimation and alignment usually

is necessary when processing frames of the same scene.

The idea of using a sequence of photographs to enhance

the image quality, is not new and it has been successfully

exploited in the past for the tasks of image debluring [1, 5],

denoising [29] and super-resolution [9]. Inspired from these

works, we design a restoration algorithm that involves a

neural network, to handle various tasks of burst photogra-

phy. First, we rely on a physical model for the observa-

tions of the burst, which in turn enables us to derive an opti-

mization scheme for restoration purposes. The optimization

scheme is combined with supervised learning of a neural

network with a transparent architecture, leading to an Itera-

tive Neural Network (INN). The developed framework ex-

hibits by design many desired properties, which competing

deep learning methods for burst photography do not neces-

sarily exhibit, namely a) inherent invariance to the ordering

of the frames, b) support of bursts of arbitrary size and c)

scalability to burst size.

2. Related work

2.1. Image Denoising

Single image denoising is a longstanding problem, and

it has progressed dramatically in recent decades, approach-

ing its believed performance limit [26]. The list of meth-

ods includes but not limited to Field-of-Experts [35], Non-

Local Means [4] and BM3D [6], with the latter being the de
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Figure 1: Demosaicking and denoising of a real low-light raw burst from the HDR+ dataset [12]. Our method achieves high

quality reconstruction even in cases of excessive noise in the sensor data.

facto method used till today. With the advent of deep learn-

ing, several learning-based methods have emerged during

the last few years that take advantage of neural networks in

order to push the reconstruction quality even further. Sys-

tems like DnCNN [41], NLNet [23] and MemNet [37] have

succeeded to set a new state-of-the art performance for the

image denoising task. Unfortunately, recent works empiri-

cally indicate that we are now close to the believed perfor-

mance limit for single image denoising task, since quanti-

tative performance improvements are no longer substantial

and do not fully justify the simultaneous disproportionate

increase of computational complexity.

Fortunately, burst denoising still allows the development

of methods that can achieve better reconstruction than sin-

gle image denoising. In fact, several multi-frame variants of

single-image denoising methods have been successfully de-

veloped. For example, VBM3D [22] and VBM4D [29] are

two known extensions of the BM3D framework that work

on videos and bursts of images, respectively. Furthermore,

techniques as in [43] were developed specifically for low re-

source photography applications and denoise an image us-

ing a burst sequence, in a fraction of the time required by

VBM4D and other variants. Finally, modern deep learning

approaches for burst denoising have recently emerged, such

as those in [11, 31], and provide insights for the success

of end-to-end methods by achieving superior reconstruction

quality.

2.2. Image Demosaicking

While the literature on multi-image demosaicking meth-

ods falls short, demosaicking as a standalone problem has

been studied for decades and for a complete survey we refer

to [40]. A very common approach is bilinear interpolation,

as well as, other variants of this method which are adaptive

to image edges [18, 30]. During the last years, the image

demosaicking task witnessed an incredible quantitative and

qualitative performance increase via the use of neural net-

work approaches like those in [10, 17] and most recently

in [21]. This performance increase holds true even under

the presence of noise perturbing the camera sensor readings.

Related to multi-frame photography, two well known

systems that support burst demosaicking are FlexISP [16]

and ProxImaL [15], which offer end-to-end formulations

and joint solution via efficient optimization for many im-

age processing related problems. Finally, a very successful

commercial application on burst photography reconstruc-

tion is HDR+, introduced in [12], where a burst of frames

is utilized to alleviate shortcomings of smartphone cameras

such as low dynamic range and noise perturbations.

