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Abstract

This paper presents the first optimal, maximal likelihood,

solution to the triangulation problem for radially distorted

cameras. The proposed solution to the two-view triangu-

lation problem minimizes the ℓ2-norm of the reprojection

error in the distorted image space.

We cast the problem as the search for corrected distorted

image points, and we use a Lagrange multiplier formulation

to impose the epipolar constraint for undistorted points. For

the one-parameter division model, this formulation leads

to a system of five quartic polynomial equations in five un-

knowns, which can be exactly solved using the Gröbner ba-

sis method. While the proposed Gröbner basis solution is

provably optimal; it is too slow for practical applications.

Therefore, we developed a fast iterative solver to this

problem. Extensive empirical tests show that the iterative

algorithm delivers the optimal solution virtually every time,

thus making it an ℓ2-optimal algorithm de facto. It is it-

erative in nature, yet in practice, it converges in no more

than five iterations. We thoroughly evaluate the proposed

method on both synthetic and real-world data, and we show

the benefits of performing the triangulation in the distorted

space in the presence of radial distortion.

1. Introduction

In the parlance of modern computer vision, to triangulate a

point—given n ≥ 2 camera projection matrices {Pi}
n

i=1
,

Pi ∈ R
3×4, and a set of image points {xi}

n

i=1
, xi =

[xi, yi, 1]
⊤

—is to find X ∈ R
4, such that

αixi = PiX, i = 1, . . . , n, αi ∈ R, (1)

i.e., such that the points xi are the projections of the point

X using the projection matrices Pi [14].

For a noise-less scenario, the triangulation problem be-

comes a trivial exercise in linear algebra. In the presence

of noise, however, the n rays originating from the camera

centers through the image points xi do not generally inter-

sect in the 3D space, i.e., there is no 3D point X that would
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Figure 1. Level-sets for the reprojection error in the distorted and

undistorted images. Top: First undistorting the images and then

performing triangulation (e.g. using [25]) minimizes the ℓ2 error in

the undistorted images. Due to the non-linear distortion this does

not minimize any meaningful cost in the original image. Bottom:

The proposed method instead minimizes the ℓ2 error in the original

image.

satisfy Eq. (1) for all xi. Thus, for noisy data, the triangu-

lation problem becomes an optimization problem of finding

a point X that fits the constraints in Eq. 1 “the best“. What

constitutes “the best“ fit necessarily depends on the input

data and computational resources at hand. However, it has

been shown [13] that assuming independent Gaussian noise

on the image measurements, the optimal, maximum likeli-

hood solution to the triangulation problem is a solution that

minimizes the ℓ2-norm of the reprojection error.

Since triangulation is an integral part of many larger

computer vision methods and systems, a plethora of algo-

rithms for solving this problem has been proposed in the

past. Taxonomy of the triangulation methods can be es-

tablished along several lines: the methods may vary in the

number of views they can handle, in the form of the objec-

tive function (algebraic, reprojection error), in the way they

measure the error (ℓ2-norm, ℓ∞-norm, ℓ1-norm), or in the

optimization method they use to compute the results.

One of the simplest solutions to the triangulation prob-

lem is the linear least square method [14]. This method is
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fast and easily expandable to the multiview case, however,

the method does not guarantee an optimal solution and it

is prone to scaling issues. Usually, a solution provided by

the linear least square method or by methods based on ℓ∞-

norm minimization [12, 19, 17] is used as initialization for

a non-linear refinement method to be eventually optimized

alongside other relevant parameters. Such an approach falls

in the class of methods known as bundle adjustment [29, 2].

The bundle adjustment method is quite effective, yet it is

still a local optimization method that requires good initial

estimates. Inaccurate initialization may cause the method

to get trapped in a local minimum.

A great deal of research effort went in recent years into

developing globally optimal triangulation methods.

