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Abstract

We present MonoPSR, a monocular 3D object detection

method that leverages proposals and shape reconstruction.

First, using the fundamental relations of a pinhole cam-

era model, detections from a mature 2D object detector are

used to generate a 3D proposal per object in a scene. The

3D location of these proposals prove to be quite accurate,

which greatly reduces the difficulty of regressing the final

3D bounding box detection. Simultaneously, a point cloud

is predicted in an object centered coordinate system to learn

local scale and shape information. However, the key chal-

lenge is how to exploit shape information to guide 3D lo-

calization. As such, we devise aggregate losses, including

a novel projection alignment loss, to jointly optimize these

tasks in the neural network to improve 3D localization ac-

curacy. We validate our method on the KITTI benchmark

where we set new state-of-the-art results among published

monocular methods, including the harder pedestrian and

cyclist classes, while maintaining efficient run-time.

1. Introduction

A cornerstone of 3D scene understanding in computer

vision is 3D object detection—the task where objects of in-

terest within a scene are classified and identified by their

6 DoF pose and dimensions. Existing methods vary in the

data they use, which include LiDAR [20, 25, 42, 43, 44],

stereo images [5], and monocular images [2, 16, 21, 24, 40].

Monocular methods are attractive as they have the lowest

cost and the simplest setup, relying on only a single cam-

era. These methods are therefore attractive for applica-

tions where resources are limited, or for companies want-

ing to bring 3D object detection to mass markets such as

autonomous navigation and virtual reality.

Monocular 3D object detection methods are also the

most disadvantaged; the problem formulation is under-

constrained because depth information is lost when a 3D

∗Equal contribution.

Figure 1. Pipeline for 3D Object Detection and Instance Point

Cloud Estimation: Our network takes an image with 2D bound-

ing boxes and regresses instance-centric 3D proposals to produce

3D bounding boxes. Simultaneously, instance point clouds are es-

timated to recover local shape and scale, and to enforce 2D-3D

consistency. The proposal regression and point cloud estimation

are trained jointly in the network.

scene is projected onto an image plane. The difficulty of

the problem is highlighted on the KITTI 3D Object Detec-

tion benchmark [12] in the car category where the best pub-

lished monocular method [16] has an AP value 67% lower

than the best published method using LiDAR [42]. Results

for the more challenging pedestrian and cyclist classes are

rarely reported for monocular methods, likely due to even

poorer performance.

To deal with the under-constrained monocular object de-

tection problem, recent methods have typically used deep

learning with well-informed priors. One such prior is that

the predicted 3D bounding box should fit tightly within its

corresponding 2D bounding box [24]. This assumption,

however, leads to localization inaccuracies because it causes

2D bounding box, orientation, and dimension estimation

errors to propagate to the final 3D box prediction. Other

methods [2, 21] match objects to CAD models to determine

shape and pose. Unfortunately, these methods are restricted

to the shape space covered by the selected CAD models, and

do not easily extend to applications where models are un-
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available. Lastly, all state-of-the-art methods under-utilize

the information available during training. Although depth

maps or LiDAR scans are available because they are re-

quired to create 3D labels, only [40] incorporates this form

of depth information during training, but neglect to exploit

the strong priors that can be formed from 2D bounding

boxes, such as the ones used by [16, 24].

This paper introduces a proposal based monocular 3D

object detection method that leverages the related task of

shape reconstruction. We first greatly reduce the 3D search

space by exploiting the robust performance of a 2D object

detector by designing a non-restrictive 3D bounding box

proposal per object detected in the scene. The location of

the proposal is determined by considering the re-projection

of the box center, and the relation between the height and

depth of an object in the perspective transformation of a

pinhole camera model. Compared to the 2D box constraint

proposed by [24], our usage of a 2D bounding box does not

lock in 2D box, orientation and dimensions inaccuracies.

