
 

 

Abstract 

 

During the past few years, different methods for 

optimizing the camera settings and post-processing 

techniques to improve the subjective quality of consumer 

photos have been studied extensively. However, most of the 

research in the prior art has focused on finding the optimal 

method for an average user. Since there is large deviation 

in personal opinions and aesthetic standards, the next 

challenge is to find the settings and post-processing 

techniques that fit to the individual users’ personal taste. In 

this study, we aim to predict the personally perceived image 

quality by combining classical image feature analysis and 

collaboration filtering approach known from the 

recommendation systems. The experimental results for the 

proposed method show promising results. As a practical 

application, our work can be used for personalizing the 

camera settings or post-processing parameters for different 

users and images. 

 

1. Introduction 

As a result of the rapid development of mobile 

technology and integration of low-cost cameras in 

smartphones and tablets, the amount of visual content 

produced and shared in the internet by regular consumers is 

constantly growing. Due to the technical limitations of the 

compact mobile cameras, image quality enhancement via 

post-processing is typically more essential for mobile 

photos than in traditional photography. Since many users 

may lack the skills and interest for retouching their photos 

manually, automatic post-processing of consumer photos is 

an interesting and demanded application.  

Several different algorithms for image enhancement are 

known from the prior art, ranging from denoising, 

sharpening and contrast enhancement to aesthetic and 

artistic filtering [1-8]. Since the ground truth for a visually 

pleasant image is based on users’ subjective opinions and 
the sense of aesthetics, the post-processing studies are often 

accompanied by a subjective quality assessment study [4, 6, 

8]. It is also possible to use automated (i.e. algorithm-based) 

image quality metrics for evaluating the quality of 

post-processed images. Unfortunately, the general purpose 

image quality metrics tend to perform poorly on 

post-processed images, and this is why several artifact 

specific objective image quality metrics designed for 

assessing particularly post-processed images have also been 

proposed in the literature [6-14]. 

Conventionally, the ground truth for the subjective 

quality obtained from a user study represents the average 

opinion by several test users. However, when aesthetic 

image enhancement is concerned, different users may have 

substantially different opinions about the quality of 

different images. In many applications, it could be desirable 

to select the post-processing method based on the personal 

opinion, rather than the average opinion. For example, if the 

images are intended for the personal use only, or if the user 

wants to apply the personally preferred post-processing 

method to the images shared in the social media, 

personalized camera settings or post-processing would be 

desired. Personal post-processing could be also useful in 

applications where several versions of the same image are 

available in the cloud, and the version that is displayed in 

the application is selected individually for each user, 

according to their personal taste. 

In this paper, we study the problem of predicting the 

personal image quality preferences by combining the 

conventional approach for image quality assessment, based 

on a bag of features extracted from the image, with the 

collaborative filtering approach [15, 16], where the user’s 
ratings are known for some images and this information, 

together with the image features, is exploited to predict the 

user’s ratings for other images. The application could gather 
information about user preferences in different ways; for 

example, asking the user occasionally to select the preferred 

alternative among two differently processed images or two 

photos taken with different camera settings, or keeping a 

track of the user’s preferred methods for manual retouching. 
In the experimental part of our study, we use annotated 

image quality databases with subjective ratings available, 

and the implementation details for collecting the subjective 

opinions in practical applications is beyond the scope of this 

paper.  

The rest of this paper is organized as follows. In Section 

2, we discuss the background and the relevant related work 

 

Assessing Personally Perceived Image Quality via Image Features and 

Collaborative Filtering 
 

Jari Korhonen 

School of Computer Science and Software Engineering, Shenzhen University, China 
jari.t.korhonen@ieee.org 

8169



 

 

concerning image quality enhancement and collaborative 

filtering for recommendation systems. In Section 3, we 

explain the proposed approach. In Section 4, we 

demonstrate the feasibility of the proposed method by 

presenting the experimental results, followed by brief 

discussion. Finally, the concluding remarks are given in 

Section 5. 

2. Background and related work 

Optimizing image post-processing techniques, such as 

denoising and contrast enhancement, has been studied 

extensively during the past years. Typically, those studies 

rely on subjective quality assessment studies to find the 

visually most preferred images among different alternatives. 

