
A Content Transformation Block For Image Style Transfer

Dmytro Kotovenko Artsiom Sanakoyeu Pingchuan Ma Sabine Lang Björn Ommer

Heidelberg Collaboratory for Image Processing, IWR, Heidelberg University

Abstract

Style transfer has recently received a lot of attention,

since it allows to study fundamental challenges in image

understanding and synthesis. Recent work has significantly

improved the representation of color and texture and com-

putational speed and image resolution. The explicit trans-

formation of image content has, however, been mostly ne-

glected: while artistic style affects formal characteristics of

an image, such as color, shape or texture, it also deforms,

adds or removes content details. This paper explicitly fo-

cuses on a content-and style-aware stylization of a content

image. Therefore, we introduce a content transformation

module between the encoder and decoder. Moreover, we

utilize similar content appearing in photographs and style

samples to learn how style alters content details and we

generalize this to other class details. Additionally, this work

presents a novel normalization layer critical for high reso-

lution image synthesis. The robustness and speed of our

model enables a video stylization in real-time and high def-

inition. We perform extensive qualitative and quantitative

evaluations to demonstrate the validity of our approach.

1. Introduction

Style transfer renders the content of a real photograph

in the style of an artist using either a single style sam-

ple [11] or a set of images [28]. Initial work on style

transfer by Gatys et al. [9] proposed a method which ex-

ploits a deep CNN (Convolutional Neural Network) pre-

trained on a large dataset of natural images. Their costly

computational optimization process has been replaced by

an efficient encoder-decoder architecture in recent works

[18, 28, 7, 2, 13] that efficiently generate the stylized output

in a single feed-forward pass. While [18] has proven that

an encoder-decoder architecture is both fast and effective

for transferring style, it acts as a black-box model, lacking

interpretability and accurate control of style injection: con-

tent transformation is performed indirectly, meaning there

is no explicit control which part of the network carries out

the stylization of photos and to what extend. To address this

2compvis.github.io/content-targeted-style-transfer/

Figure 1. Examples of generated images using our approach in the

style of (from top) Vincent van Gogh, Pablo Picasso, Paul Cezanne

and Wassily Kandinsky. More stylization examples of images and

videos can be found on the project page2.
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Figure 2. Illustrates the role of the content transformation block. Real input images and painting examples displaying similar content are

matched in the feature space. We utilize content similarity to learn how style explicitly alters content details.

issue, [28] introduced a fixpoint loss that ensures stylization

has converged and reached a fixpoint after one feed-forward

pass. This style-aware content loss forces the stylization to

take place in the decoder. However, the main issue remains:

The decoder alters style, synthesizes the stylized image, and

upsamples it. All these individual tasks cannot be learned

and controlled individually.

As a remedy, we introduce a novel content transforma-

tion block between encoder and decoder allowing control

over stylization and achieving a style-aware editing of con-

tent images. We force the encoder to explicitly extract con-

tent information; the content transformation block T then

modifies the content information in a manner appropriate to

the artist’s style. Eventually the decoder superimposes the

style on the altered content representation. Our approach

measures the content similarity between the content target

image and stylized image before and after the transforma-

tion.

In contrast to previous work, stylization should be object

specific and depending on the underlying object, the style

transformation needs to adapt. The Cubist style of Picasso,

for example, tends to reduce the human nose to a simple tri-

angle or distorts the location of the eyes. Therefore, we fur-

ther investigate, if we can achieve an object-specific alter-

ation. We utilize similar content appearing in photographs

and style samples to learn how style alters content details.

We show that by using a prominent, complex, and diverse

object class, i.e., persons, our model can learn how details

are to be altered in a content-and style-aware manner. More-

over, the model learns to generalize beyond this one partic-

ular object class to diverse content. This is crucial to styl-

ize also modern objects like computers which an artist like

Monet never painted. In addition, we propose a local feature

normalization layer to reduce the number of artifacts in styl-

ized images, significantly improving results when moving

to other image collections (i.e. from Places365 [34] to Ima-

geNet [27]) and increasing the image resolution. To validate

the performance of our approach, we perform various qual-

itative and quantitative evaluations of stylized images and

also demonstrate the applicability of our method to videos.

Additional results can be found on the project page.