Instead, we use a two stage proposal regression design, in

a similar manner to Faster R-CNN [30], which facilitates

learning by regressing distributed anchor boxes, to obtain

the final amodal, oriented 3D bounding box. We find this

prior is flexible and suitable for classes that have varying

dimensions and poses such as pedestrians and cyclists.

We also incorporate an Instance Reconstruction module

that predicts a point cloud for each instance in a canonical

object (local) coordinate system. However, it is not obvious

how to gain localization information from this estimated ob-

ject point cloud. In our formulation, we connect the tasks

of object detection and shape reconstruction by transform-

ing the object point cloud into the camera coordinate frame

using the instance centroid regression output. We finally

jointly optimize the local scale and shape of each instance

with its localization in the scene through multi-task learn-

ing and a novel projection alignment loss. This loss projects

the object point cloud to image space and enforces 2D-3D

consistency between the object point cloud and the image.

The outputs for the proposal and shape reconstruction tasks

are also designed to have smaller ranges, which has been

shown to make learning tasks easier in various applications

[24, 25, 30]. An overview is provided in Fig. 1.

We validate our method on the KITTI 3D Object Detec-

tion benchmark [12] on the car, pedestrian, and cyclist cat-

egories, and perform extensive ablation studies to evaluate

our design choices. In summary, our key contributions are:

a) an effective non-restrictive incorporation of a 2D bound-

ing box prior to generate high quality 3D centroid propos-

als; b) an instance reconstruction module, which helps in

recovering the shape and localization of objects; c) a novel

loss formulation to jointly optimize point cloud estimates in

both object and camera coordinate frames to enforce con-

sistency between the 2D and 3D estimations. Furthermore,

we are the first to propose a learning method that jointly

optimizes point cloud reconstruction and observation con-

sistency to achieve accurate 3D localization.

These contributions lead to state-of-the-art results on the

KITTI 3D Object Detection benchmark where we achieve

a 68% increase over the previous monocular state-of-the-art

[16]. In addition, we are the first to publish 3D pedestrian

and cyclist results on the test benchmark and achieve highly

promising results.

2. Related Work

Proposal Based Methods Many successful 2D object de-

tectors employ the use of proposals [7, 23, 30, 35, 45]

to generate candidate object positions. This idea is ex-

tended into 3D scenes by methods such as Mono3D [4] and

3DOP [5] which generate a large number of 3D proposals

along an estimated ground plane, which are then projected

to the image and scored by hand-crafted semantic, contex-

tual, and shape features. Using 2D detections to reduce the

search space in 3D has also shown promise because 2D

detection is a mature field with robust performance; [28]

even suggests 2D detectors are accurate enough that detec-

tors can be trained using data it inferences. F-PointNet [25]

lifts 2D detections to frustums and uses PointNets [26, 27]

on these frustum points to regress 3D detections. In our

monocular case, LiDAR point cloud information is not

available. We instead use a pinhole model and leverage the

relation of the 2D bounding box height and estimated object

height to create centroid proposals that are regressed in the

second stage of our network.

Geometric Priors Geometry can be used as a prior to

constrain the object detection problem. Deep3DBox [24]

uses a neural network to predict the dimensions and pose

of an object, then use a linear system of equations to en-

force a constraint that the projected 3D bounding box must

fit tightly in the 2D box. However, this hard constraint locks

in errors from 2D bounding box, orientation, and dimension

estimates when producing the 3D box. A3DODWTDA [16]

instead estimate the image coordinates of the 3D bounding

box corners, and solve a non-linear least squares fit for the

best 3D box. While these methods work well for objects

that maintain a constant shape like cars, solving for the pro-

jected 3D bounding box corners is harder for classes such as

pedestrians; the 3D box dimensions and the corresponding

projection of its corners vary greatly based on the skeletal

pose of the person. In contrast, our formulation is less re-

strictive and does not lock in 2D bounding box, orientation,

and dimension errors. While we still use geometry to gen-

erate a proposal, errors can be corrected in a later regression

stage.
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Figure 2. Network Architecture: The network produces a feature map using an image crop of an object and global context features as

inputs. From this feature map three tasks are performed a) the dimensions and orientation are predicted to estimate a proposal b) offsets

for the proposals are regressed c) local point clouds are predicted and transformed into the global frame for auxiliary loss calculations.