The first ℓ2-norm optimal triangulation method is due to

Hartley and Sturm [13]. This method is quite simple for

two views, where the problem reduces to a solution to a

polynomial equation of degree 6. However, it can’t be eas-

ily extended to more views. In [18], Kanatani et al. intro-

duced a fast iterative solution for the two-view triangulation

problem. While their solution may fall into local minima,

depending on the number of iterations, an extension of the

method by Lindstrom [25] usually converges to the global

optimum in two steps.

Optimal triangulation in three-views was solved for the

first time by Stéwenius et al. [28]. This method, like its sub-

sequent extensions and speedups [8, 9, 10], solves the prob-

lem using advanced algebraic methods for solving polyno-

mial equations by searching for stationary points of an un-

constrained cost function. Unfortunately, not only are these

solutions too slow for any practical use, but also the imple-

mentation is quite involved. Kukelova et al. [22] presented a

faster algorithm for three-view triangulation, however, their

approach is only a relaxed formulation, thus not guarantee-

ing optimal solutions.

The last group of optimal triangulation methods is com-

prised of algorithms capable of handling an arbitrary num-

ber of views, i.e., multiview triangulation algorithms. These

are usually based on branch-and-bound [12, 1, 26, 16], or

second-order cone programming [17, 19, 3] approaches.

All previously mentioned solutions to the triangulation

problem assume the pinhole camera model (1) without

modeling radial distortion. However, nowadays consumer

photography is dominated by mobile-phone and wide-angle

action cameras (e.g. GoPro-type cameras). Therefore, im-

ages with significant radial lens distortion are quite com-

mon. In the presence of radial distortion, the projection

equations (1) holds for undistorted image points

αiu(xi) = PiX, i = 1, . . . , n, αi ∈ R, (2)

where u(·) is a non-linear undistortion function that undis-

torts the measured distorted image points.

Since the state-of-the-art triangulation methods cannot

handle undistortion functions, a standard approach to the

triangulation in the presence of radial distortion is to first

undistort the image points and then run a triangulation

method on the undistorted points. This means that the

state-of-the-art “ℓ2 optimal“ triangulation methods mini-

mize ℓ2-norm of the reprojection error in the undistorted im-

age space. However, assuming independent Gaussian noise

on the original distorted image measurements, the optimal,

maximal likelihood solution to the triangulation problem is

a solution that minimizes ℓ2-norm of the reprojection error

in the distorted space. Therefore the state-of-the-art meth-

ods are not optimal in the presence of radial distortion.

In this paper, we propose the first solution to the two-

view triangulation problem that is based on the minimiza-

tion of the ℓ2-norm of the reprojection error in the original

image space, i.e. the distorted space. This method is the

first optimal, maximal likelihood solution to the triangula-

tion problem for radially distorted cameras.

We derived two solutions to this problem. The first so-

lution, called GBD, is based on the Gröbner basis method

for solving polynomial equations and it solves the problem

by searching for all stationary points of an unconstrained

cost function. Unfortunately, since the cost function results

in a quite complicated system of polynomial equations, this

solution is too slow for practical use.

Therefore we developed an iterative algorithm, called

ITD through the rest of this paper. This algorithm signif-

icantly outperforms GBD in terms of speed. By extensive

experimental comparison to the theoretically optimal GBD

solver, we found ITD to deliver the optimal solution virtu-

ally every time, thus making it an ℓ2-optimal algorithm de

facto. It is iterative in nature, yet in practice, it converges in

no more than five iterations.

Next, we formally introduce the triangulation problem

for radially distorted image points.

2. Radial distortion triangulation

Let us formalize triangulation as a problem of reprojection

error minimization in ℓ2-norm in the distorted image space:

Problem 1 Given the fundamental matrix F between the 1-

st and the 2-nd view, and given two corresponding distorted

image points xdi
= [xdi

, ydi
, 1]

⊤
, i = 1, 2,

minimize f(x̂d1
, x̂d2

) =
∑

2

i=1
‖xdi

− x̂di
‖
2
,

subject to u(x̂d1
)⊤Fu(x̂d2

) = 0,

where x̂di
= [x̂di

, ŷdi
, 1]

⊤
are corrected distorted image

points and u(·) is an undistortion function.