Then, different analytical or learning-based image quality 

metrics can be applied to find the most appropriate 

post-processing technique for each image. Collaborative 

filtering for recommendation systems has also been a topic 

of active research recently. In this study, we use image 

features together with collaborative filtering for predicting 

the personally experienced image quality of different 

images. To the best of our knowledge, this is the first 

attempt to combine image feature analysis and collaborative 

filtering for predicting image quality ratings by different 

users. 

2.1. Subjective image quality 

Several different post-processing methods have been 

proposed for improving the visually perceived image 

quality. Denoising [1, 3, 5] is particularly important for 

photos taken with a high ISO sensitivity value in low light 

conditions and therefore exposed to strong sensor noise. 

Image contrast and sharpness are strongly related to visual 

quality, and this is why several different contrast 

enhancement and sharpening techniques have been 

proposed to improve image quality, ranging from local 

sharpening at edges to different histogram adjustment 

methods for global contrast enhancement [6-8]. 

Since aesthetic judgement is subjective by nature, it is not 

possible to obtain ground truth for optimally enhanced 

images by analytical means. Several subjective studies 

concerning post-processed images have been published in 

the prior art [4, 6, 8, 10, 12, 13, 17, 18]. The visible 

differences between post-processed images are often rather 

small, and this is why conventional numerical rating scales 

(e.g. 1-5) may not discriminate different methods 

effectively. Therefore, pairwise comparison (PC) method is 

popular for subjective comparison of image enhancement 

techniques [4, 8, 10, 12, 17]. Rank ordering method has also 

been used for the same purpose [18]. 

Since subjective assessment studies are typically rather 

expensive in terms of time and resources (e.g. recruitment 

of test users can be time consuming), no-reference image 

quality metrics have been studied intensively. The most 

widely adopted general purpose blind image quality 

metrics, such as NIQE [19], have not shown very impressive 

accuracy in predicting the quality of post-processed images 

[6, 8], and this is why metrics designed specifically for 

assessing image post-processing algorithms have also been 

proposed [6-13]. We assume that the more recently 

developed learning-based image quality metrics, such as 

FRIQUEE [20], could achieve better accuracy in predicting 

the average subjective quality of post-processed images, if 

trained with an appropriate set of training images. 

Nevertheless, we did not find any published study reporting 

such results.  

2.2. Collaborative filtering 

Collaborative filtering is a traditional approach for 

recommendation systems to produce personal 

recommendations for music, movies, etc. The mechanism 

for producing recommendations can be formulated as a 

matrix factorization problem, where the elements in a sparse 

rating matrix represent ratings given by different users 

(represented by the columns of the matrix) to different 

items, such as movies or songs (represented by the rows of 

the matrix) [15]. A well-performing recommendation 

system can predict accurately the missing ratings from the 

existing ratings, and in this way to produce good 

recommendations of items for the users.   

The conventional formulation of the problem defines a 

vector of latent item features xi for item i, and a vector of 

latent user features yu for user u, and then predicts the 

ratings r̂u,i from the dot product of the vectors (1): 

 

    (1)

  

Different matrix factorization or learning methods, such 

as stochastic gradient descent or alternating least squares, 

can be used to approximate the user and item vectors from 

the sparse user-item rating matrix. If there is side 

information available, such as movie or music genre, it is 

possible to achieve higher prediction accuracy by including 

the side information in the latent feature vectors [16]. It is 

also possible to use e.g. neural networks to predict the latent 

features of the content from the textual descriptors or other 

kinds of high level features to predict the item latent feature 

vectors [21, 22].  

Recently, it has been suggested that the simple inner 

product of the user and item features may not be sufficient to 

model the complex interactions between user and item 

characteristics, and this is why more complex models for 

collaborative filtering have been proposed. He et al. [23] 

proposed a combination of general matrix factorization and 

neural network. Fu et al. [24] proposed a method combining 

advanced learning model for user and item representations 

8170



 

 

 

Feature 

extraction

Random 

feature 

initialization

Regression 

model

… …

r̂u,i

xi yu 

Image i User u
 

 

Figure 1: Predicting individual quality ratings from image and 

user features.   

based on their interactions combined with a deep neural 

network. 

We are not aware of any earlier attempts of using the 

collaboration filtering technique to predict perceived 

quality of images by individual users in the prior art. 