Shape Reconstruction Large-scale synthetic datasets

such as ShapeNet [3] have allowed deep neural networks

to be trained on the task of shape reconstruction from single

images [8, 13, 17, 18, 33, 34, 38]. While shape reconstruc-

tion can be considered a separate problem, understanding

shape can be beneficial for 3D object detection. Chabot et

al. [2] use a network to output a 2D bounding box, vehicle

part coordinates, and 3D box dimensions. They then match

the dimensions to a CAD model and estimate pose using

the matched model and the predicted vehicle parts. Kundu

et al. [21] match CAD models using the shape space cre-

ated by a set of CAD models, and train the network with a

render-and-compare loss. While these methods have been

shown to improve pose estimation, they require annotated

datasets of 3D models for training, and can introduce er-

ror from CAD model mismatch. We instead devise a more

flexible, class-agnostic solution that works with object point

clouds directly and automatically generates relevant shape

data from real-world LiDAR data to facilitate local shape

learning.

Moreover, methods involving shape completion [9, 10,

32] demonstrate the importance of enforcing consistency

between the 3D estimations and 2D observations. Examples

of differentiable 2D-3D consistency constraints for training

deep networks are introduced in [31, 34, 36, 37, 41]. The

monocular 3D object detection methods [16, 24] loosely

capture 2D-3D consistency when using geometric con-

straints with 2D boxes and the corners of 3D boxes. How-

ever, they ignore the shape of the object within the box. We,

on the other hand, use the 3D point cloud of the object, and

enforce 2D-3D consistency through a differentiable pixel-

wise projection alignment loss.

Depth Prediction Recently, deep learning methods have

shown significant improvement on the task of monocular

depth prediction [11, 15, 22]. MultiFusion [40] uses depth

prediction outputs from MonoDepth [15] and fuses this in-

formation with the corresponding RGB image to produce

3D bounding box estimates through a modified Faster R-

CNN network. As opposed to predicting the depth of the

entire scene, we use an instance-centric focus to make the

task easier by avoiding regressing large depth ranges. We

capture both shape and depth information in our formula-

tion which predicts a point cloud in a local object frame

then transforms it into the camera coordinate frame. In ad-

dition, we take a multi-task learning approach by sharing

feature extractor weights used for box regression and point

cloud estimation, and we combine our depth estimates with

a well informed 2D box prior.

3. Monocular 3D Detection Framework

Given an M × N image I , the objective is to classify

and localize objects of interest by fitting a 3D bounding box

parameterized by its class C, centroid T = (tx, ty, tz), di-

mensions D = (dx, dy, dz), and orientation O = (θ, φ, ψ).
The core idea of our method is to reduce the search space

by using a single high-quality proposal per object and to

leverage shape reconstruction for accurate localization.

We take advantage of the robust performance of existing

2D detectors to generate classified 2D bounding boxes. Us-

ing these boxes, image crops are passed through an encoder

to output a feature map shared by the three downstream

modules shown in Fig. 2: Proposal Generation, Proposal

Refinement, and Instance Reconstruction. Full image fea-

tures are included to provide additional scene context, and

further improves results as shown in Sec. 5.2.

The objective of the Proposal Generation module is to
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generate high quality 3D proposals parameterized by their

centroids P = (px, py, pz). The Proposal Refinement mod-

ule regresses these proposals and outputs amodal, oriented

3D bounding boxes. The Instance Reconstruction module

estimates a point cloud per instance in a local object coor-

dinate frame, then transforms it into the camera coordinate

frame using the centroid regression from the Proposal Re-

finement module. These modules are jointly optimized with

a projection alignment loss.

3.1. Proposal Generation

Features are extracted from the image using two en-

coders. The first encoder extracts features from the resized

RGB crops of each instance detected by the 2D detector.