Notice that instead of projection matrices Pi and 3D

point X as in the case of the projection equation (2), Prob-

lem 1 formulates the triangulation constraint using the fun-

damental matrix F, the corrected distorted image points x̂di
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and the undistortion function u(·). This formulation does

not contain divisions needed for perspective projection and

directly leads to polynomial constraints. The fundamental

matrix F can be easily computed from Pi [14] and the trian-

gulated point X from the corrected and thus noiseless image

points x̂di
and the undistortion function u(·).

Formally, Problem 1 is a problem of function minimiza-

tion subject to equality constraints. Such a problem can be

solved by transforming the original constrained optimiza-

tion problem into an unconstrained problem by the method

of Lagrange multipliers. In the case of Problem 1, this leads

to the Lagrange function L(x̂d1
, x̂d2

, λ):

L =
∑

2

i=1
‖xdi

− x̂di
‖
2
+ 2λu(x̂d1

)⊤Fu(x̂d2
), (3)

where λ is the Lagrange multiplier and the constant ‘2’ is

introduced only for easier subsequent manipulation of the

equations and it does not influence the final solution.

The theory of Lagrange multipliers tells us that if

f(x̂⋆
d1
, x̂⋆

d2
) is a minimum of the original constrained Prob-

lem 1, then there exists λ⋆ such that (x̂⋆
d1
, x̂⋆

d2
, λ⋆) is

a stationary point of L (3), i.e., a point where all the

partial derivatives of L vanish. The Lagrange function

L(x̂d1
, x̂d2

, λ) in (3) is a function of five unknowns: four

image point coordinates x̂di
, i = 1, 2, and the Lagrange

multiplier λ. Thus, to find all stationary points of L we need

to solve the following system of five polynomial equations

in five unknowns:

u(x̂d1
)⊤Fu(x̂d2

) = 0, (4)

2 S(x̂d1
− xd1

) + 2λDx̂d1
Fu(x̂d2

) = 0, (5)

2 S(x̂d2
− xd2

) + 2λDx̂d2
F
⊤u(x̂d1

) = 0, (6)

where S is a 2×3 matrix that returns the first two coordi-

nates of a three dimensional vector, and Dx̂d1
and Dx̂d1

are

gradients of the undistortion functions u(x̂d1
) and u(x̂d2

).
Thanks to its compactness and expressive power, the

one-parameter division model [11] is widely used to model

radial lens distortion, and many different camera geometry

solvers based on this model were proposed recently [7, 15,

6, 21, 20, 24, 27]. In the division model the undistortion

function u(·) has the following form

u(xdi
) =

[

xdi
, ydi

, 1 + k(x2

di
+ y2di

)
]⊤

, (7)

where (xdi
, ydi

) are the centered distorted image coordi-

nates and k is the distortion parameter.

For the one-parameter division model (7) the gradients

Dx̂d1
and Dx̂d2

in (5) and (6) have the following form

Dx̂d1
=

[

1 0 2k1x̂d1

0 1 2k1ŷd1

]

, Dx̂d2
=

[

1 0 2k2x̂d2

0 1 2k2ŷd2

]

, (8)

where k1 and k2 are the distortion parameters of the first and

the second camera and (x̂di
, ŷdi

) are the coordinates of cor-

rected distorted image points. Note that by corrected points

we do not mean undistorted points, but distorted points that

after undistortion satisfy the epipolar constraint.

The solution for the two-parameter polynomial distor-

tion model is described in the supplementary material.

2.1. Gröbner Basis solution

Equations (5) and (6) are vector equations obtained as par-

tial derivatives of L w.r.t. the elements of x̂di
. There-

fore (4)–(6) is a system of five quartic equations in five

unknowns. This system can be solved by algebraic meth-

ods such as the Gröbner basis method. Using the automatic

generator from Larsson et al. [23] we created a polynomial

solver for the equations (4)–(6). In general, this system has

20 solutions and the generated solver performs linear elim-

ination on a matrix of size 408 × 428. While this solver is

guaranteed to return the globally optimal solution (up to nu-

merical instabilities), it is too slow to be useful in practice.