2. Related Work

Texture synthesis Neural networks were long used for

texture synthesize [10]; feed-forward networks then enable

a fast synthesis, however these methods often display a lack

of diversity and quality [18, 30]. To circumvent this is-

sue, [21] propose a deep generative feed-forward network,

which allows to synthesize multiple textures within one

single network. [12] has demonstrated how control over

spatial location, color and across spatial scale leads to en-

hanced stylized images, where regions are altered by differ-

ent styles; control over style transfer has been extended to

stroke sizes [17]. [24] used a multiscale synthesis pipeline

for spatial control and to improve texture quality and stabil-

ity.

Separating content and style The integration of localized

style losses improved the separation of content and style.

In order to separate and recombine style and content in an

image, works have utilized low-level features for texture

transfer and high-level information to represent content us-

ing neural networks [11]. [6, 3, 8, 33] focused on distin-

guishing between different contents, styles and techniques

in the latent space; to translate an image to another image

is a vision problem, where the mapping between input and

output image relies on aligned pairs. To avoid the need for

paired examples, [35] presented an adversarial loss coupled

with a cycle consistency loss to effectively assign two im-

ages. On the basis of [35], [28] has proposed an approach,

where a style-aware content loss helps to focus on those

content details relevant for a style. A combination of gen-

erative Markov random field (MRF) models and deep con-

volutional neural networks have been used for the task of
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synthesizing content of photographs and artworks [20].

Real-time and super-resolution The processing time of

style transfer and the resolution of images have been fur-

ther addressed. Scholars aimed to achieve stylization in real

time and in super-resolution using an unsupervised training

approach, where either neural network features and statis-

tics compute the acquired loss function [18] or a multi-

scale network is employed [30]. To achieve a better qual-

ity for stylized images in high resolution, [32] propose a

multimodal convolutional network, which performs a hier-

archical stylization by utilizing multiple losses of increasing

scales.

Stylizing videos While these works have approached the

task of style transfer for input photographs, others concen-

trated on transferring artistic style to videos [25, 15, 28, 26],

using feed-forward style transfer networks [4] or networks,

which do not rely on optical flow at test time [15] to improve

the consistency of stylization.

3. Approach

Let Y be a collection of images that defines a style. We

extract the very essence of an artistic style presented in Y

and learn to transfer it onto images from a different dataset

X, such as photos. This formulation resembles a typical

unsupervised image translation problem, which requires a

generator G (usually consisting of the encoder E and de-

coder D) and a discriminator D trained against each other:

one mimics the target distribution Y, the other one distin-

guishes between the authentic sample y ∈ Y and the styl-

ized sample D(E(x)) for x ∈ X. Hence, we can extract

the style by solving the min-max optimization task for the

standard adversarial loss:

Ladv := E
y∼Y

[log(D(y))]+

E
x∼X

[log (1−Ds (D(E(x))))]
(1)

Let s be additional content information that is easily avail-

able, i.e., we utilize a simple coarse scene label of the image

x. Now the discriminator should not only discern real from

synthesized art. It should also enforce that the scene infor-

mation is retained in D(E(x)) by the stylization process,

Lcadv := E
y∼Y

[log(D(y))]+

E
(x,s)∼X

[log (1−D (D(E(x))|s))]
(2)

In contrast to a GAN framework that generates an image

from a random vector z, style transfer not only requires to

stylize a real input photograph x but also to retain the con-

tent of the input image after stylization. The simplest solu-

tion would be to enforce a per-pixel similarity between the

input x ∼ X and stylized image G(x):

Lpxl := E
x∼X

[‖D(E(x))− x‖22]. (3)

However, this loss alone would counter the task of styliza-

tion, since the image should not be the same afterwards on

a per-pixel basis. Previous work [18, 9] has utilized a pre-

trained perceptual loss [29]. Since this loss is pretrained on

an image dataset unrelated to any specific style, it cannot

account for the characteristic way in which an artist alters

content. Rather, we enforce the stylization to have reached

a fixpoint, meaning that another round of stylization should

not further alter the content. The resulting fixpoint loss

measures the residual in the style-specific encoding space

E(·),

LFP := E
x∼X

[‖E(D(E(x)))− E(x)‖22]. (4)

