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Abstract

This paper addresses the problem of 3D human pose and

shape estimation from a single image. Previous approaches

consider a parametric model of the human body, SMPL,

and attempt to regress the model parameters that give rise

to a mesh consistent with image evidence. This parameter

regression has been a very challenging task, with model-

based approaches underperforming compared to nonpara-

metric solutions in terms of pose estimation. In our work,

we propose to relax this heavy reliance on the model’s pa-

rameter space. We still retain the topology of the SMPL tem-

plate mesh, but instead of predicting model parameters, we

directly regress the 3D location of the mesh vertices. This is

a heavy task for a typical network, but our key insight is that

the regression becomes significantly easier using a Graph-

CNN. This architecture allows us to explicitly encode the

template mesh structure within the network and leverage the

spatial locality the mesh has to offer. Image-based features

are attached to the mesh vertices and the Graph-CNN is re-

sponsible to process them on the mesh structure, while the

regression target for each vertex is its 3D location. Having

recovered the complete 3D geometry of the mesh, if we still

require a specific model parametrization, this can be reli-

ably regressed from the vertices locations. We demonstrate

the flexibility and the effectiveness of our proposed graph-

based mesh regression by attaching different types of fea-

tures on the mesh vertices. In all cases, we outperform the

comparable baselines relying on model parameter regres-

sion, while we also achieve state-of-the-art results among

model-based pose estimation approaches. 1

1. Introduction

Analyzing humans from images goes beyond estimat-

ing the 2D pose for one person [27, 47] or multiple peo-

ple [2, 32], or even estimating a simplistic 3D skele-

ton [24, 25]. Our understanding relies heavily on being able

to properly reconstruct the complete 3D pose and shape of

people from monocular images. And while this problem

is well addressed in settings with multiple cameras [8, 14],

1Project Page: seas.upenn.edu/˜nkolot/projects/cmr

Figure 1: Summary of our approach. Given an input im-

age we directly regress a 3D shape with graph convolutions.

Optionally, from the 3D shape output we can regress the

parametric representation of a body model.

the excessive ambiguity, the limited training data, and the

wide range of imaging conditions make this task particu-

larly challenging in the monocular case.

Traditionally, optimization-based approaches [1, 18, 49]

have offered the most reliable solution for monocular pose

and shape recovery. However, the slow running time, the

reliance on a good initialization and the typical failures

due to bad local minima have recently shifted the focus

to learning-based approaches [15, 18, 28, 31, 39, 43], that

regress pose and shape directly from images. The majority

of these works investigate what is the most reliable modal-

ity to regress pose and shape from. Surface landmarks [18],

pose keypoints and silhouettes [31], semantic part segmen-

tation [28], or raw pixels [15] have all been considered as

the network input. And while the input representation topic

has received much debate, all the above approaches nicely

conform to the SMPL model [21] and use its parametric rep-

resentation as the regression target of choice. However, tak-

ing the decision to commit to a particular parametric space

can be quite constraining itself. For example, SMPL is not

modeling hand pose or facial expressions [14, 36]. What

is even more alarming is that the model parameter space

might not be appropriate as a regression target. In the case

of SMPL, the pose space is expressed in the form of 3D
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Figure 2: Overview of proposed framework. Given an input image, an image-based CNN encodes it in a low dimensional

feature vector. This feature vector is embedded in the graph defined by the template human mesh by attaching it to the 3D

coordinates (xt
i, y

t
i , z

t
i) of every vertex i. We then process it through a series of Graph Convolutional layers and regress the

3D vertex coordinates (x̂i, ŷi, ẑi) of the deformed mesh.

rotations, a pretty challenging prediction target [23, 26].

Depending on the selected 3D rotation representation (e.g.,

axis angle, rotation matrices, quaternions), we might face

problems of periodicity, non-minimal representation, or dis-

continuities, which complicate the prediction task. And in

fact, all the above model-based approaches underperfom in

pose estimation metrics compared to approaches regressing

a less informative, yet more accurate, 3D skeleton through

3D joint regression [3, 24, 29, 38].

In this work, we propose to take a more hybrid route to-

wards pose and shape regression. Even though we preserve

the template mesh introduced by SMPL, we do not directly

regress the SMPL model parameters. Instead, our regres-

sion target is the 3D mesh vertices. Considering the exces-

sive number of vertices of the mesh, if addressed naively,

this would be a particular heavy burden for the network.