However, we will use it in Section 3.2 to validate the results

of our iterative approach presented in the next section.

2.2. Iterative solution

In this section we propose an iterative solver that efficiently

solves the original ℓ2-optimal problem 1—the ITD solver.

First, let us denote ∆xdi
= S (xdi

− x̂di
) and

n1 = Dx̂d1
Fu(x̂d2

), (9)

n2 = Dx̂d2
F
⊤u(x̂d1

), (10)

Now, we can rewrite equations (4)–(6) as

u(xd1
− S

⊤∆xd1
)⊤Fu(xd2

− S
⊤∆xd2

) = 0, (11)

λDx̂d1
Fu(x̂d2

) = λn1 = ∆xd1
, (12)

λDx̂d2
F
⊤u(x̂d1

) = λn2 = ∆xd2
, (13)

and the cost function of Problem 1 can be restated as

f(x̂d1
, x̂d2

) =
∑

2

i=1
∆x

⊤

di
∆xdi

. (14)

The proposed iterative solution to equations (11)–(13)

follows the idea of the two-view triangulation method

from [25]. First, let 〈xk−1

d1
,xk−1

d2
〉 denote the current best

estimate of the corrected distorted image points 〈x̂d1
, x̂d2
〉

after the (k−1)-th iteration. The measured points x
0

di
≡

xdi
, i = 1, 2 are used as initialization. In the k-th iteration,

to get the updated estimates 〈xk
d1
,xk

d2
〉 the algorithm starts

by replacing the optimal points 〈x̂d1
, x̂d2
〉 on the left-hand

side of equations (12)–(13) by the current best estimates

〈xk−1

d1
,xk−1

d2
〉. This results in the expressions for ∆xd1

and

∆xd2
, which are in turn substituted into equation (11). The

updated equation (11) is a univariate polynomial in λk:

u
(

xd1
−S⊤(λk

n
k
1
)
)⊤

Fu
(

xd2
−S⊤(λk

n
k
2
)
)

= 0, (15)

where
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Algorithm 1 ITD: Iterative radial distortion triangulation

Input: Fundamental matrix F,

Image points xdi
= [xdi

, ydi
, 1]

⊤
, i = 1, 2,

Distortion parameters k1, k2
ǫ1, ǫ2, maxiter

Output: Corrected points x̂di
= [x̂di

, ŷdi
, 1]

⊤
, i = 1, 2

that solve Problem 1

1: found ← 0, k ← 1
2: x

0

d1
← xd1

, x
0

d2
← xd2

3: while (not found) and (k ≤ maxiter) do

4: n
k
1
← D

x̂
k−1

d1

Fu(xk−1

d2
), n

k
2
← D

x̂
k−1

d2

F
⊤u(xk−1

d1
)

5: λk ← Solution to equation (15), such that equa-

tion (14) is minimized

6: ∆x
k
d1
← λk

n
k
1
, ∆x

k
d2
← λk

n
k
2

7: errk ←
∑

2

i=1
∆x

k⊤
di

∆x
k
di

8: x
k
d1
← xd1

−∆x
k
d1

, x
k
d2
← xd2

−∆x
k
d2

9: if (k > 1 and
|errk−errk−1|

errk
< ǫ1) or (errk < ǫ2)

then

10: 〈x̂d1
, x̂d2
〉 ←

〈

x
k
d1
,xk

d2

〉

11: found ← 1
12: else

13: k ← k + 1
14: end if

15: end while

16: if not found then

17: 〈x̂d1
, x̂d2
〉 ←

〈

x
k−1

d1
,xk−1

d2

〉

18: end if

n
k
1

= D
x̂
k−1

d1

Fu(xk−1

d2
), (16)

n
k
2

= D
x̂
k−1

d2

F
⊤u(xk−1

d1
). (17)

For the one-parameter division model (7) the equation (15)

is a 4th degree polynomial in the unknown Lagrange multi-

plier λk. The roots of this polynomial can be easily found

in closed form or using numerical methods. More details on

the implementation of the ITD solver are in Section 2.3.