However, some aspects of our work have been considered 

in the related literature. In [25], collaborative filtering was 

proposed to predict average ratings in subjective video 

quality assessment studies more accurately, when some of 

the ratings in the user-item rating matrix are missing. In 

[26], a collaborative filtering scheme combining latent 

features and image features has been proposed for selecting 

the individually preferred key frames from video.  

Nevertheless, our work is different from [25, 26] in many 

respects: the application scenario is different, and also many 

design choices, such as the use of decision tree based 

regression models instead of matrix factorization or neural 

networks, differentiate our work from the prior art. 

3. The proposed method 

In our work, we use a hybrid approach for predicting the 

preferred post-processing technique for different images: 

each image is represented by a feature vector composed by 

features extracted from the image, whereas each user is 

represented by a vector of latent features. The basic idea is 

illustrated in Figure 1: image feature vectors and the user 

latent feature vectors are combined into input features to the 

regression model, and the quality ratings for pairs of items 

and users are used as output of the regression model. When 

a complete user-item rating matrix is available, it can be 

divided into training and test sets in order to train and 

validate the regression model. In this Section, we outline the 

main characteristics of the proposed method.  

3.1. Image features 

Since we concatenate image and user features, the 

popular Convolutional Neural Network (CNN) is not 

directly applicable for joint feature extraction and 

regression. In principle, CNN could be used for image 

feature extraction, but embedding the features from the 

convolution layer into a dense feature vector that can be 

used jointly with the user features is not trivial and would 

require relatively large amount of training data. This is why 

we have chosen a more conventional approach with 

hand-crafted image features used as an input to a 

learning-based regression model. In theory, any kind of 

regression model could be applicable, but as we will discuss 

later, only certain regression models seem to perform 

satisfactorily for the proposed scheme. 

To avoid the curses of dimensionality and to ensure that 

the model can also be used with small datasets, we have 

targeted at a relatively small number of image features. 

After experimenting with different alternative sets of 

features, we selected twelve different hand-crafted features, 

representing spatial activity, under- and overexposure, 

noisiness, sharpness, and contrast and colorfulness. It 

should be noted that since the target application of our work 

is quality assessment of capture artifacts and the effects of 

aesthetic enhancement, rather than assessment of 

compression artifacts, we have intentionally omitted 

features that are mainly related to compression, such as 

blockiness. Due to space constraints, we will only give a 

brief summary of the features below. For more details, 

reader may refer to the Matlab script implementing the 

feature extraction, included in the additional material of the 

paper submission.  

 Spatial activity features are based on standard deviation 

of the pixel intensities after applying the standard Sobel 

filter. Under- and overexposure features are computed by 

searching for dark and bright areas with little intensity 

variation, and using their total coverage and the number of 

areas as features. Noise density and intensity is estimated by 

searching for pixels representing local minimum or 

maximum, i.e. pixels that are either darker or brighter than 

any other pixel in the surrounding window of 5x5 pixels. 

Sharpness is estimated by computing two-dimensional 

autocorrelation function on the pixels in Sobel domain, and 

then analyzing the slope of the autocorrelation function 

(sharp images produce a steep slope and blurry images 

produce a gentle slope). Finally, we have computed a 

contrast feature and a colorfulness feature by following 

simple heuristics based on histogram distribution and 
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Figure 2: Predicting relative quality ratings for a group of 

post-processed images.   

saturation of the pixels with the most vivid colors.  

3.2. User features 

Ideally, the latent user features could be derived from 

some measurable characteristics of the users, such as age, 

sex, personality type etc. However, in a typical use case 

there is not much information available about the users, if 

any. Therefore, we cannot expect that the user features 

could be extracted in a similar fashion as the image features. 

In the latent feature models published in the prior art, 

feature vectors are typically initialized by using a sparse 

feature vector with one-hot coding that is then projected into 

a dense vector [23, 24]. In our method, we have simplified 

the process by using random initialization as a baseline: for 

each user, an individual feature vector containing random 

values between 0 and 1 is assigned. It is assumed that the 

appropriate length for the user feature vector depends on the 

used regression method, the length of the item vector, as 

well as the size of the dataset. This is why we validated our 

model with different lengths for the user feature vector in 

the preliminary testing phase. 

3.3. Regression 

To obtain the predicted quality ratings r̂u,i, we can 

basically use any regression model and train it with a set of 

user-item pairs with known quality ratings ru,i in the training 

set, and then validate the model by comparing the predicted 

ratings produced by the model against the known ratings in 

the validation set. The feature vectors are simply formed by 

concatenating the image feature vector and the user feature 

vector for each image-user pair. 