Our key insight though, is that this task can be effectively

and efficiently addressed by the introduction of a Graph-

CNN. This architecture enables the explicit encoding of the

mesh structure in the network, and leverages the spatial lo-

cality of the graph. Given a single image (Figure 2), any

typical CNN can be used for feature extraction. The ex-

tracted features are attached on the vertex coordinates of

the template mesh, and the processing continues on the

graph structure defined for the Graph-CNN. In the end,

each vertex has as target its 3D location in the deformed

mesh. This allows us to recover the complete 3D geome-

try of the human body without explicitly committing to a

pre-specified parametric space, leaving the mesh topology

as the only hand-designed choice. Conveniently, after es-

timating the 3D position for each vertex, if we need our

prediction to conform to a specific model, we can regress

its parameters quite reliably from the mesh geometry (Fig-

ure 1). This enables a more hybrid usage for our approach,

making it directly comparable to model-based approaches.

Furthermore, our graph-based processing is largely agnos-

tic to the input type, allowing us to attach features extracted

from RGB pixels [15], semantic part segmentation [28], or

even from dense correspondences [6]. In all these cases

we demonstrate that our approach outperforms the baselines

that regress model parameters directly from the same type

of features, while overall we achieve state-of-the-art pose

estimation results among model-based baselines.

Our contributions can be summarized as follows:

• We reformulate the problem of human pose and shape

estimation in the form of regressing the 3D locations

of the mesh vertices, to avoid the difficulties of direct

model parameter regression.

• We propose a Graph CNN for this task which encodes

the mesh structure and enables the convolutional mesh

regression of the 3D vertex locations.

• We demonstrate the flexibility of our framework by

considering different input representations, always

outperforming the baselines regressing the model pa-

rameters directly.

• We achieve state-of-the-art results among model-based

pose estimation approaches.

4502



2. Related work

There is rich recent literature on 3D pose estimation in

the form of a simplistic body skeleton, e.g., [3, 19, 22, 24,

25, 29, 30, 34, 35, 38, 40, 41, 42, 50, 51]. However, in this

Section, we focus on the more relevant works recovering

the full shape and pose of the human body.

Optimization-based shape recovery: Going beyond a

simplistic skeleton, and recovering the full pose and

shape, initially, the most successful approaches followed

optimization-based solutions. The work of Guan et al. [5]

relied on annotated 2D landmarks and optimized for the pa-

rameters of the SCAPE parametric model that generated

a mesh optimally matching this evidence. This procedure

was made automatic with the SMPLify approach of Bogo et

al. [1], where the 2D keypoints where localized through the

help of a CNN [32]. Lassner et al. [18] included auxiliary

landmarks on the surface of the human body, and addition-

ally considered the estimated silhouette during the fitting

process. Zanfir et al. [49] similarly optimized for consis-

tency of the reprojected mesh with semantic parts of the hu-

man body, while extending the approach to work for multi-

ple people as well. Despite the reliable results obtained, the

main concern for approaches of this type is that they pose a

complicated non-convex optimization problem. This means

that the final solution is very sensitive to the initialization,

the optimization can get stuck in local minima, and simul-

taneously the whole procedure can take several minutes to

complete. These drawbacks have motivated the increased

interest in learning-based approaches, like ours, where the

pose and shape are regressed directly from images.

Direct parametric regression: When it comes to pose

and shape regression, the vast majority of works adopt the

SMPL parametric model and consider regression of pose

and shape parameters. Lassner et al. [18] detect 91 land-

marks on the body surface and use a random forest to

regress the SMPL model parameters for pose and shape.

Pavlakos et al. [31] rely on a smaller number of keypoints

and body silhouettes to regress the SMPL parameters. Om-

ran et al. [28] follow a similar strategy but use a part seg-

mentation map as the intermediate representation. On the

other hand, Kanazawa et al. [15] attempt to regress the

SMPL parameters directly from images, using a weakly

supervised approach relying on 2D keypoint reprojection

and a pose prior learnt in an adversarial manner. Tung et

al. [43] present a self-supervised approach for the same

problem, while Tan et al. [39] rely on weaker supervision

in the form of body silhouettes. The common theme of all

these works is that they have focused on using the SMPL pa-

rameter space as a regression target. However, the 3D rota-

tions involved as the pose parameters have created issues in

the regression (e.g., discontinuities or periodicity) and typ-

ically underperform in terms of pose estimation compared

to skeleton-only baselines. In this work, we propose to take

an orthogonal approach to them, by regressing the 3D loca-

tion of the mesh vertices by means of a Graph-CNN. Our

approach is transparent to the type of the input represen-

tation we use, since the flexibility of the Graph network

allows us to consider different types of input representa-

tions employed in prior work, like semantic part-based fea-

tures [28], features extracted directly from raw pixels [15],

or even dense correspondences [6].