From the up to four possible solutions of (15), a solu-

tion that minimizes the cost function (14) is selected. Fur-

ther, this solution is used to compute the k-th iteration dis-

placements ∆x
k
d1

and ∆x
k
d2

using equations (12)–(13) and

subsequently the new current estimates 〈xk
d1
,xk

d2
〉. The it-

eration stops based on two natural criteria: once the rela-

tive error of two consecutive iterations is smaller than some

predetermined threshold ǫ1 > 0, or once the error itself is

smaller than some predetermined threshold ǫ2 > 0.

Note that by solving the equation (15), we explicitly en-

force the epipolar constraints in each iteration. ITD solver

is formalized in Algorithm 1.

2.3. Implementation details and runtime

We have implemented the iterative ITD solver in C++. To

solve the update in λ we use the closed form solution for

univariate quartic polynomials. Similarly to [25], the cost

function is always minimized by by the λ with smallest

magnitude. To see this, note that when we substitute (12)-

(13) into (14) the cost function reduces to

f(x̂d1
, x̂d2

) = λ2
(

n
T
1
n1 + n

T
2
n2

)

. (18)

With this in mind, we constructed another solver of (15)

which instead of solving the quartic polynomial fully, per-

forms Newton iterations starting from λ = 0. This typically

convergences in less than five iterations and is slightly faster

than solving the full quartic. Note that we are not perform-

ing local optimization on the cost function, but doing root

refinement on the polynomial equation (15). In Section 3.2

we compare the two approaches and show that the Newton-

based solver has similar performance as the quartic solver.

Since there was no implementation available from Lind-

strom [25], we have reimplemented the method in C++. The

runtimes for the different solvers are shown in Table 1. Note

that our solver (and the solver from Lindstrom [25]) only

return the corrected image points which satisfy the epipolar

constraints. The runtime in Table 1 is only for the solver

and not computing the 3D point.

Our Our Lindstrom

(Closed) (Newton) [25]

Runtime (ns) 1190 141 52

106 points/second 0.84 7.1 19.2

Table 1. The table shows the mean runtime in nanoseconds and the

number of million points triangulated per second.

3. Evaluation on synthetic data

We have studied the performance of the proposed iterative

algorithm (ITD) on synthetically generated ground-truth 3D

scenes. These scenes were created by first generating 2000
random image points in the first camera P1 = [I |0]. The ra-

dial distortion of this camera was set to k = −0.3, the focal

length to f = 1300 px (1750 px respectively) and the image

size to 3000 px × 3000 px. These settings approximately

correspond to the parameters of GoPro Hero4 camera with

the wide (medium) field-of-view setting. The correspond-

ing 3D points were created by backprojecting the points to

random depths chosen uniformly from the interval [2, 20].
The 3D points were then projected to the second camera

with random feasible orientation and position and with the

same internal parameters as the first camera. Finally, Gaus-

sian noise with standard deviation σ was added to the image

points.

Note that here k = −0.3 corresponds to the radial distor-

tion parameter that was applied to calibrated image points,
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Figure 2. Comparison of the new ITD and the IT [25] solvers for varying radial distortions, 5% radial distortion error, 1 px image noise

w.r.t. 3000 px × 3000 px image size, and f = 1300 px. The radial distortion k = −0.3 approximately corresponds to GoPro Wide setting.
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Figure 3. Comparison of the new ITD and the IT [25] solvers for varying image noise, k = −0.3, 2% radial distortion error, 3000 px ×

3000 px image size and f = 1300 px. These camera parameters approximately correspond to the GoPro Wide setting.

which is a more common way of expressing radial distor-

tion. For uncalibrated image points in (7), and assuming

the calibration matrix to be K = diag([f, f, 1]), this corre-

sponds to the radial distortion parameter k/f2.