3.1. Content Transformation Block

While a painting of an artist is associated with one style,

it is noticeable that style affects image regions differently:

to emphasize the importance of an individual object, artists

would use a more expressive brushstroke or deform it to a

higher degree. Therefore, we do not only want to learn a

simple stylization but a content-specific stylization. Thus

each content detail must be stylized in a manner specific to

this particular content category. This means that a stylized

human figure should resemble how an artist has painted the

figure in a specific style and not an arbitrary object, such as

a vase or a chair. We enforce this capability by pulling im-

ages of similar content – but from different domains(art and

photograph) – closer to each other in the latent space, while

keeping dissimilar content images apart from each other. To

be more specific, we force the content representation of an

input photograph belonging to a specific class c to become

more similar to the input painting’s content representation

of the same class. To achieve this, we introduce a content

transformation block T transforming the output representa-

tion of the encoder E. We train this block in the adversarial

fashion: the discriminator Dc has to distinguish between the

representation of the real artworks’ content and the trans-

formed representation of the input photographs. But since

we strive to obtain a content specific stylization, the dis-

criminator Dc also has to classify the content class c of the

artwork y and the content class of the input photograph x.

Supplied with the content information c discriminator be-

comes more sensitive to content specific visual clues and

enforces the content transformation block to mimic them in

an artistic way.

Ladv−cont := E
(y,c)∼Y

[log(Dc(E(y)|c)))]+

E
(x,c)∼X

[log (1−Dc (T (E(x))|c))]
(5)

In terms of neural architecture the T represents a con-

catenation of nine “residual blocks”. Each block consists

of six consecutive blocks with a skip connection: conv-

10034



Figure 3. The two figures describe the two alternating training steps. The first step (top) is designated to obtain an artistic stylization while

retaining the content information of the input photograph. The second step (bottom) trains the content transformation block T to alter the

image content in a style-specific style. The lock sign indicates that the weights are fixed. See Approach section for further details.

layer, LFN-layer, lrelu-activation, conv-layer, LFN-

layer, lrelu-activation.

3.2. Local Feature Normalization Layer

Many approaches using convolutional networks for im-

age synthesis suffer from domain change (i.e. from photos

of landscapes to faces) or synthesis resolution change. As

a result, the inference size is often identical to the training

size or the visual quality of the results deteriorates when

switching to another domain. Reason being that instance

normalization layers overfit to image statistics and the layer

is not able to generalize to another image. We can improve

the ability to generalize by enforcing stronger normalization

through our local feature normalization layer. This layer

normalizes the input tensor across a group of channels and

also acts locally, not seeing the whole tensor but only the

vicinity of the spatial location. Formally, for an input tensor

T ∈ R
B×H×W×C , where B stands for the samples num-

ber, height H , width W and having C channels, we can

define a Local Feature Normalization Layer(LFN) with pa-

rameters WS denoting spatial resolution of the normaliza-

tion window and G - number of channels across which we

normalize:

LFN(·|WS,G) : RB×H×W×C −→ R
B×H×W×C .

To simplify the notation, we first define a subset of the

tensor T around (b, h, w, c) with a spatial window of size

WS×WS and across a group of G neighbouring channels:

BWS,G(T, b, h, w, c) :=






T (b, x, y, z)

∥

∥

∥

∥

∥

∥

h−WS/2 ≤ x ≤ h+WS/2
w −WS/2 ≤ y ≤ w +WS/2

⌊

c
G

⌋

G ≤ z ≤
⌊

c
G

⌋

G+G







.

(6)

Finally, we can write out the expression for the Local Fea-

ture Normalization Layer applied to tensor T as:

LFN(T |WS,G)(b, h, w, c) :=

γc
T (b, h, w, c)− mean[BWS,G(T, b, h, w, c)]

std[BWS,G(T, b, h, w, c)]
+ βc. (7)

In this equation, similar to the Instance Normalization

Layer [31], parameters γ, β ∈ R
C denote vectors of train-

able parameters and represent how to scale and shift each

channel; those are learned jointly with other weights of the

network via back-propagation. However, in practice the

computation of mean and std of a large tensor could be

a laborious task, so we compute these values only at the

selected locations (b, h, w, c) and interpolate for others.