The basic approach for predicting the quality ratings, as 

described above, is valid if all the quality ratings in the 

dataset are given in a common scale. In some scenarios, this 

assumption is however not valid. For example, when 

different post-processing techniques are compared using 

pairwise comparison or rank ordering methodology, the 

ratings reflect the relative quality differences between the 

different versions of the same image, rather than the 

absolute quality of the images. In this situation, we cannot 

expect that a regression model can predict the relative 

ratings for individual images accurately without any 

knowledge of the other images used as comparison point. 

To predict the relative quality scores for a group of 

images produced from one source image by applying 

different post-processing methods, we can concatenate the 

image features from all the different versions of the image. 

Then, we can use multioutput regression model to jointly 

predict the relative quality ratings for the group of images. 

An example of this kind of scenario is illustrated in Figure 2, 

using three different post-processing methods, denoted as 

A, B and C. The relative ratings for the different versions of 

the image i by the user u are denoted as ru,i,A, ru,i,B, and ru,i,C.   

4. Validation study 

To validate the proposed method, we have implemented 

the proposed image feature extraction in Matlab and the 

regression schemes in Python. Then, we have tested the 

method with publicly available image quality datasets. 

There is abundance of public image datasets annotated with 

quality scores. However, most of those datasets only report 

the average ratings, such as Mean Opinion Score (MOS), 

for each test image. Fortunately, we have been able to 

identify some public image quality datasets that also include 

all the ratings by individual users. In this Section, we 

describe the validation scenarios, methodology and the 

results in detail. The source code for reproducing the results 

is published in [27]. 

4.1. Image quality datasets 

Among the few applicable public image quality datasets, 

we selected two for our experiments, representing two 

different application scenarios. The first dataset is Camera 

Image Database 2013 (CID2013) by Virtanen et al. [28]. 

CID2013 contains actually six different sets of images, 

evaluated in separate subjective quality assessment studies. 

Since each set of images has been assessed by a different 
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Figure 4: Validation by leaving one item out; crosses denote the 

ratings used for validation. 

 

group of test subjects, we consider CID2013 database 

essentially as a collection of six different datasets. In total, 

CID2013 contains 480 images captured with 79 different 

devices, each image evaluated using Absolute Category 

Rating (ACR) with scale from 0 to 100. The images were 

rated by 26 to 35 subjects, depending on the dataset. The 

distortions are authentic capture artifacts, and therefore the 

dataset can be used for assessing different users’ sensitivity 
for camera settings and device related artifacts. 

Another dataset, representing the post-processing 

scenario, is Contrast Enhancement Evaluation Database 

2016 (CEED2016) by Qureshi et al. [10, 12, 14, 29]. The 

dataset contains 180 post-processed images: for each of the 

30 different source photos, six different versions were 

generated by using different post-processing techniques. 

Then, those different versions were ranked by 23 test 

subjects by pairwise comparisons of all the 15 pairs formed 

from each group of six images. The relative quality scores 

for the images can be computed from the number of 

preferences: since each image is compared against five 

other images, the maximum score is five. In contrast to ACR 

method, this method produces scores that indicates the 

relative quality in comparison to the other five images, 

rather than the absolute quality. 

4.2. Scenario 1: absolute category ratings 

For testing the scheme with ACR scores, we implemented 

the regression model as shown in Fig. 1, where one image 

feature vector and one user feature vector is concatenated 

into a feature vector used as an input to the regression 

model, and the respective user-item rating ru,i is used as 

output of the model. In the model, the ratings were 

normalized to interval 0..1 by dividing each score by 100, 

and the image features were normalized to the same interval 

by using the standard min-max normalization with the 

minimum and maximum values for each feature obtained 

from the training set. The user feature vectors were 

initialized with random values between 0 and 1. We tested 

different lengths for the user feature vectors in the 

preliminary experiments, and in general, longer vectors 

seem to give more accurate results; however, there was no 

essential improvement with vectors more than 20 features, 

and this is why we fixed the user feature length to 20 for the 

final experiments. However, longer user feature vectors 

may be beneficial when larger datasets are concerned. 