In the first experiment, we tested the new triangulation

solver on scenes with various noise contamination, differ-

ent camera configurations, different radial distortions and

different errors in the distortion parameter.

Figure 2 shows the result of our new iterative ITD solver

and the state-of-the-art IT solver [25] for cameras with dif-

ferent radial distortions. In this case, we added 1px noise to

image points and instead of the ground truth radial distor-

tion parameter we used the distortion parameter with 5% er-

ror. This simulates a calibration error that can be present in

real applications. Figure 2 shows the comparison of the 3D

error, the reprojection error and the ratio of 3D errors of the

IT [25] and the ITD solver on 1000 different scenes using

box plots. For ratios of 3D errors, we also show the results

for the 20% of points which have undergone the most dis-

tortion (i.e. points closest to the borders), to highlight the

benefit of performing the triangulation in distorted space.

It can be seen that especially for larger radial distortions

our new method significantly outperforms the state-of-the-

art IT solver [25], which minimizes ℓ2 reprojection error in

the undistorted image space. Note that here k = −0.3 ap-

proximately corresponds to GoPro Hero4 camera with the

wide field-of-view setting.

A similar comparison for different image noise contam-

ination is in Figure 3 and for radial distortion noise in Fig-

ure 4. In both these experiments, we set the radial distortion

parameter to k = −0.3. It can be seen that in general the

proposed method provides more accurate 3D point triangu-

lations compared to the IT solver [25]. The improvement

is even larger when we consider points closer to the image

border which are more affected by the distortion.

More detailed statistics from these experiments includ-

ing medians, means, the percentage of points where the new

method gives smaller 3D error than [25], and the results for

the “20% border points” are in the supplementary material.

3.1. Distance from the distortion center

In the second experiment, we studied the influence of the

distance of the triangulated image points from the distortion

center (image center) on the 3D triangulation error.

We generated 10 000 random scenes similarly to the pre-

vious experiment for the GoPro Wide setting (f = 1300
px) and the GoPro Medium setting (f = 1750 px) with 1
px image noise. In both cases the ground truth radial dis-

tortion w.r.t. to the calibrated image points was kgt = −0.3,

however, for the triangulation we used the distortion param-

eter k = −0.29, to simulate an error in the calibration.

Figure 5 shows medians and means of ratios of 3D errors

of the state-of-the-art IT [25] and the new ITD method (i.e.

3D error IT / 3D error ITD) as a functions of distances d1
and d2 of the triangulated points xd1

and xd2
from the im-

age center. Here w corresponds to the image width, which

was in this case 3000 px. The top row shows results for Go-

Pro Medium and the bottom row for GoPro Wide setting.
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Figure 4. Comparison of the new ITD and the IT [25] solvers for varying radial distortion noise, k = −0.3, 1px image noise, 3000 px ×

3000 px image size and f = 1300 px. These camera parameters approximately correspond to the GoPro Wide setting.
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Figure 5. Medians and means of ratios of 3D errors of the IT [25] and the proposed ITD method (i.e. 3D error IT / 3D error ITD) as a

functions of distances d1 and d2 of the triangulated points xd1
and xd2

from the image center for GoPro Medium and GoPro Wide settings.

The benefit of performing the triangulation in distorted

space is visible especially for points that are further from the

distortion center (i.e. points which have undergone larger

distortion). Here for some points the 3D error of the state-

of-the-art method [25], which optimizes ℓ2 reprojection er-

ror in the undistorted space, was more than 1.6× larger

than the error of the new ITD method. Interestingly for

points with similar distances from the distortion center, i.e.

d1 ≈ d2 (diagonals in graphs), the difference of the IT [25]

and ITD method was not so significant.

More detailed statistics can be seen in the last col-

umn of Figure 5. Note that here we triangulated approxi-

mately 16M points, however, due to the way of generating

our scene, not all combinations of distances (d1, d2) were

equally present and therefore these graphs are not smooth.