The second encoder extracts features from the full image

resized to half of its original size, and then RoI pooling [14]

is used to crop a feature map for each instance. A shared

feature map is generated through the depth-wise concatena-

tion of both feature maps.

Using the shared feature map, a proposal is generated per

detected 2D bounding box as follows. For each 2D box, the

orientation and dimensions are first estimated. The proposal

depth is initialized from the perspective transformation re-

lation of the object height in 3D and its projected height

in image space. Lastly, the vertical and horizontal location

are predicted, which are a function of the initialized depth

and the horizontal and vertical viewing angles, αh and αv ,

which are the rotations between the camera principle axis

[0, 0, 1]T and the ray passing through the center of the 2D

box.

Orientation and Dimensions In the KITTI benchmark

implementation of this network, only the observation an-

gle β is estimated, which is the sum of the viewing an-

gle αh and object yaw θ. As explained in [24], the es-

timation of an object’s observation angle, instead of yaw,

accounts for the change in appearance based on the view-

ing angle to the object. Both φ and ψ are assumed to be

zero in the KITTI benchmark, although the network can be

extended to estimate them. The observation angle is esti-

mated using discrete bins as in [25]. Dimensions offsets,

(∆dx,∆dy,∆dz), are predicted from the mean class sizes.

Using discrete bins and predicting offsets from mean sizes

facilitates orientation and dimension learning by restricting

values to be within a smaller range. These estimations are

predicted early in the network to be made available for pro-

posal initialization and refinement.

Proposal Depth The depth of an object is the most chal-

lenging parameter to estimate due to the large range in ex-

pected values, which can range from 5 m to 80 m on the

KITTI dataset, and the fact that this information is lost dur-

ing perspective projection. The classical pinhole camera

model provides a relation between object height h, depth

from the image plane tz , focal length f , and projected

height on the image plane ĥ through similar triangles,

tz = f
h

ĥ
. (1)

We can use this relation with object height estimates to pre-

dict the proposal depth pz . It is important to note that the

height, h, and the actual object height, dy , are rarely equiv-

alent due to perspective projection and camera viewpoint.

However, for a camera with a viewpoint approximately par-

allel to the ground using this approximation provides a rea-

sonable initial depth estimation. The depth of the proposal

is initialized to the value calculated from Eq. 1, and we

show in Sec. 5 that this initialization provides a more ac-

curate estimate of an object’s depth compared to a direct

estimation from the network.

Proposal Vertical and Horizontal Location The hori-

zontal and vertical location (px, py) of the proposal is deter-

mined by re-projecting the center coordinate of the 2D box

(uc, vc) into 3D space at depth zc = pz using the camera

calibration. The corresponding 3D point in camera coordi-

nates is (xc, yc, zc) where xc and yc are the horizontal and

vertical locations, respectively.

3.2. Proposal Refinement

The Proposal Refinement module further regresses the

proposal location initialized in the previous stage of the

network. Mousavian et al. [24] choose to regress box di-

mensions D, rather than the translations, T , because there

is smaller variance in box dimensions, which improves re-

gression performance. We also make the learning task eas-

ier by regressing values within a small range, but since we

generate an accurate proposal in the previous step, we for-

mulate the refinement regression as an offset from the pro-

posal, which we show provides better results than directly

estimating depth in Sec. 5. The proposal depth error can be

modeled as a function s in,

tz = f
dy

bh
+ s(θ, φ, ψ,D, αv, αh) (2)

where s is dependent on the rotation of the object, its di-

mensions, and the viewing angles αv, αh. The first term of

Eq. 2 is the proposal depth pz which uses object height dy as

h and the 2D bounding box height bh as ĥ. We also confirm

that learning the regression from the proposal, as opposed

to a direct estimation, provides a more stable error in depth

in Sec. 5.

In the network, the shared feature maps from the fea-

ture extractor are flattened and concatenated with the pro-

posed centroid, 2D box size, dimensions, and orientation.