Nonparametric shape estimation: Recently, nonparamet-

ric approaches have also been proposed for pose and shape

estimation. Varol et al. [44] use a volumetric reconstruction

approach with a voxel output. Different tasks are simulta-

neously considered for intermediate supervision. Jackson et

al. [12] also propose a form of volumetric reconstruction by

extending their recent face reconstruction network [11] to

work for full body images. The main drawback of these ap-

proaches adopting a completely nonparametric route, is that

even if they recover an accurate voxelized sculpture of the

human body, there is none or very little semantic informa-

tion captured. In fact, to recover the body pose, we need to

explicitly perform an expensive body model fitting step us-

ing the recovered voxel map, as done in [44]. In contrast to

them, we retain the SMPL mesh topology, which allows us

to get dense semantic correspondences of our 3D prediction

with the image, and in the end we can also easily regress the

model’s parameters given the vertices 3D location.

Graph CNNs: Wang et al. [46] use a Graph CNN to re-

construct meshes of objects from images by deforming an

initial ellipsoid. However, mesh reconstruction of arbitrary

objects is still an open problem, because shapes of objects

even in the same class, e.g., chairs, do not have the same

genus. Contrary to generic objects, arbitrary human shapes

can be reconstructed as continuous deformations of a tem-

plate model. In fact, recently there has been a lot of research

in applying Graph Convolutions for human shape applica-

tions. Verma et al. [45] propose a new data-driven Graph

Convolution operator with applications on shape analysis.

Litany et al. [20] use a Graph VAE to learn a latent space

of human shapes, that is useful for shape completion. Ran-

jan et al. [33] use a mesh autoencoder network to recover

a latent representation of 3D human faces from a series of

meshes. The main difference of our approach is that we do

not aim to learn a generative shape model from 3D shapes,

but instead perform single-image shape reconstruction; the

input to our network is an image, not a 3D shape. The use

of a Graph CNN alone is not new, but we consider as a

contribution the insight that Graph CNNs provide a very

natural structure to enable our hybrid approach. They as-

sist us in avoiding the SMPL parameter space, which has

been reported to have issues with regression [24, 31], while

simultaneously allowing the explicit encoding of the graph

structure in the network, so that we can leverage spatial lo-

cality and preserve the semantic correspondences.
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3. Technical approach

In this Section we present our proposed approach for pre-

dicting 3D human shape from a single image. First, in Sub-

section 3.1 we briefly describe the image-based architecture

that we use as a generic feature extractor. In Subsection 3.2

we focus on the core of our approach, the Graph CNN ar-

chitecture that is responsible to regress the 3D vertex coor-

dinates of the mesh that deforms to reconstruct the human

body. Then, Subsection 3.3 describes a way to combine

our non-parametric regression with the prediction of SMPL

model parameters. Finally, Subsection 3.4 focuses on im-

portant implementation details.

3.1. Image­based CNN

The first part of our pipeline consists of a typical image-

based CNN following the ResNet-50 architecture [7]. From

the original design we ignore the final fully connected layer,

keeping only the 2048-D feature vector after the average

pooling layer. This CNN is used as a generic feature ex-

tractor from the input representation. To demonstrate the

flexibility of our approach, we experiment with a variety

of inputs, i.e., RGB images, part segmentation and Dense-

Pose input [6]. For RGB images we simply use raw pixels

as input, while for the other representations, we assume that

another network [6], provides us with the predicted part seg-

mentation or DensePose. Although we present experiments

with a variety of inputs, our goal is not to investigate the

effect of the input representation, but rather we focus our

attention on the graph-based processing that follows.