To find the most appropriate regression models, we tried 

several different regressors implemented in the scikit-learn 

toolbox for Python. Surprisingly, Support Vector (SV) and 

Multilayer Perceptron (MLP) regression, both commonly 

used in image and video quality assessment [19, 30, 31], 

produced disappointing results. Better results were obtained 

with regressors based on decision trees, such as Random 

Forest (RF) and Gradient Boosting (GB) regression, and 

this is why we have used on those two methods in the rest of 

the validation study. 

In the first actual validation experiment, we used 100 

different random splits into training and validation sets, 

using different probabilities 10%, 20%, 50% and 80% for 

allocating each rating to the training set, respectively. 

Figure 3 shows an example of a possible outcome on a 

user-item rating matrix of size 8x15, when 80% of ratings 

are allocated to the training set. As a baseline, we used the 

average ratings for each image, computed from the ratings 

for each image available in the training dataset. The more 

similar preferences the users have, the more accurately the 

missing ratings can be predicted by using the baseline 

scheme. In addition, we have also tested a scheme that uses 

randomly initialized image feature vectors with the same 

length as the proposed handcrafted feature vector. This 

scheme can be considered as a generic collaboration 

filtering technique that is completely agnostic to the actual 

characteristics of the items and the users. The three schemes 

are denoted as ‘Proposed,’ ‘Baseline,’ and ‘RandImFeats’ 
(random image features), respectively. Same seed was used 

for the random number generator when comparing different 

schemes, to make sure that the training and validation sets 

were similar and the comparison was fair.  

The performance of each model was measured by 

computing the Pearson linear Correlation Coefficient 

(PCC), Spearman rank order Correlation Coefficient 

(SCC), and Root Mean Squared Error (RMSE) between the 

8173



 

 

 Metric Dataset I Dataset II Dataset III Dataset IV Dataset V Dataset VI Average 

 

Baseline 

PCC 0.792 0.759 0.798 0.764 0.898 0.794 0.801 

SCC 0.786 0.738 0.792 0.741 0.892 0.754 0.784 

RMSE (±std)  18.8 (0.30) 20.2 (0.32) 19.0 (0.35) 17.7 (0.36) 14.0 (0.26) 17.2 (0.26) 17.8 

 

 

RandImFeats 

Gradient 

Boosting 

(GB) 

PCC 0.802 0.760 0.788 0.823 0.903 0.810 0.814 

SCC 0.798 0.743 0.783 0.802 0.899 0.781 0.801 

RMSE (±std)  18.4 (0.33) 20.2 (0.35) 19.4 (0.38) 15.5 (0.37) 13.7 (0.25) 16.6 (0.31) 17.3 

Random 

Forest 

(RF) 

PCC 0.812 0.773 0.803 0.825 0.906 0.820 0.823 

SCC 0.807 0.755 0.799 0.805 0.901 0.788 0.809 

RMSE (±std)  17.9 (0.33) 19.7 (0.32) 18.8 (0.36) 15.6 (0.42) 13.5 (0.31) 16.2 (0.28) 17.0 

 

 

Proposed 

Gradient 

Boosting 

(GB) 

PCC 0.820 0.777 0.803 0.850 0.910 0.829 0.832 

SCC 0.815 0.761 0.799 0.829 0.906 0.801 0.819 

RMSE (±std)  17.6 (0.33) 19.5 (0.37) 18.8 (0.31) 14.4 (0.32) 13.2 (0.25) 15.8 (0.25) 16.5 

Random 

Forest  

(RF) 

PCC 0.824 0.785 0.814 0.849  0.910 0.826 0.835 

SCC 0.819 0.768 0.809 0.829 0.906 0.796 0.821 

RMSE (±std)  17.4 (0.32) 19.2 (0.35) 18.3 (0.33) 14.5 (0.39) 13.2 (0.28) 15.9 (0.29) 16.4 

 

Table 1. Prediction results for quality ratings by individual users in CID2013 database (randomly removed ratings, 50% for training and 

50% for validation, average of 100 repetitions). The best results for each dataset are bolded. 