3. Problem formulation

To solve a variety of burst photography problems, we

rely on the following observation model for each frame yi

of a burst sequence of total size B,

yi = HSi(x) + ni, i = 1 . . . , B. (1)

In Eq. (1), yi ∈ R
N corresponds to the degraded version of

the affinely transformed underlying image x ∈ R
N , which

we aim to restore. While x and yi are two dimensional im-

ages, for the sake of mathematical derivations, we assume

that they have been raster scanned using a lexicographical

order, and they correspond to vectors of N dimensions. The

operator Si : R
N −→ R

N is responsible for the affine trans-

formation of the coordinate system of x. Specifically, it

provides a mapping by interpolating values for each frame

i from the grid of the original image x. In our proposed

method, we restrict the affine transformations to be rota-

tional and translation so as to be on par with realistic burst

photography applications. While in the above model it is
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assumed that the affine transformation is known, in prac-

tice we can only estimate it from the observations yi by

setting one observation as a reference and aligning all other

observations to the reference. This reference frame is con-

sidered to be completely aligned to the underlying image x,

and their relationship is described as yref = Hx + nref .

Additionally, the underlying image x is further distorted by

a linear operator H ∈ R
N×N , which describes a specific

restoration problem that we aim to solve. This formulation

is one of the most frequently used in the literature to model

a variety of restoration problems such as image inpaint-

ing, deconvolution, demosaicking, denoising, and super-

resolution. Each observation yi is also distorted by noise

ni ∼ N (0, σ2), which is assumed to follow an i.i.d Gaus-

sian distribution.

Recovering x from the measurements yi belongs to the

broad class of inverse problems. For most practical prob-

lems, the operator H is typically singular, i.e., not invert-

ible. This fact, coupled with the presence of noise perturb-

ing the measurements and the affine transformation leads to

an ill-posed problem where a unique solution does not ex-

ist. In general, such problems can be addressed following

a variational approach. Under this framework, a solution is

obtained by minimizing an objective function of the form:

x⋆ = argmin
x

1

2σ2B

B∑

i=1

‖yi −HSi(x)‖22
︸ ︷︷ ︸

f(x)

+r(x), (2)

where the first term corresponds to the data fidelity term

that quantifies the proximity of the solution to the observa-

tions and the second term corresponds to the regularizer of

the solution, which encodes any available prior knowledge

we might have about the underlying image. As it can be

seen from Eq. (2), the solution x⋆ must obey the observa-

tion model for each frame yi of the burst. While the above

variational formulation is general enough to accommodate

for a variety of different inverse problems, in Section 7 we

focus on two particular problems: 1) joint demosaicking

and denoising and 2) burst Gaussian denoising. In the first

case, H becomes a binary diagonal matrix that corresponds

to the Color Filter Array (CFA) of the camera, while in the

second case H reduces to the identity operator.

As we mentioned earlier, the role of the regularizer is

to promote solutions that follow specific image proper-

ties and as a result its choice significantly affects the end-

result of the restoration. Some typical choices for regular-

izing inverse problems is the Total Variation [36] and the

Tikhonov [38] functionals. While such regularizers have

been frequently used in the past in image processing and

computer vision applications, their efficacy is limited. For

this reason, in this work, we follow a different path, and

we attempt to learn the regularizer implicitly from available

training data. Therefore, throughout this work, we do not

make any assumptions regarding the explicit form of the

regularizer. Rather, as we will explain later in detail, our

goal is to learn the effect of the regularizer to the solution

through the proximal map [32].

4. Proximal gradient descent

Efficiently solving Eq. (2) has been a longstanding prob-

lem, and as a result a variety of sophisticated optimization

methods have been proposed over the years. In our work,

we employ a relatively simple method that extends the clas-

sical gradient descent, namely the Proximal Gradient De-

scent (PGD) [32]. In particular, PGD is a generalization

of gradient descent that can deal with the optimization of

functions that are not fully differentiable but they can be

split into a differentiable and a non-differentiable part, i.e.