3.3. Training Details

The training dataset X is the union of the Places365

dataset [34] and the COCO dataset [23], such that for a

tuple (x, c, s) ∈ X where x is a photograph, s is a scene

class if x is from the Places dataset and c is a content class

if x is from the COCO dataset. The second dataset Y con-

tains tuples (y, c) where y is the artwork and c is the content
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class. We focus on the content classes “person” and a nega-

tive class “non-person”. The generator network consists of

encoder E, transformer block T and decoder D. We utilize

two conditional discriminators Ds and Dc - the former is

applied to the input images and stylized outputs. The latter

is applied to the content representation obtained by encoder

E. Given this notation the losses become

Ladv−style := E
(y,c)∼Y

[log(Ds(y))]+

E
(x,c,s)∼X

[log (1−Ds (D(T (E(x)))|s))]
(8)

Ladv−cont := E
(y,c)∼Y

[log(Dc(E(y)|c)))]+

E
(x,c,s)∼X

[log (1−Dc (T (E(x))|c))]
(9)

LFP := E
(x,c,s)∼X

[‖E(D(T (E(x))))− E(x)‖22]. (10)

Training procedure For variables θE , θD, θT , θDc
, θDs

denoting parameters of the blocks E,D, T ,Dc,Ds. Train-

ing is performed in two alternating optimization steps.

The first step designated to obtain an accurate content

extraction in encoder E and to learn a convincing style in-

jection by decoder D.

min
θE ,θD

max
θDs

λLpxl
Lpxl+

λLFP
LFP + λLadv−style

Ladv−style

(11)

The second step is aimed to learn style-specific content

editing by the block T .

min
θT

max
θDc

λLadv−cont
Ladv−cont+

λLadv−style
Ladv−style

(12)

Please see Figure 3 illustrating the alternating steps of

the training.

4. Experiments and Discussion

4.1. Stylization Assessment

To measure the quality of the generated stylizations we

provide qualitative results of our approach and perform sev-

eral quantitative experiments which we describe below.

Deception rate. This metric was introduced in [28] to asses

how good the target style characteristics are preserved in the

generated stylizations. A network pre-trained for artist clas-

sification should predict the artist which was used to gener-

ate the stylization. The deception rate is then calculated as

the fraction of times the network predicted the correct artist.

We report the deception rate for our and competing methods

in Tab. 1 in the first column, where we can see that our ap-

proach outperforms other methods by a significant margin.

Figure 4. Can you guess which patches are real and which were

generated by our approach? Each row contains three patches gen-

erated by our model and two real patches. Artists: (from the top)

Cezanne, van Gogh, Claude Monet, Ernst Ludwig Kirchner and

Berthe Morisot. The solution is provided on the last page.

Expert and non-expert score. We also perform human

evaluation studies to highlight the quality of our styliza-

tion results. Given a content image patch, we stylize it

with different methods and show results alongside a patch

from a real painting to experts and non-experts. Both are

asked to guess which one of the shown patches is real. The

score is the fraction of times the stylization generated by

this method was selected as the real patch. This experiment

is performed with experts from art history and people with-

out art education. Results are reported in Tab. 1.

Expert preference score. In addition, we asked art his-

torians to choose which of the stylized images resemble the

style of the target artist the most. Then the expert preference

score (see Tab. 1) is calculated as the fraction of times the

stylizations of the method was selected as the best among

the others. The quantitative results in Tab. 1 show that both

experts and non-experts prefer our stylizations in compari-

son to images obtained by other methods.

Content retention evaluation. To quantify how well the

content of the original image is preserved, we stylize the Im-

ageNet [27] validation dataset with different methods and

compute the accuracy using pretrained VGG-16 [29] and

ResNet-152 [14] networks averaged across 8 artists. Results

presented in Tab. 2 show that the best classification score

is achieved on stylizations by CycleGAN [36] and Gatys

et al. [11], since both methods barely alter the content of

the image. However, our main contribution is that we sig-
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Method Deception Non-Expert Expert Expert

rate [28] deception deception preference

score score score

AdaIn [16] 0.067 0.033 0.016 0.019

WCT [22] 0.030 0.033 0.001 0.009

PatchBased[5] 0.061 0.118 0.011 0.038

Johnson et al. [18] 0.087 0.013 0.001 0.010

CycleGan [36] 0.140 0.026 0.031 0.010

Gatys et al. [11] 0.221 0.088 0.068 0.118

AST [28] 0.459 0.056 0.131 0.341

Ours 0.582 0.178 0.220 0.456

Wikiart test 0.6156 0.454 0.528 -

Photos 0.002 - - -

Table 1. A higher score indicates better stylization results. All

scores are averaged over 8 different styles. The row ”Wikiart

test” [19] shows accuracy on real artworks from the test set. The

deception rate for ”Photos” shows how often photos were miss-

classified by the network as real paintings of the target artist.