3.2. Graph CNN

At the heart of our approach, we propose to employ a

Graph CNN to regress the 3D coordinates of the mesh ver-

tices. For our network architecture we draw inspiration

from the work of Litany et al. [20]. We start from a tem-

plate human mesh with N vertices as depicted in Figure 2.

Given the 2048-D feature vector extracted by the generic

image-based network, we attach these features to the 3D

coordinates of each vertex in the template mesh. From a

high-level perspective, the Graph CNN uses as input the 3D

coordinates of each vertex along with the input features and

has the goal of estimating the 3D coordinates for each vertex

in the output, deformed mesh. This processing is performed

by a series of Graph Convolution layers.

For the graph convolutions we use the formulation from

Kipf et al. [17] which is defined as:

Y = ÃXW (1)

where X ∈ R
N×k is the input feature vector, W ∈

R
k×ℓ the weight matrix and and Ã ∈ R

N×N is the row-

normalized adjacency matrix of the graph. Essentially, this

is equivalent to performing per-vertex fully connected op-

erations followed by a neighborhood averaging operation.

The neighborhood averaging is essential for producing a

high quality shape because it enforces neighboring ver-

tices to have similar features, and thus the output shape is

smooth. With this design choice we observed that there is

no need of a smoothness loss on the shape, as for exam-

ple in [16]. We also experimented with the more powerful

graph convolutions proposed in [45] but we did not observe

quantitative improvement in the results, so we decided to

keep our original and simpler design choice.

For the graph convolution layers, we make use of resid-

ual connections as they help in speeding up significantly the

training and also lead in higher quality output shapes. Our

basic building block is similar to the Bottleneck residual

block [7] where 1 × 1 convolutions are replaced by per-

vertex fully connected layers and Batch Normalization [9]

is replaced by Group Normalization [48]. We noticed that

Batch Normalization leads to unstable training and poor test

performance, whereas with no normalization the training is

very slow and the network can get stuck at local minima and

collapse early during training.

Besides the 3D coordinates for each vertex, our Graph

CNN also regresses the camera parameters for a weak-

perspective camera model. Following Kanazawa et al. [15],

we predict a scaling factor s and a 2D translation vector t.

Since the prediction of the network is already on the cam-

era frame, we do not need to regress an additional global

camera rotation. The camera parameters are regressed from

the graph embedding and not from the image features di-

rectly. This way we get a much more reliable estimate that

is consistent with the output shape.

Regarding training, let Ŷ ∈ R
N×3 be the predicted 3D

shape, Y the ground truth shape and X the ground truth

2D keypoint locations of the joints. From our 3D shape

we can also regress the location for the predicted 3D joints

Ĵ3D employing the same regressor that the SMPL model

is using to recover joints from vertices. Given these 3D

joints, we can simply project them on the image plane, X̂ =
sΠ(Ĵ3D) + t. Now, we train the network using two forms

of supervision. First, we apply a per-vertex L1 loss between

the predicted and ground truth shape, i.e.,

Lshape =

N
∑

i=1

||Ŷi − Yi||1. (2)

Empirically we found that using L1 loss leads to more stable

training and better performance than L2 loss. Additionally,

to enforce image-model alignment, we also apply an L1 loss

between the projected joint locations and the ground truth

keypoints, i.e.,

LJ =

M
∑

i=1

||X̂i −Xi||1. (3)
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Figure 3: Predicting SMPL parameters from regressed

shape. Given a regressed 3D shape from the network of

Figure 2, we can use a Multi-Layer Perceptron (MLP) to

regress the SMPL parameters and produce a shape that is

consistent with the original non-parametric shape

Finally, our complete training objective is:

L = Lshape + LJ . (4)

This form of supervised training requires us to have ac-

cess to images with full 3D ground truth shape. However,

based on our empirical observation, it is not necessary for

all the training examples to come with ground truth shape.

In fact, following the observation of Omran et al. [28], we

can leverage additional images that provide only 2D key-

point ground truth. In these cases, we simply ignore the

first term of the previous equation and train only with the

keypoint loss. We have included evaluation under this set-

ting of weaker supervision in the Sup. Mat.