This feature vector is then passed through two sets of fully
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connected layers that output the translation regression tar-

gets (∆ty,∆tz). Instead of regressing ∆tx, which would

be overconstraining the problem, tx is recovered using the

ray from the camera center to the estimated 3D centroid of

the box.

3.3. Instance Reconstruction

The Instance Reconstruction module takes advantage of

the available LiDAR data during training to learn shape

and scale information. We encode shape and scale infor-

mation through a predicted local point cloud pO = {pi ∈
R

3, i = 1, . . . ,K}, with K as the number of points, and

facilitate the learning task by using an object coordinate

frame as shown in Fig. 3. Using local coordinate frames

have recently been shown to be effective in applications of

3D scene understanding [25, 29]. In contrast to MultiFu-

sion [40] where a global depth map is estimated up to 70 m,

the point cloud in the object coordinate frame only contains

values up to the size of the objects. Moreover, the rich point

cloud representation is able to estimate instance shape and

size while allowing for variations in 3D shape.

We next note that the tasks of point cloud estimation and

object localization are closely related. The estimated cen-

troid and horizontal viewing angle are used to transform the

predicted point cloud into the camera coordinate system.

The predictions of both the local point cloud and the object

position should be consistent with the object’s appearance

in image space. It is therefore intuitive to optimize these

tasks jointly. This is achieved through a Z-channel loss and

a projection alignment error loss, which penalizes the mis-

alignment of the instance point cloud projected back into

the image.

Generating 3D Instance Training Data The sparse Li-

DAR scan is first interpolated using [19] and converted into

a 3 channel tensor J using the provided camera calibration,

with each pixel representing a point (x, y, z). Points within

ground truth boxes are considered as the set of points for an

instance. These points are used to generate three additional

sets of ground truth. First, the projection of these points in

image space provides instance segmentation masks. Sec-

ond, the third channel of J corresponds to the instance

depth map, which is masked and resized to the RGB crop

size. Third, the local point cloud is generated. As shown in

Fig. 3, the rotation matrixRαh
∈ SO(3) is calculated using

the horizontal viewing angle, and an object’s point cloud in

the camera coordinate frame is calculated in homogeneous

coordinates as pC = TCO ∗ pO, where TCO is the transfor-

mation matrix

TCO =

[

Rαh
T

0 1

]

, (3)

and T is the ground truth object centroid. The local point

cloud is calculated by reversing this transformation. Note

Figure 3. Object Coordinate System: The instance point cloud is

predicted within an object coordinate system created by translating

the origin by the object centroid and rotating by the horizontal

viewing angle αh.

that we resize and encode the local and global instance point

clouds as three channel tensors L ×W × 3. Note, the seg-

mented LiDAR input is not required during inference and is

only used to generate training data.

Point Cloud Estimation The shared feature maps are fed

into a small decoder network that produces the local L ×
W × 3 point clouds, with each grid element representing

a point in the object coordinate system. Valid points are

obtained by applying the automatically generated instance

segmentation mask corresponding to the visible portion of

the object.

The predicted point clouds provide a rich form of 3D

scene understanding not captured by methods that only out-

put 3D bounding boxes, and avoids the inflexibility of a

CAD dataset that certain methods [2, 21] require. This

more flexible formulation should allow for generalization to

a wide variety of objects. The network can also be trained to

additionally output an L ×W segmentation mask to allow

the object point clouds to be used as signals for other tasks

such as geometric appearance tracking.

3.4. Training Losses

The network is trained using a multi-task loss defined by

Ltotal = Lt + Lθ + Ldim + Lc. (4)

where Lt is the regression loss for the difference between

the true centroid and proposal centroid, Lθ is for the ob-

ject’s orientation, Ldim is the offset regression loss for the

bounding box dimensions, and Lc represents the Instance

Reconstruction losses described in the next section. The

orientation loss, Lθ, is formulated as in [25] with a clas-

sification loss for the discrete angle bins and a regression

loss for the angle bin offsets. All regression losses use the

smooth L1 loss and all classification losses use the softmax

loss. Each loss is weighed such that validation losses con-

verge to values with approximately the same magnitude.
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3.4.1 Instance Reconstruction Losses

Fig. 4 shows the three losses used in the Instance Recon-

struction module. The instance point cloud is represented

as an L × W × 3 grid of points. Valid points, selected

from the generated segmentation masks, are trained with a

smooth L1 loss. The joint localization loss is composed of

two parts, a Z-channel loss and a projection alignment loss.