Network Original Ours AST Gatys CycleGAN

photos [28] [11] [36]

VGG-16 0.710 0.016 0.009 0.271 0.198

ResNet-152 0.783 0.057 0.032 0.389 0.341

Table 2. Top-1 classification accuracy on stylized images from val-

idations set of ImageNet [27] using the networks pretrained on

ImageNet. Note that the classification accuracy of our model is

higher then the state-of-the art model [28]. We include results for

[11] and [36], but they are not directly comparable to our method

since they barely alter the content of the input image. In the second

column we present the classification accuracy on the input photos.

Feature Photographs Ours Ours AST [28]

extractor w/o T

VGG-16 1.108 0.756 0.882 0.812

VGG-19 1.025 0.724 0.838 0.808

Table 3. The table summarizes RSSCD computed using differ-

ent classification networks for different stylization methods. The

score characterizes the content dissimilarity between real artworks

and stylized images, relative to the average content dissimilarity

between the artworks. The lower the better.

nificantly outperform the state-of-the-art AST [28] model

on the content preservation task, while still providing more

convincing stylization results, measured by the deception

rate in Tab. 1.

Qualitative comparison. We compare our method qualita-

tively with existing approaches in Fig. 5. The reader may

also try to guess between real and fake patches generated

by our model in Fig.4. More qualitative comparisons be-

tween our approach and other methods are available in the

supplementary material.

4.2. Ablation Study

4.2.1 Content Transformation

Relative style-specific content distance. To verify that

the image content is transformed in a style-specific manner,

Figure 5. Qualitative comparison: the first column shows the entire

image stylized by our approach (the real content image is provided

on top), a detailed view is presented in the second. The third col-

umn shows the real photo detail respectively, while the last two

display results obtained by other methods. Zoom in for a better

view and details.

Photographs Ours Ours AST [28]

w/o T

Accuracy 0.953 0.659 0.598 0.548

Recall 0.978 0.375 0.209 0.109

Precision 0.927 0.864 0.937 0.893

F1-Score 0.954 0.524 0.343 0.195

Table 4. Results of the person detection on the stylized images

from COCO dataset [23] using Mask-RCNN [1]. Columns from

left to right: Person detection on photos; on stylized images by our

method; on stylized images by our method without transformation

block; on stylized images by AST [28].

we introduce a quantitative measure, called relative style-

specific content distance (RSSCD). It measures the ratio
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between the average distance of the generated image styl-

izations to the closest artworks and the average distance be-

tween all the artworks. Distances are computed using the

features φ(·) of the classification CNN pretrained on Ima-

geNet. Then, RSSCD is defined as

RSSCD :=

1
|Zp|

∑

z∈Zp

min
y∈Yp

‖φ(z)− φ(y)‖2

1
|Yp||Yn|

∑

yp∈Yp,yn∈Yn

‖φ(yp)− φ(yn)‖2
,

Zp denotes the set of stylizations of the positive content

class (e.g., person), Yp denotes the set artworks of the pos-

itive content class, and Yn denotes all other artworks (see

Fig. 6 for an illustration).

We report the RSSCD for our model with and without

T . For comparison we also evaluate the state-of-the-art ap-

proach AST [28]. Here, we use class ”person” as the pos-

itive content class and two pretrained networks as content

feature extractors φ(·), namely VGG-16 and VGG-19 [29].

As can be seen in Tab. 3, the content transformation block

significantly decreases the distance between the stylized im-

ages and original van Gogh paintings, proving its effective-

ness.

We measure how well our model retains the information

present in the selected “person” class and compare it to both

the model not using T and to the AST [28]. We run the

Mask-RCNN detector [1] on images from the COCO [23]

dataset stylized by different methods and compute the accu-

racy, precision, recall and F1-score. From results ins Tab. 4

we conclude that the proposed block T helps to retain visual

details relevant for the “person” class.