F (x) = s (x) + g (x). Then, according to PGD, the solu-

tion can be obtained in an iterative fashion as follows:

xt = proxγg(x
t−1 − γ∇xs(x

t−1)), (3)

where γ is the step size and proxγg is the proximal operator,

related to the non-smooth part of the overall function, g(x),
and the step size γ. Typically, γ is adaptive and is computed

using a line-search algorithm. However, when s (·) is Lips-

chitz continuous it can be fixed and set as γ = 1
L

, where L is

the Lipschitz constant of∇xs. In each iteration t, first a gra-

dient descent step is performed for the smooth part s (x) of

the objective function, while in the sequel the non-smooth

term is handled via the proximal operator, whose action on

a vector v is defined as:

proxγg(v) = argmin
z

1
2 ‖v − z‖22 + γg(z). (4)

From a signal processing perspective, the proximal map

corresponds to the regularized solution of a Gaussian de-

noising problem, where v is the noisy observation, g (·) is

the employed regularizer and γ the regularization parame-

ter. Based on the above and by inspecting Eq. (2), we ob-

serve that in our case the data fidelity corresponds to the

smooth part while we further consider the regularizer as the

non-smooth part. We note, the most effective regularizers

in variational methods have been shown to be indeed non-

differentiable and, thus, our assumption is a reasonable one.

Referring to Eq. (2), the gradient of the data fidelity term

can be easily computed as

∇xf(x) =
1

σ2B

B∑

i=1

∇xSi(x)H
T(−yi +HSi(x)). (5)

A useful observation is that the gradient of f (x) can be lin-

earized and therefore the time-consuming calculation of the

Jacobian of the affine transform Si can be entirely avoided.

The base of this observation is that the mapping Si(x) cor-

responds to an interpolation, such as bilinear, on an image
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x with respect to a certain warping matrix. By calculat-

ing beforehand the new pixel locations, using the estimated

warping matrix, that we would like to interpolate from the

image x, the interpolation itself can be re-written as a lin-

ear operation Six. In this case, Si is a sparse matrix with

only a few of its columns being non-zero and which hold the

coefficients for the weighted averaging of pixel intensities.

Therefore, under this approach it holds that Six = Si(x).
For example, in the case of bilinear interpolation only four

elements of each row of the matrix Si will be non-zero,

while in the case of nearest neighbor interpolation only one

element is non-zero and is equal to one.

Consequently, the gradient of the data fidelity term can

be rewritten as

∇xf(x) =
1

σ2B

B∑

i=1

ST

i H
T(−yi +HSix), (6)

where ST

i is the adjoint operator of Si. This adjoint oper-

ation amounts to interpolating an image x with the inverse

of the warping matrix. In our case, this matrix is always ex-

istent, since we have restricted our affine transformations to

support only rotation and translation. Finally, by using the

gradient of the data fidelity term of Eq. (6), in the proximal

gradient step described in Eq. (3), and by computing its

Lipschitz constant as L = 1
σ2 (the proof is provided in the

supplementary material), we end up with the following it-

erative optimization step for burst photography applications

xt = proxσ2r(x
t−1+

1

B

B∑

i=1

ST

i H
T(yi−HSix

t−1)). (7)

In order to retrieve the solution of the minimization prob-

lem in Eq. (2) based on the above iterative scheme, the ap-

propriate form of r(x) must be first specified. However,

this is far from a detrimental task. Apart from this, the con-

vergence to a solution usually requires a large number of

iterations, which implies a significant computational cost.

To deal with these challenges, in this work we pursue

a different approach than conventional regularization meth-

ods. In particular, instead of selecting a specific regularizer

and deriving the solution via Eq. (7), we design a network

to learn the mapping between the proximal input and the de-

noised output. This strategy allows us to unroll K iterations

of the PGD method and use a suitable network to approxi-

mate the output of the proximal operator. It is important to

note that this approach does not carry any risk of leading to a

reconstruction of inferior quality. The reason is that in large

scale optimization techniques, even when the regularizer is

fully specified, typically the proximal map cannot be com-

puted in closed-form. In such cases [2, 25], it is roughly ap-

proximated via iterative schemes without this jeopardizing

the overall reconstruction quality.Another important point

we would like to highlight is that our approach, as opposed

to other related methods that use a network to replace the

proximal operator such as IRCNN [42], Plug and Play [39]

and RED [34], is completely parameter-free and, thus, no

manual tuning is required so that a good reconstruction is

produced.