The local point cloud is transformed from its object coor-

dinate frame to the camera coordinate frame using the trans-

form TCO from Eq. 3. The last channel of the transformed

point cloud corresponds to the scene’s depth map located at

the instance, and is trained with a smooth L1 loss.

The global instance point cloud can be projected into the

image. From the generation process explained in Sec. 3.3

each projected point has a known image coordinate lo-

cation within the 2D bounding box. The projected im-

age coordinates H are calculated using H = ΠpC where

Π is the camera projection matrix. The projection align-

ment error is calculated with the expected coordinates G as

Eproj = |G−H|, and trained using a smooth L1 loss with

regression targets of 0 at valid pixel locations. The projec-

tion error values are normalized by the width and height of

the 2D bounding box. This loss penalizes the misalignment

when the point cloud is projected to the image, which en-

forces the consistency between the 3D estimation and 2D

appearance.

4. Implementation

We use MS-CNN [1] as our 2D detector for fair com-

parison with [24]. To facilitate faster convergence, the full

scene and instance convolution encoders are initialized with

ResNet-101 weights before conv5 1 pre-trained on the task

of 2D object detection on KITTI. The full image is resized

to 160× 608, and each instance is cropped and resized into

a 48 × 48 × 3 image from the RGB image. The feature

extractor output stride is set to 4, resulting in a final layer

feature map with resolution 12× 12. A flattened version of

this map is passed into two fully connected layers for box

regression and orientation estimation. The local point cloud

is generated from the small decoder network consisting of

repeated upsampling and convolutional layers, resulting in

a feature map of the original 48×48 resolution, after which

a 48 × 48 × 3 point cloud pl is outputted through a 3 × 3
convolutional layer. The network is trained using an Adam

optimizer for 100K iterations with an initial learning rate of

0.0008 and decay factor of 0.8 every 10K steps.

5. Experiments

We present results on the challenging KITTI 3D Object

Detection benchmark where we compare with the current

state-of-the-art monocular methods, validate design choices

through ablation studies, and present qualitative results.

Figure 4. Instance Reconstruction Losses: Losses for the corre-

sponding predictions (red) and ground truth (green). All penalties

use the smooth L1 loss at valid pixel locations using automatically

generated segmentation masks. First, the point cloud loss penal-

izes the instance point cloud along each channel (x, y, z). The

point cloud is then placed at its estimated location in the camera

coordinate frame using TCO , the transformation between object

and camera coordinate frames, and penalized in the last channel z.

Finally, the point cloud is projected into image space with Π, the

camera projection matrix. A projection alignment loss penalizes

points projected into the wrong image pixel location.

Two validation splits are used to compare against previous

methods. The first split val1 follows [6] and the second split

val2 follows [39]. The ablation studies were performed on

val1. As with [16, 25], a separate training split is used for

better generalization on the test results. Training is done

with a batch of up to 32 ground truth 2D boxes from the

same image, while all inference and evaluation is done us-

ing the 2D detection boxes from MS-CNN [1]. The only

data augmentation used during training is 2D box jittering

to simulate 2D detections. Specifically, Gaussian noise was

added to the dimensions and center of the 2D box, scaled

by the size of the box, while keeping a minimum 0.7 IoU

overlap with the original ground truth box. For evaluation,

the KITTI easy, moderate, and hard difficulty classifications

are used.