3.3. SMPL from regressed shape

Although we demonstrate that non-parametric regression

is an easier task for the network, there are still many ap-

plications where a parametric representation of the human

body can be very useful (e.g., motion prediction). In this

Subsection, we present a straightforward way to combine

our non-parametric prediction with a particular parametric

model, i.e., SMPL. To achieve this goal, we train another

network that regresses pose (θ) and shape (β) parameters of

the SMPL parametric model given the regressed 3D shape

as input. The architecture of this network can be very sim-

ple, i.e., a Multi-Layer Perceptron (MLP) [37] for our im-

plementation. This network is presented in Figure 3 and the

loss function for training is:

L = Lshape + LJ + Lθ + λLβ . (5)

Here, Lshape and LJ are the losses on the 3D shape and 2D

joint reprojection as before, while Lθ and Lβ are L2 losses

on the SMPL pose and shape parameters respectively.

As observed by previous works, e.g., [31, 24], it is chal-

lenging to regress the pose parameters θ, which represent

3D rotations in the axis-angle representation. To avoid this,

we followed the strategy employed by Omran et al. [28].

More specifically, we convert the parameters from axis-

angle representation to a rotation matrix representation us-

ing the Rodrigues formula, and we set the output of our

network to regress the elements of the rotation matrices. To

ensure that the output is a valid rotation matrix we project it

to the manifold of rotation matrices using the differentiable

SVD operation. Although this representation does not ex-

plicitly improve our quantitative results, we observed faster

convergence during training, so we selected it as a more

practical option.

3.4. Implementation details

An important detail regarding our Graph CNN is that we

do not operate directly on the original SMPL mesh, but we

first subsample it by a factor of 4 and then upsample it again

to the original scale using the technique described in [33].

This is essentially performed by precomputing downsam-

pling and upsampling matrices D and U and left-multiply

them with the graph every time we need to do resampling.

This downsampling step helps to avoid the high redundancy

in the original mesh due to the spatial locality of the ver-

tices, and decrease memory requirements during training.

Regarding the training of the MLP, we employ a 2-step

training procedure. First we train the network that regresses

the non-parametric shape and then with this network fixed

we train the MLP that predicts the SMPL parameters. We

also experimented with training them end-to-end but we ob-

served a decrease in the performance of the network for both

the parametric and non-parametric shape.

4. Empirical evaluation

In this Section, we present the empirical evaluation of

our approach. First, we discuss the datasets we use in our

evaluation (Subsection 4.1), then we provide training details

for our pipeline (Subsection 4.2), and finally, the quantita-

tive and qualitative evaluation (Subsection 4.3) follows.

4.1. Datasets

We employ two datasets that provide 3D ground truth for

training, Human3.6M [10] and UP-3D [18], while we eval-

uate our approach on Human3.6M and the LSP dataset [13].

Human3.6M: It is an indoor 3D pose dataset including sub-

jects performing activities like Walking, Eating and Smok-

ing. We use the subjects S1, S5, S6, S7 and S8 for training,

and keep the subjects S9 and S11 for testing. We present

results for two popular protocols (P1 and P2, as defined

in [15]) and two error metrics (MPJPE and Reconstruction

error, as defined in [51]).

UP-3D: It is a dataset created by applying SMPLify [1] on

natural images of humans and selecting the successful fits.

We use the training set of this dataset for training.

4505



Method MPJPE Reconst. Error

SMPL Parameter Regression [15] - 77.6

Mesh Regression (FC) 200.8 105.8

Mesh Regression (Graph) 102.1 69.0

Mesh Regression (Graph + SMPL) 113.2 61.3

Table 1: Evaluation of 3D pose estimation in Human3.6M

(Protocol 2). The numbers are MPJPE and Reconstruction

errors in mm. Our graph-based mesh regression (with or

without SMPL parameter regression) is compared with a

method that regresses SMPL parameters directly, as well

as with a naive mesh regression using fully connected (FC)

layers instead of a Graph-CNN.

LSP: It is a 2D pose dataset, including also segmentation

annotations provided by Lassner et al. [18]. We use the test

set of this dataset for evaluation.

4.2. Training details

For the image-based encoder, we use a ResNet50

model [7] pretrained on ImageNet [4]. All other network

components (Graph CNN and MLP for SMPL parameters)

are trained from scratch. For our training, we use the Adam

optimizer, and a batch size of 16, with the learning rate

set to 3e – 4. We did not use learning rate decay. Train-

ing with data only from Human3.6M lasts for 10 epochs,

while mixed training with data from Human3.6M and UP-

3D requires training for 25 epochs, because of the greater

image diversity. To train the MLP that regresses SMPL pa-

rameters from our predicted shape, we use 3D shapes from

Human3.6M and UP-3D. Finally, for the models using Part

Segmentation or DensePose [6] predictions as input, we use

the pretrained network of [6] to provide the corresponding

predictions.