5. Proposed Iterative Neural Network (INN)

5.1. Proximal Network

As described in Section 4, the proximal map can be in-

terpreted as the regularized solution of a Gaussian denoising

problem. Based on this observation, we can exploit the ca-

pabilities of neural networks and replace the iterative com-

putation of the proximal map with a CNN that takes as input

a noisy image and the standard deviation of the noise and

returns as output the denoised version of the input.

While there are many image denoising neural networks

such as the DnCNN [41] or MemNet[37] that we could use

to approximate the proximal map, in this work we employ

the ResDNet network described in [20], which was origi-

nally inspired by UDNet [24]. Similarly to DnCNN, Res-

DNet is a fully convolutional denoising network and can

handle a wide range of noise levels by using a single set of

parameters. It also has a residual architecture since instead

of estimating directly the denoised image, it first estimates a

noise realization which is then subtracted from the noisy in-

put. The advantage of ResDNet over DnCNN is that it takes

as an additional input the standard deviation of the noise,

which is then used by the network to normalize the noise

estimate in order to ensure that it has the desired variance.

This feature is instrumental for the successful implemen-

tation of our overall scheme, as it allows us to have more

control over the output of the network.

In detail, the architecture of ResDNet consists of D
residual blocks with 2 convolutional layers each of 64 filters

and kernels with dimensionality 3× 3. The residual blocks

precedes a convolutional layer applied on the input which

increases the number of channels from 3 to 64 using kernels

of size 5× 5. The feature maps are eventually decreased to

3 from 64 via a convolutional layer with a kernel of support

5 × 5. In every step, the employed non-linearity, which is

applied after every convolutional layer, except the last one,

is the parametrized rectified linear unit (PReLU) [13]. The

end result of ResDNet is a noise realization estimate that is

subtracted from the distorted image. Before the subtraction

takes place, the noise realization is normalized so that its

variance matches the input variance. This is accomplished

with a trainable ℓ2-projection layer,

ΠC (y) = θy/max(‖y‖2 , θ), (8)

where θ = σ
√
N − 1. Overall, this denoising network is

relatively small since it contains approximately 380K pa-

rameters and it can be easily deployed in each iteration of

our INN without requiring excessive memory or computa-

tion time.
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Algorithm 1: Proposed Iterative Neural Network

for bust photography applications

Input: H: Degradation Operator, y{1...B}: input

burst, K: iterations, w ∈ R
K : extrapolation

weights, σ: estimated noise, s ∈ R
K :

projection parameters

x0 = 0;

Initialize x1 using yref ;

Estimate mappings S1...B ;

for t← 1 to K do

u = xt +wt(x
t − xt−1);

z = 0;

for i← 1 to B do

z = z+ ST

i H
T(−yi +HSiu);

end

xt+1 = ProxNet(xt − z/B, σ, st);

end

In order to emphasize that the employed denoising net-

work in our INN serves as a proximal map estimate and not

as a single image Gaussian denoiser, hereafter, we will refer

to it as ProxNet. Another reason for our naming convention

is that our overall approach is not tied to a specific proximal

network and in principle ResDNet can be replaced by an-

other network architecture that exhibits similar properties.

5.2. Iterative neural network

The proposed INN combines the PGD algorithm as dis-

cussed in Section 4 and the proximal network as an esti-

mator of the solution of Eq. (4). A straightforward way to

implement the INN is to use in every iteration a proximal

network that is governed by a different set of parameters.

However, the training of INN, in this case, becomes quickly

intractable, since the number of parameters increases lin-

early to the number of employed iterations. To deal with this

shortcoming, we instead use the same proximal network in

every iteration, and thus we keep the number of network pa-

rameters small, which in turn decreases the necessary train-

ing time and the memory footprint of the network.

In order to speed up the convergence of the optimiza-

tion scheme, we exploit two commonly used convergence

acceleration strategies. The first one is the homotopy con-

tinuation strategy [27] where the standard deviation of the

noise is deliberately over-estimated in the first iterations and

gradually is decreased until the accurate estimation of σ is

reached. The homotopy continuation scheme accelerates

the convergence of PGD algorithms as shown in [27] and

it can be easily integrated into our formulation via a modi-

fication of the projection layer by replacing θ with θ̂ = esθ.