 Metric Dataset I Dataset II Dataset III Dataset IV Dataset V Dataset VI Average 

 

 

MOS-based 

quality model 

Gradient 

Boosting 

(GB) 

PCC 0.548 0.406 0.360 0.659 0.698 0.634 0.551 

SCC 0.533 0.351 0.293 0.632 0.672 0.571 0.509 

RMSE 26.0 28.8 30.0 20.6 22.8 21.9 25.0 

Random 

Forest 

(RF) 

PCC 0.546 0.441 0.410 0.667 0.730 0.566 0.560 

SCC 0.526 0.367 0.308 0.626 0.727 0.511 0.511 

RMSE 25.8 27.8 28.9 20.6 22.3 23.4 24.8 

 

 

Proposed 

Gradient 

Boosting 

(GB) 

PCC 0.584 0.486 0.417 0.772 0.720 0.650 0.605 

SCC 0.581 0.451 0.378 0.744 0.715 0.614 0.581 

RMSE 25.4 27.6 29.2 17.3 22.0 21.5 23.8 

Random 

Forest  

(RF) 

PCC 0.574 0.421 0.453 0.756 0.680 0.661 0.591 

SCC 0.569 0.406 0.381 0.738 0.684 0.632 0.568 

RMSE 25.5 29.0 28.5 18.0 23.6 21.3 24.3 

 

Table 2. Prediction results for quality ratings by individual users in CID2013 database (leave-one-out validation excluding each image one 

by one). The best results for each dataset are bolded. 

 

 

 
 

Figure 5. Model performance versus proportion of ratings 

included in the training set, in terms of average RMSE. 

 

predicted and true ratings in the validation dataset. We have 

reported the average for each performance metric in Table 1 

for all the six datasets in CID2013 database separately, 

using 50:50 split to training and validation sets. In Figure 5, 

we illustrate how the average performance changes along 

the proportion of ratings allocated in the training set. For 

clarity, we have only included the results for the proposed 

and RandImFeats schemes using RF regressor, but the 

results with GB regression were essentially similar. The 

plots show that the proposed scheme clearly outperforms 

both baseline and RandImFeats regardless of the training set 

size. RandImFeats works well when most of the ratings are 

available for training the model, but it performs even worse 

than the baseline when the user-item rating matrix used for 

training is sparse (i.e. less than 20% of ratings for training). 

As the results in Table 1 indicate, the proposed method 

outperforms the baseline method on every dataset, 

according to any criterion. The RandImFeats method with 

randomly initialized image feature vectors tends to 

outperform baseline, and in some cases, its performance is 

on par with the proposed scheme using image features. 

There are some apparent differences between the datasets: 

for datasets III and V, collaborative filtering improves the 

performance only slightly when compared to the baseline, 

whereas the improvement is much larger for the datasets I, 

II, IV and VI. The result suggest that there are less 

systematic differences between the users’ rating behavior 
for the datasets where the performance difference between 
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 Metric 10% training 20% training 50% training 80% training Average 

 

Baseline 

PCC (±std) 0.664 (0.019) 0.709 (0.014) 0.751 (0.009) 0.763 (0.017) 0.722 

SCC (±std) 0.646 (0.020) 0.689 (0.014) 0.729 (0.010) 0.741 (0.019) 0.701 

RMSE (±std)  0.245 (0.007) 0.224 (0.006) 0.206 (0.004) 0.202 (0.006) 0.219 

PAPI (±std) 0.460 (0.041) 0.465 (0.024) 0.479 (0.023) 0.486 (0.037) 0.473 

 

 

 

RandImFeats 

Gradient 

Boosting 

(GB) 

PCC (±std) 0.667 (0.018) 0.715 (0.013) 0.767 (0.009) 0.786 (0.016) 0.734 

SCC (±std) 0.654 (0.018) 0.703 (0.013) 0.756 (0.010) 0.777 (0.017) 0.723 

RMSE (±std)  0.242 (0.007) 0.223 (0.005) 0.203 (0.004) 0.194 (0.007) 0.216 

PAPI (±std) 0.452 (0.026) 0.494 (0.022) 0.544 (0.027) 0.563 (0.036) 0.513 

Random 

Forest 

(RF) 

PCC (±std) 0.720 (0.012) 0.753 (0.010) 0.792 (0.009) 0.807 (0.014) 0.768 

SCC (±std) 0.705 (0.013) 0.740 (0.010) 0.782 (0.010) 0.797 (0.016) 0.756 

RMSE (±std)  0.217 (0.004) 0.205 (0.003) 0.190 (0.004) 0.184 (0.006) 0.199 

PAPI (±std) 0.466 (0.025) 0.508 (0.022) 0.563 (0.023) 0.586 (0.040) 0.531 

 