4.3. Experimental analysis

Regression target: For the initial ablative study, we

aim to investigate the importance of our mesh regression

for 3D human shape estimation. To this end, we focus

on the Human3.6M dataset and we evaluate the regressed

shape through 3D pose accuracy. First, we evaluate the di-

rect regression of the 3D vertex coordinates, in compari-

son to generating the 3D shape implicitly through regres-

sion of the SMPL model parameters directly from images.

The most relevant baseline in this category is the HMR

method of [15]. In Table 1, we present the comparison of

this approach (SMPL parameter regression) with our non-

parametric shape regression (Mesh Regression - (Graph)).

For a more fair comparison, we also include our results

for the MLP that regresses SMPL parameters using our

non-parametric mesh as input (Mesh Regression - (Graph

+ SMPL)). In both cases, we outperform the strong base-

line of [15], which demonstrates the benefit of estimating

Image FC Graph CNN

Figure 4: Using a series of fully connected (FC) layers to

regress the vertex 3D coordinates severely complicates the

regression task and gives non-smooth meshes, since the net-

work cannot leverage directly the topology of the graph.

Input Regression Type
MPJPE Reconst. Error

P1 P2 P1 P2

RGB
Parameter [15] 88.0 - 58.1 56.8

Mesh (Graph + SMPL) 74.7 71.9 51.9 50.1

Parts
Parameter [28] - - - 59.9

Mesh (Graph + SMPL) 80.4 77.4 56.1 53.3

DP[6]
Parameter [15] 82.7 79.5 57.8 54.9

Mesh (Graph + SMPL) 78.9 74.2 55.3 51.0

Table 2: Comparison of direct SMPL parameter regression

versus our proposed mesh regression on Human3.6M (Pro-

tocol 1 and 2) for different input representations. The num-

bers are mean 3D joint errors in mm, with and without Pro-

crustes alignment (Rec. Error and MPJPE respectively).

Our results are computed after regressing SMPL parameters

from our non-parametric shape. Number are taken from the

respective works, except for the baseline of [15] on Dense-

Pose images, which is evaluated by us.

a more flexible non-parametric regression target, instead of

regressing the model parameters in one shot.

Beyond the regression target, one of our contributions

is also the insight that the task of regressing 3D vertex co-

ordinates can be greatly simplified when a Graph CNN is

used for the prediction. To investigate this design choice,

we compare it with a naive alternative that regresses ver-

tex coordinates with a series of fully connected layers on

top of our image-based encoder (Mesh Regression - (FC)).

This design clearly underperforms compared to our Graph-

based architecture, demonstrating the importance of lever-

aging the mesh structure through the Graph CNN during

the regression. The benefit of graph-based processing is

demonstrated also qualitatively in Figure 4.

Input representation: For the next ablative, we demon-

strate the effectiveness of our mesh regression for different
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Input Output shape
MPJPE Reconst. Error

P1 P2 P1 P2

RGB
Non parametric 75.0 72.7 51.2 49.3

Parametric 74.7 71.9 51.9 50.1

Parts
Non parametric 78.0 73.4 54.6 50.6

Parametric 80.4 77.4 56.1 53.3

DP[6]
Non parametric 78.0 72.3 55.3 50.3

Parametric 78.9 74.2 55.3 51.0

Table 3: Comparison on Human3.6M (Protocol 1 and 2) of

our non-parametric mesh with the SMPL parametric mesh

regressed from our shape. Numbers are 3D joint errors in

mm. The performance of the two baselines is similar.

Method Reconst. Error

Lassner et al. [18] 93.9

SMPLify [1] 82.3

Pavlakos et al. [31] 75.9

NBF [28] 59.9

HMR [15] 56.8

Ours 50.1

Table 4: Comparison with the state-of-the-art on Hu-

man3.6M (Protocol 2). Numbers are Reconstruction errors

in mm. Our approach outperforms the previous baselines.