In Fig. 7 we show stylizations of our method with and

without content transformation block. We recognize that

applying the content transformation block alters the shape

of the human figures in a manner appropriate to van Gogh’s

style resulting in curved forms (cf. the crop-outs from orig-

inal paintings by van Gogh provided in the 4th column of

Fig. 7). For small persons, the artist preferred to paint ho-

mogeneous regions with very little texture. This is appar-

ent, for example, in the stylized patches in row one and six.

Lastly, while van Gogh’s self-portraits display detailed fa-

cial features, in small human figures he tended to remove

them (see our stylizations in 3rd and 4th rows of Fig. 7).

This might be due to his abstract style, which included a

fast-applied and coarse brushstroke.

4.2.2 Generalization Ability

The transformer block T learns to transform content rep-

resentation of the photographs of class “person” in such a

way that it becomes indistinguishable of the content rep-

resentation of artworks of the same class. Though trans-

formation has been learned for one only class “person” it

Figure 6. Illustration of the RSSCD measure. Real positive, real

negative and stylized positive images are mapped into the feature

space using deep CNN. We then compute the average distance

from a stylized positive to the closest real positive and divide it

by the average distance between real positives and negatives. Pos-

itive images correspond to the class “person”.

Method Deception Deception Non-Expert Non-Expert

rate [28] rate deception score deception score

“person” non-“person” “person” non-“person”

AST 0.398 0.485 0.016 0.086

Ours w/o T 0.521 0.541 0.127 0.143

Ours 0.618 0.563 0.210 0.165

Table 5. Stylization quality for different content classes. Our

model has significantly improved stylization quality compared to

the state-of-the-art AST[28] model. The T block improves the de-

ception rate and preference score on both classes. The higher the

better.

can still generalize to other classes. To measure this gen-

eralization ability we compute the deception rate[28] and

non-expert deception scores on stylized patches for classes

“person” and non-“person” separately. The evaluation re-

sults are provided in Tab. 5 and indicate improvement of

the stylization quality for unseen content.

4.2.3 Artifacts Removal

To verify the effectiveness of the local feature normalization

layer (LFN layer), we perform a visual inspection of learned

models and notice prominent artifacts illustrated in Fig. 8.

We can observe that especially for plain regions with lit-

tle structure, the model without a LFN layer often produces

unwanted artifacts. In comparison, results obtained with an

LFN layer show no artifacts in the same regions. Notably,

for a model without an LFN layer the number of artifacts

increases proportionally to the resolution of the stylized im-

age.
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Figure 7. Shows the impact of the content transformation block:

column two shows results without using a content transformation

block. The third displays identical details with a content transfor-

mation block, emphasizing outlines of figures in a manner appro-

priate to van Gogh’s style. The last column provides details from

the artist’s paintings to highlight the validity of our approach. Best

seen on screen and zoomed in.

5. Conclusion

We introduced a novel content-transformation block de-

signed as a dedicated part of the network to alter an object

Figure 8. From left to right: stylized image with LFN layer, detail

of the image, same region for the model without LFN layer. Styles

from top to bottom: Cezanne, Kirchner, Cezanne, Paul Gauguin.

Local feature normalization significantly reduces the number of

artifacts by normalizing the network activation statistics.

in a content-and style-specific manner. We utilize objects

from the same class in content and style target images to

learn how content details need to be transformed. Exper-

iments show that from only one complex object category,

our model learns how to stylize details of content in general

and thus improves the stylization quality for other objects as

well. In addition, we proposed a local feature normalization

layer, which significantly reduces the number of artifacts in

stylized images, especially when increasing the image res-

olution or applying our model to previously unseen image

types (photos of faces, road scenes etc.). The experimental

evaluation showed that both art experts and persons with-

out specific art education preferred our method to others.

Our model outperforms existing state-of-the-art methods in

terms of stylization quality in both objective and subjective

evaluations, also enabling a real-time and high definition

stylization of videos.
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Solution to Figure 4:

Cezanne: fake, real, fake, fake, real

van Gogh: real, fake, real, fake, fake

Monet: fake, real, fake, real, fake

Kirchner: real, fake, fake, fake, real

Morisot: fake, real, fake, real, fake.
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