 

 

Proposed 

Gradient 

Boosting 

(GB) 

PCC (±std) 0.674 (0.016) 0.720 (0.012) 0.771 (0.009) 0.791 (0.014) 0.739 

SCC (±std) 0.662 (0.016) 0.710 (0.013) 0.761 (0.009) 0.781 (0.016) 0.729 

RMSE (±std)  0.240 (0.006) 0.221 (0.005) 0.201 (0.004) 0.192 (0.006) 0.214 

PAPI (±std) 0.460 (0.025) 0.502 (0.023) 0.544 (0.024) 0.565 (0.040) 0.518 

Random 

Forest  

(RF) 

PCC (±std) 0.729 (0.011) 0.760 (0.008) 0.796 (0.009) 0.810 (0.014) 0.774 

SCC (±std) 0.714 (0.011) 0.748 (0.009) 0.786 (0.009) 0.801 (0.015) 0.762 

RMSE (±std)  0.214 (0.004) 0.203 (0.003) 0.189 (0.004) 0.183 (0.006) 0.197 

PAPI (±std) 0.478 (0.023) 0.518 (0.019) 0.570 (0.023) 0.591 (0.040) 0.539 

 

Table 3. Prediction results for quality ratings by individual users in CEED2016 database (randomly removed ratings, 100 repetitions). The 

best results for each experiment with 10%, 20%, 50% and 80% of ratings in the training set are bolded. 

 

baseline and collaborative filtering is small (i.e. datasets III 

and V). The reasons for those differences probably lie in the 

differences in methodology as well as the content in the 

datasets: for example, users were instructed to use the 

extremes of the rating scale for the best and the worst image 

in test sets I-III, but not for the test sets IV-VI [28]. 

The well-known disadvantage of collaborative filtering 

with latent features is that it cannot handle previously 

unknown items, commonly known as a cold start problem in 

recommender systems. In the second validation experiment, 

we aimed to demonstrate that the proposed scheme is also 

useful in scenarios where a new content is introduced 

without prior knowledge of its ratings. For this experiment, 

we used leave-one-out validation, where ratings for one 

image were used for validation and all the other ratings were 

used for training, as illustrated in Figure 4. The process was 

repeated to all the images, and the results were aggregated. 

In this scenario, we implemented also a baseline 

MOS-based quality model that uses the same regression 

model to predict the average rating (MOS) for each image, 

and assigns the same predicted rating to all the users. This is 

equivalent to the conventional learning-based quality 

modeling task, where only MOS is concerned. Due to the 

cold start, randomly initialized image feature vectors would 

not work in this scenario, and this is why we have omitted 

‘RandImFeats’ method in this experiment. 
The results for the second experiment are summarized in 

Table 2. Also in this experiment, the proposed approach 

shows an improvement in the overall results, when 

compared against the baseline quality model. There 

improvement in the average results is not very large, but the 

proposed approach seems to have a significant advantage 

with the dataset IV in particular. On the other hand, the 

baseline model works well with the dataset V, indicating a 

high agreement between the ratings by different users. 

Again, we assume that there are differences in methodology 

as well as content, which makes the users’ rating behavior 
on those datasets less predictable than on the other datasets. 

In the average results, GB seems to work slightly better than 

RF, but the difference is not essential. 

We assume that there is room for improvement with the 

used image features and the regression models. However, 

our results imply that the collaborative filtering approach 

combined with image features is indeed capable for 

predicting the quality ratings by individual users more 

accurately than just using the average ratings by the other 

users. This approach would be useful for maximizing the 

personal visual quality by applying individually chosen 

camera settings or post-processing algorithms. 

4.3. Scenario 2: relative ratings 

The main difference between the first scenario and the 

second scenario is that each user-item pair in CEED2016 

database consists of a user and a group of six images and 

their relative ratings, rather than a user and only one image. 

Therefore, we have used an image feature vector formed by 

concatenating the six image feature vectors extracted from a 

group of six differently processed version of the same 

source image, and a user feature vector generated in a 

similar fashion as in the first scenario. Then, we have used a 

multioutput regression model to predict the relative quality 

ratings jointly for the group of images. The process is 

conceptually similar to the depiction in Figure 2. For the 
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validation study, we have followed a similar approach as in 

the first scenario, with certain exceptions. 