In detail, we initialize the trainable parameter of the pro-

jection layer s ∈ R
K with values spaced evenly on a log

scale from smax to smin and later on the vector s is further

finetuned on the training dataset via back-propagation.

The second acceleration strategy that we explore in-

volves the use of an extrapolation step similar to the one

introduced in [3]. Specifically, the outputs of two consecu-

tive iterations are combined in a weighted manner in order

to obtain the solution of the current iteration. In [3] the ex-

trapolation weights w ∈ R
K are known apriori but in our

work, we learn them during the training of INN. We initial-

ize the extrapolation weights as wi = t−1
t+2 ,∀1 ≤ t ≤ K,

which matches the configuration described in [32].

Algorithm 1 describes our overall strategy which com-

bines all the different components that we described, i.e.,

the PGD, the proximal network, the continuation, and ex-

trapolation strategies. As it can be seen from Algorithm 1,

our reconstruction approach has only a weak dependency on

the burst size, since this is only involved in the computation

of the gradients for each burst observation, which can be

done very efficiently. This feature makes our method very

efficient since the proximal network is independent to the

bust size B, unlike other recent deep learning based meth-

ods [11, 1], which process each frame of the burst individu-

ally at first and then jointly and therefore the computational

time increases linearly to B. Simultaneously, our proposed

approach supports by design bursts of arbitrary size with

only a minor computational overhead. We note that this is

not the case for the network in [31] which is constrained to

use bursts of 8 frames. In a different case, the entire network

needs to be trained from scratch. Finally, our proposed INN

is by definition permutation invariant similarly to [1]. In

particular, the ordering of the burst frames does not affect at

all the reconstruction result as long as the reference frame

remains the same.

6. Network Training

6.1. Synthetic training dataset

Since there are no publicly available burst photography

datasets suitable for training our network, we create training

pairs of ground-truth and input bursts using the Microsoft

Demosaicking Dataset (MSR) [19] for burst image demo-

saicking and the Waterloo Dataset [28] for burst Gaussian

denoising. In both cases, we modify the ground-truth image

by affinely transforming it 8 times to create a burst with syn-

thetic misalignment and then the images are center cropped

to retain a patch of 128 × 128 pixel. We assume that the

reference frame is the last one and therefore it does not

undergo any transformation. The random affine transfor-

mation should be close to realistic scenarios, and thus we

restrict the transformation to contain a translation in each

direction up to 10 pixels and rotation of up to 2 degrees.

For burst image demosaicking, we selected the MSR

dataset which is a small but well-known dataset for evalu-
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ating image demosaicking algorithms, as explained in [19].

The advantage of the MSR dataset is that all data are in

the linear color space where pixel measurements are pro-

portional to the number of counted photons, and no post-

processing steps have been performed (e.g., sharpening,

tone mapping) that will alter the image statistics. The

dataset consists of 200 images for training, 100 for valida-

tion and 200 images for testing purposes. For each ground-

truth image we generate the respective burst sequence, and

then we apply the Bayer pattern on each frame. We also ex-

plore the case of noise perturbing the camera measurements,

and therefore we add noise sampled from a heteroskedastic

Gaussian distribution with signal dependent standard devi-

ation ω̂ ∼ N (ω, αω + β2), following the model presented

in [14]. The parameter α is related to the shot noise compo-

nent, which occurs from the stochastic nature of the photon

counting process and it is dependent on the true intensities

y, while the parameter β is linked to the signal independent

read noise component. Both noise parameters are sampled

uniformly from a specific range as discussed in [31], which

covers the noise levels of many widely used cameras. The

dataset is also augmented with random flipping and color

jittering in order to ensure a plethora of lighting conditions.

For burst image denoising, we use the Waterloo dataset

which consists of 4,744 images. Using the described pro-

cedure, we retrieved the synthetically mis-aligned bursts of

8 frames and 500 of these bursts were kept separately to be

used for testing purposes. All frames were distorted with

additive Gaussian noise with standard deviation sampled

from [5, 25] with a step size equal to 2.5.