5.1. AP Comparison with State­of­the­Art Methods

We compare our approach with previous monocular

state-of-the-art methods on the tasks of 3D localization and

3D detection, using the Bird’s Eye View (BEV) and 3D AP

metrics, on the KITTI validation splits in Tab. 1 and Tab. 2,

respectively. The results of [4, 24] are taken from [40]. We

also submit our detections to the KITTI test server for eval-

uation, with the results shown in Tab. 3. The results demon-

strate that our method outperforms the previous state-of-
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Method 0.5 IoU 0.7 IoU

Easy Moderate Hard Easy Moderate Hard

Mono3D [4] 30.50 / - 22.39 / - 19.16 / - 5.22 / - 5.19 / - 4.13 / -

Deep3DBox [24] - / 30.02 - / 23.77 - / 18.83 - / 9.99 - / 7.71 - / 5.30

A3DODWTDA [16] 45.46 / - 33.83 / - 31.78 / - 15.64 / - 12.90 / - 12.30 / -

MultiFusion [40] 55.02 / 54.18 36.73 / 38.06 31.27 / 31.46 22.03 / 19.20 13.63 / 12.17 11.60 / 10.89

Ours 56.97 / 55.45 43.39 / 43.31 36.00 / 35.47 20.63 / 21.52 18.67 / 18.90 14.45 / 14.94

Table 1. 3D Localization: APBEV on KITTI val1/val2 sets.

Method 0.5 IoU 0.7 IoU

Easy Moderate Hard Easy Moderate Hard

Mono3D [4] 25.19 / - 18.20 / - 15.52 / - 2.53 / - 2.31 / - 2.31 / -

Deep3DBox [24] - / 27.04 - / 20.55 - / 15.88 - / 5.85 - / 4.10 - / 3.84

A3DODWTDA [16] 40.31 / - 30.77 / - 26.55 / - 10.13 / - 8.32 / - 8.20 / -

MultiFusion [40] 47.88 / 44.57 29.48 / 30.03 26.44 / 23.95 10.53 / 7.85 5.69 / 5.39 5.39 / 4.73

Ours 49.65 / 48.89 41.71 / 40.93 29.95 / 33.43 12.75 / 13.94 11.48 / 12.24 8.59 / 10.77

Table 2. 3D Detection: AP3D on KITTI val1/val2 sets.

Method BEV AP 3D AP

Runtime Easy Moderate Hard Easy Moderate Hard

MultiFusion [40] 0.12 13.73 9.62 8.22 7.08 5.18 4.68

A3DODWTDA [16] 0.80 10.21 10.61 8.64 6.76 6.45 4.87

Ours 0.20 20.25 17.66 15.78 12.57 10.85 9.06

Table 3. 3D Car Localization and Detection: APBEV and AP3D AP on KITTI test set.

Metric Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard

BEV AP 14.27 11.22 10.54 14.75 12.17 11.35

3D AP 12.65 10.66 10.08 13.43 11.01 9.93

Table 4. 3D Pedestrian and Cyclist Detection: APBEV and AP3D for the pedestrian and cyclist classes on the KITTI test split. No other

published method currently has results on the test server.

the-art by a significant margin while maintaining efficient

runtime. The total inference time for the network is 120ms

on a Titan X GPU, which is in addition to the 2D detec-

tor which takes 80ms. We are also the first monocular 3D

object detection method to publish pedestrian and cyclist re-

sults on the KITTI 3D Object Detection benchmark. Highly

promising results on the test and validation sets are shown

in Tab. 4 and Tab. 5.

5.2. Effect of Proposals and Full Image Features

Tab. 6 investigates the effect of the proposal formulation

described in Sec. 3.1 and the importance of full image fea-

tures for learning scene context. The focus of the proposal

is to improve depth estimation, so the metrics used are av-

erage depth error and standard deviation.

To show the viability of using a single proposal per de-

tection, we train a model to directly estimate the object

depth with full image features appended, and two models

that predict regressions from proposals, one that regresses

using only instance features and the other with full image

features appended. The model trained for direct depth es-

timation performs worse than the proposal regression net-

works. The first two rows of Tab. 6 show that proposal

Class Metric IoU Easy Moderate Hard

Ped.