As in the first scenario, we first attempted several 

different regressors and user vector lengths. Our 

observations were in line with the first scenario: regressors 

based on decision trees (RF and GB) tend to perform better 

than SV or MLP, and this is why we have run the full scale 

experiments using RF and GB only. In addition to PCC, 

SCC and RMSE, we defined one more performance 

criterion: the accuracy for predicting the most preferred 

version among the differently processed images, denoted as 

Prediction Accuracy for the Preferred Item (PAPI). This 

criterion is essential for applications trying to guess the 

post-processing technique preferred by a specific user. 

The first validation experiment for the second scenario 

was similar as for the first scenario: we split the user-item 

pairs (one user and six images) randomly into training and 

validation sets using the same probabilities (0.8 for training 

and 0.2 for validation), and repeated the process 100 times 

with different splits. The user feature vectors of 20 latent 

features for each user were randomly initialized, just as in 

the first scenario. For the baseline scheme, we used the 

relative ratings of each source image in the training set to 

compute the expected relative ratings for the respective 

source images in the validation set.  

The results for the first experiment are listed in Table 3. 

As the results show, both RandImFeats and the proposed 

scheme outperform the baseline scheme with all the tested 

proportions of ratings in the training set (10%, 20%, 50%, 

and 80%). According to the average results, the best 

performing method can improve the likelihood of predicting 

the most preferred image version from 47% of the baseline 

up to 54%. The proposed method with RF regression 

performs the best, but only with a slight margin to the 

RandImFeats scheme with RF method. Indeed, it seems that 

in this scenario, randomly initialized item feature vectors 

can discriminate different contents nearly as well as the 

features extracted from the content. RF regression 

outperforms GB regression clearly in the overall results. 

Finally, we tested the method with the leave-one-out 

validation scheme in a similar fashion as in the first 

scenario. We assume that every user tends to prefer similar 

post-processing techniques regardless of the image content, 

and therefore we implemented a baseline scheme that 

computes the average ratings for different post-processing 

techniques given by each user in the training set. The results 

comparing the baseline and the proposed model with RF 

regression are summarized in Table 4. 

As we can see from the results, the proposed scheme 

improves the accuracy of predicting the personally 

preferred post-processing techniques in comparison to the 

baseline, but the improvement is modest. Closer analysis 

reveals that there is a clear improvement for most of the 

images, but for some outlier images the baseline is better. 

Apparently, the dataset is too small (30 original images) to 

be trained to differentiate image content types accurately.  

 Metric Result 

 

Baseline 

 

PCC 0.685 

SCC 0.677 

RMSE 0.227 

PAPI 0.507 

 

Proposed 

(RF regressor) 

PCC 0.707 

SCC 0.701 

RMSE 0.222 

PAPI 0.529 
 

Table 4. Prediction results for quality ratings by individual users 

in CEED2016 database (leave-one-out validation excluding each 

image one by one). The best results are bolded. 

 

We are aware of image quality models employing more 

advanced features than in our work (e.g. [19]), and we are 

also aware of more sophisticated deep approaches for 

collaborative filtering (e.g. [23, 24]). Therefore, we believe 

that the method could be substantially improved by 

combining different techniques known in the prior art. 

Unfortunately, deep methods typically require large amount 

of training data, and this study is constrained by the limited 

sizes of the public image quality databases with individual 

user ratings available. We expect that larger user-centric 

image quality databases will be available in the future. 

5. Conclusions 

In this paper, we have proposed a method for predicting 

personal opinions or preferences on image quality. The 

proposed method is a hybrid scheme combining 

learning-based quality modeling based on a bag of image 

features, and collaborative filtering exploiting the available 

ratings in user-item rating matrix. Prediction of personal 

image quality ratings has a lot of interesting applications, 

such as automatic adjustment of camera settings or 

post-processing parameters for different images to match 

different users’ personal taste, as well as displaying 
personalized versions of images on networked applications, 

such as content sharing platforms. The feasibility of the 

proposed method is demonstrated via experiments on public 

image quality databases. The results show that it is indeed 

possible to predict personally perceived image quality more 

accurately by exploiting the image features rather than using 

the plain content agnostic collaborative filtering. However, 

experiments with larger datasets would be needed to 

demonstrate the full potential of the proposed method. 
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