FB Seg. Part Seg.

acc. f1 acc. f1

SMPLify oracle [1] 92.17 0.88 88.82 0.67

SMPLify [1] 91.89 0.88 87.71 0.64

SMPLify on [31] 92.17 0.88 88.24 0.64

Bodynet [44] 92.75 0.84 - -

HMR [15] 91.67 0.87 87.12 0.60

Ours 91.46 0.87 88.69 0.66

Table 5: Segmentation evaluation on the LSP test set. The

numbers are accuracies and f1 scores. We include ap-

proaches that are purely regression-based (bottom) and ap-

proaches that perform some optimization (post)-processing

(top). Our approach is competitive with the state-of-the-art.

types of input representations, i.e., RGB images, Part Seg-

mentation as well as DensePose images [6]. The complete

results are presented in Table 2. The RGB model is trained

on Human3.6M + UP-3D whereas the two other models

only on Human3.6M. For every input type, we compare

with state-of-the-art methods [15, 28] and show that our

method outperforms them in all setting and metrics. Inter-

estingly, when training only with Human3.6M data, RGB

input performs worse than the other representations (Ta-

ble 1), because of over-fitting. However, we observed that

RGB features capture richer information for in-the-wild im-

ages, thus we select it for the majority of our experiments.

Image Non-parametric Parametric

Figure 5: Examples of erroneous reconstructions. Typical

failures can be attributed to challenging poses, severe self-

occlusions, or interactions among multiple people.

SMPL from regressed shape: Additionally we examine

the effect of estimating the SMPL model parameters from

our predicted 3D shape. As it can be seen in Table 3, adding

the SMPL prediction, using a simple MLP on top of our

non-parametric shape estimate, only has a small effect in

the performance (positive in some cases, negative in others).

This means that our regressed 3D shape encapsulates all the

important information needed for the model reconstruction,

making it very simple to recover a parametric representation

(if needed), from our non-parametric shape prediction.

Comparison with the state-of-the-art: Next, we

present comparison of our approach with other state-of-

the-art methods for 3D human pose and shape estima-

tion. For Human3.6M, detailed results are presented in Ta-

ble 4, where we outperform the other baselines. We clarify

here that different methods use different training data (e.g.,

Pavlakos et al. [31] do not use any Human3.6M data for

training, NBF et al. [28] uses only data from Human3.6M,

while HMR [15] makes use of additional images with 2D

ground truth only). However, here we collected the best re-

sults reported by each approach on this dataset.

Besides 3D pose, we also evaluate 3D shape through

silhouette reprojection on the LSP test set. Our approach

outperforms the regression-based approach of Kanazawa et

al. [15], and is competitive to optimization-based baselines,

e.g., [1], which tend to perform better than regression ap-

proaches (like ours) in this task, because they explicitly op-

timize for the image-model alignment.

Qualitative evaluation: Figures 5 and 6 present qual-
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Figure 6: Successful reconstructions of our approach. Rows 1-3: LSP [13]. Rows 4-5: Human3.6M [10]. With light pink

color we indicate the regressed non parametric shape and with light blue the SMPL model regressed from the previous shape.

itative examples of our approach, including both the non-

parametric mesh and the corresponding SMPL mesh re-

gressed using our shape as input. Typical failures can be

attributed to challenging poses, severe self-occlusions, as

well as interactions among multiple people.

Runtime: On a 2080 Ti GPU, network inference for a

single image lasts 33ms, which is effectively real-time.

5. Summary

The goal of this paper was to address the problem of pose

and shape estimation by attempting to relax the heavy re-

liance of previous works on a parametric model, typically

SMPL [21]. While we retain the SMPL mesh topology, in-

stead of directly predicting the model parameters for a given

image, our target is to first estimate the locations of the 3D

mesh vertices. For this to be achieved effectively, we pro-

pose a Graph-CNN architecture, which explicitly encodes

the mesh structure and processes image features attached to

its vertices. Our convolutional mesh regression outperforms

the relevant baselines that regress model parameters directly

for a variety of input representations, while ultimately, it

achieves state-of-the-art results among model-based pose

estimation approaches. Future work can focus on current

limitations (e.g., low resolution of output mesh, missing de-

tails in the recovered shape), as well as opportunities that

this non-parametric representation provides (e.g., capture

aspects missing in many human body models, like hand ar-

ticulation, facial expressions, clothing and hair).
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