BEV AP
0.25 32.54 28.92 24.32

0.5 11.68 10.05 8.14

3D
0.25 31.89 28.23 23.36

0.5 10.64 8.18 7.18

Cyc.

BEV AP
0.25 24.79 17.53 16.96

0.5 11.18 10.18 10.03

3D AP
0.25 23.77 17.24 16.45

0.5 10.88 9.93 9.93

Table 5. 3D Pedestrian and Cyclist Detection: APBEV and

AP3D for the pedestrian and cyclist classes on KITTI val1 set.

regression leads to more accurate centroid depth than the

direct estimation method. The use of our proposals is fur-

ther justified as they lead to a more stable error with lower

standard deviation. The last row shows that the use of full

image features provides useful cues for centroid depth esti-

mation.

5.3. Instance Reconstruction Analysis

We analyze the effect of the Instance Reconstruction

module in Tab. 7. The baseline network is taken as the pro-

posal regression network using the full image from Sec. 5.2.
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Figure 5. Qualitative detection results on several scenes in the KITTI dataset. 2D detections (top) are shown in orange. 3D detections in

green are shown projected into the image (top) and in the 3D scene (bottom). Ground truth 3D boxes (bottom) are shown in red. Points

within the detection boxes are the estimated point clouds from the network, while the background points are taken from the colorized inter-

polated LiDAR scan. Note that for pedestrians in particular, the projected 3D boxes do not fit tightly within their 2D box, so constraining

the 3D box with the 2D box is not ideal.

Version Input Depth Error

Proposal Only C+D 1.43 / 2.08

Proposal Regression C+D 1.31 / 1.93

Direct Estimation C+F+D 1.48 / 2.28

Proposal Regression C+F+D 1.22 / 1.84

Table 6. Proposal Representation and Full Image Features. Er-

ror in meters for centroid depth estimation (average absolute error

/ standard deviation) for the hard car category on the KITTI val1

set. C = features from the RGB crop, D = the estimated 2D and

3D box dimensions, F = features from the full image. Networks

here do not include the Instance Reconstruction module.

We train three additional networks, and show the effect of

each additional loss. The results show that the estimation

of a local point cloud and its depth map are useful tasks

for 3D object detection. The final row shows that the joint

optimization of the losses through the projection alignment

further helps the learning procedure, increasing AP3D per-

formance at 0.5 IoU by 7.2% over the baseline.

6. Qualitative Results

Fig. 5 shows qualitative detection results on scenes from

the KITTI dataset. It can be noted that the projection of

the 3D boxes of cars and cyclists often match the 2D detec-

tion boxes closely. However, for pedestrians, the projection

of the 3D boxes varies greatly from the 2D box, and con-

straining the 3D box to fit the 2D box would result in poor

localization. In our formulation, the less restrictive proposal

regression method allows for accurate localization of differ-

ent objects in the scene, including pedestrians. In addition,

Local Depth Projection AP3D

- - - 34.47

X - - 39.33

X X - 41.06

X X X 41.71

Table 7. Instance Reconstruction Analysis: The effect of the

local point cloud estimation and the depth and projection losses.

Results are evaluated for AP3D at 0.5 IoU on the moderate car

category.

the estimated instance point clouds shown in the 3D view

appear consistent with their appearance in the image.

7. Conclusion

To conclude, this work presents a monocular 3D object

detection method that uses accurate proposals to reduce the

search space and leverages shape reconstruction through a

point cloud. Object centroid estimation is formulated as

an offset regression from proposals generated by a well in-

formed 2D bounding box prior, and object scale and shape

is encoded through a predicted point cloud in a canonical

object coordinate frame. Accurate localization is achieved

through joint optimization of these tasks through a depth

map and projection alignment loss. These innovations lead

to state-of-the-art results on the KITTI 3D Object Detection

benchmark while maintaining efficient runtime.
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