For all experiments, we estimate the warping matrix that

aligns every observation to the reference frame using the

Enhanced Correlation Coefficient (ECC) [8]. Since the im-

ages are severely distorted by noise, we estimate the align-

ment on the Gaussian pyramid of the image and use the

warping matrix of coarse scales to initialize the ECC es-

timation of finer levels in order to achieve robustness to the

noise perturbations. Bursts that failed to be aligned using

this method were dropped from the training set.

6.2. Implementation Details

For all experiments we choose the interpolation opera-

tion, involved in the affine transformation of the observa-

tion model Eq. (1), to be bilinear due to its low computation

complexity and the adequate result that it provides. Using a

pre-trained proximal network our overall network is further

trained end-to-end to minimize the ℓ1 loss.

Due to the iterative nature of our framework, the net-

work parameters are updated using the Back-Propagation

Through Time (BPTT) algorithm, and more specifically we

adopt the Truncated BPTT framework presented in [33, 21].

While we unfold K instances of the network, we propagate

the gradients through smaller chunks of size k instead of

noisy noise-free

linRGB sRGB linRGB sRGB

Bilinear

- single 27.62 23.02 29.07 22.86

- burst 30.03 26.45 31.46 27.23

Gharbi [10]

- single 36.52 31.37 41.08 34.46

- burst 37.14 31.87 39.74 34.39

Kokkinos [21]

- single 38.48 33.41 41.03 34.37

- burst 38.06 33.06 38.93 33.02

BM3D-CFA[7]

- single 35.63 30.49 - -

- burst 35.36 30.30 - -

Ours 39.64 34.56 42.40 36.24

Ours (oracle) 41.55 35.59 42.40 36.24

Table 1: PSNR performance of different methods in both

linear and sRGB spaces. Every method was tested on both

single image and burst scenario. In the case of BM3D-CFA,

demosaicking of the denoised images was performed using

the noisefree model of [21].

K, due to the inherent memory restrictions we face dur-

ing training. Every k iterations we update the parameters

based on the loss function and then proceed with unrolling

the next k iterations till the number of total iterations K is

reached. This modification of the standard BPTT allows the

usage of larger batch sizes and a higher number of iterations

which leads to better performance, as shown in [21]. Fur-

thermore, we set for all experiments K = 10, k = 5 and

the optimization is carried via the AMSGRAD optimizer

where the training starts from an initial learning rate which

we decrease by a factor of 10 every 100 epochs. The spe-

cific hyper-parameters used for training of each model are

provided in the supplementary material.

7. Experiments

7.1. Image Demosaicking and Denoising

We evaluate our method on the test set of the burst MSR

dataset. In Table 1, we compare our INN with a bilinear

interpolation baseline, two recent demosaicking neural net-

works [10, 21], as well as with a denoising approach using

BM3D-CFA [7] followed by demosaicking using the noise-

free model of [21]. BM3D-CFA was also used to denoise

the raw data for the bilinear interpolation baseline in the

noisy scenario. In all comparisons, we consider both a sin-

gle image scenario and a burst variant where we apply the

respective method on each frame of the burst and then the

frames are aligned in order to be averaged. Our approach

yields substantially better quantitative results than compet-

ing methods in both noisy and noise-free scenario with per-
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formance gains ranging from 0.9 to 1.5 dB. To visually as-

sess the superiority of our approach, we further provide rep-

resentative results in Fig. 3.

In order to examine how the alignment of observations

affects the results, we have also considered the case where

our pre-trained network was fed with oracle warping matri-

ces. As it could be expected, the restoration performance

increases up to 1.9 dBs, which highlights the importance

of robust image alignment and indicates that we can expect

an increase in our network’s performance by employing a

better alignment method than the one we currently use.

7.2. Gaussian Image Denoising

We tested our method on the Gaussian denoising task

where most burst photography methods focus on. For com-

parisons, we used the methods of BM3D, VBM4D and Res-

DNet for single and burst scenarios. In the case of the burst

variant of ResDNet, the images were first denoised using

ResDNet and then aligned using the method [8] before be-

ing averaged. For reasons of experimental completeness,

we would like to compare our method against the two most

recent deep learning approaches [11, 31], however, neither

one of the models or their respective testing sets are pub-

licly available yet. From the results presented in Table 2 and

Fig. 4, it is clear that our method achieves a state-of-the art

performance across every noise level. An interesting result

is that our INN, which uses ResDNet as a sub-component,

consistently outperforms the burst variant of ResDNet. This

is attributed to the principled way we designed our INN so

that it faithfully follows the forward model.

We also performed an ablation study on the importance

of burst size during training. Specifically, we trained 3

models using bursts of size 2, 4 and 8 and tested them on

sequences with burst sizes varying from 2 to 16, as pre-

sented in Fig. 2. The models that were trained with 4 and

8 frames are able to generalize well when they are provided

with more frames during inference since their performance

steadily increases. Nevertheless, there is a performance gap

between the models which indicates that the burst size for

which the network is originally trained for can affect the

performance. The model trained to handle bursts of only

two frames exhibits the same behaviour up to a certain num-

ber of frames but after that, its performance starts to de-

cline. Our findings contradict the conclusion of the authors

in [11] that deep learning models need to be trained with

many frames in order to generalize to longer sequences dur-

ing inference. In fact, our network variants trained for 4 and

8 bursts show a consistent performance improvement with

the increase of the burst sequence.

8. Limitations

Our method is capable of producing high-quality images

from a burst sequence with great success. However, the

Methods σ=5 σ=10 σ=15 σ=20 σ=25

noisy ref. frame 34.26 28.37 24.95 22.55 20.71

BM3D 39.78 35.86 33.55 31.86 30.50

VBM4D 39.64 35.67 33.35 31.67 30.34

ResDNet:

- single 40.19 36.65 34.55 33.03 31.82

- burst 39.69 37.65 36.06 34.89 33.86

Ours 40.08 38.71 37.36 36.24 35.28

Table 2: Color image denoising comparisons for five dif-

ferent noise levels. The restoration quality is measured in

terms of average PSNR.

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Frames during inference

35

36

37

38

39

PS
NR

 (d
B)

2 Frames
4 Frames
8 Frames

Figure 2: Generalization ability of our INN to different

burst sizes. Three models were trained with 2, 4 and 8

frames and tested on burst sequences from 2 to 16 frames.

main limitation of our network is the dependency it has to

the ECC estimation of the warping matrix, which in practice

can be rather inaccurate especially when there is a strong

presence of noise. When the estimated affine transforma-

tion matrix is imprecise, our network inevitably will intro-

duce ghosting artifacts to the final result Fig. 4 (more ex-

amples can be found in the supplementary material). In this

event, one possible solution, is to estimate the quality of the

transformation matrix via a consistency metric like the one

in [43] and crop out inconsistent areas from a frame.

9. Conclusions

In this work, we have proposed a novel iterative neu-

ral network architecture for burst photography applications.

Our derived network has been designed to respect the phys-

ical model of burst photography while its overall structure

is inspired by large-scale optimization techniques. By ex-

plicitly taking into account the special characteristics of the

problems under study, our network outperforms previous

state-of-the-art methods across various tasks, while being

invariant to the ordering of the frames and capable to gen-

eralize well to arbitrary burst sizes.
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Ground Truth Input Ours HDR+ [12] FlexISP [16] Godard [11] Gharbi [10] Kokkinos [20]

Figure 3: Burst demosaicking results on a real and a synthetic burst from the FlexISP dataset [16] (results are best seen mag-

nified on a computer screen). Our model successfully restores the missing colors of the underlying images while suppressing

noise. A PSNR comparison of the systems is provided in the supplementary material.

Ground Truth Average Ours ResDNet ResDNet Average VBM4D [29]

Figure 4: Burst Gaussian denoising with σ = 25. Our method is able to effectively restore the images and retain fine details,

as opposed to the rest of the methods that over-smooth high texture areas. Imprecise misalignment will cause methods to

introduce visual artifacts such as those in the last row. Results best seen magnified on a computer screen.
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