3.2. Convergence of the iterative solver

In this section, we empirically show that the proposed it-

erative method essentially always converges to the globally

optimal solution. To perform the experiment we used the

optimal Gröbner basis solver from Section 2.1. To avoid in-

correct solutions from numerical instabilities we performed

further refinement on the solutions from the GBD solver.

For the experiment, we generated synthetic scenes sim-

ilarly to Section 3. We compared the globally optimal so-

lutions that we get from the GBD solver with the solutions

found using the iterative approach ITD. The differences in

the returned solutions are shown in Figure 6 (Left). Here we

compared both approaches for solving quartic (15), i.e. the

closed form solver for quartic and Newton iterations start-

ing from λ = 0, as described in Section 2.3. We can see
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Figure 6. (Left) Log10 distance to global optima. (Right) The av-

erage number of iterations required for varying noise levels.

that both approaches are very stable and essentially always

converge to the globally optimal solution. Figure 6 (Right)

shows the number of iterations required for convergence for

varying levels of image noise. Note that even for large noise

levels (20 px) the proposed method typically converges in

less than three iterations.

3.3. Comparison to bundle adjustment

In this section we compare with doing initial triangulation in

the undistorted images followed by non-linear optimization

of the reprojection error in the distorted images. Figure 7

shows a comparison of the runtime for synthetic data, using

Levenberg-Marquardt for the non-linear refinement (maxi-

mum of 5 iterations). The experimental setup is similar to

the one in Section 3. In the experiment we compare to linear

triangulation (DLT [14]), the midpoint method (see [4, 13])

and the method from [25]. We also compare different meth-

ods for solving the linear least squares problem in the linear

triangulation; SVD (for homogeneous parametrization) and

QR/Cholesky (for inhomogeneous parametrization). For

our method (ITD) and Lindstrom’s method [25] (IT), the

runtime includes solving the 3× 3 linear system to recover

the 3D points (which takes approximately 200 ns). We

can see that our method clearly outperforms the competing

methods. Note that LM needs to solve a 3 × 3 linear sys-

tem in each iteration, making it significantly slower even in

cases where it only runs two or three iterations. Figure 8

shows the percentage of instances where the methods failed

to reach the optimal solution after local optimization (we

consider it as a failure when ‖X−X
⋆‖/‖X⋆‖ > 0.01).

4. Evaluation on real images

In this section, we evaluate our approach on real images. We

consider a set of images containing a checkerboard calibra-

tion pattern. This allows us to have reliable ground truth for

3D point positions. In the supplementary material we show

additional experiments on images from general scenes.

4.1. Checkerboard calibration dataset

The dataset contains images of a checkerboard calibration

pattern taken with a GoPro Hero4 camera. The camera was

used in the medium (26 images) and wide (32 images) field-

of-view settings (approximately 94 and 122 degrees hori-
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Figure 7. Top: Runtime vs. image noise. Bottom: Distributions of

runtimes for σ = 10 px.
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Figure 9. Example of checkerboard images used for the experi-

ment in Section 4.1. Top: Medium field-of-view setting. Bottom:

Wide field-of-view setting.

zontal field-of-view). The ground truth was created using

the calibration toolbox from [5]. Since [5] estimates a poly-

nomial distortion model, we refit the division model (7) us-

ing the estimated camera poses. The mean reprojection er-

ror for the calibration was 0.32 px and 0.41 px respectively.

Some example images are shown in Figure 9.

We again compared our ITD solver with the IT solver

from [25] which performs triangulation on undistorted im-

age points (i.e. is optimal in the undistorted space). For

each pair of images, we computed the relative pose and per-

formed the triangulation using both methods. The results

are shown in Table 2 and 3. We also include results where
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3D error [mm] Reprojection error [px]

mean median mean median

IT ITD IT ITD ITD<IT IT ITD IT ITD ITD<IT

0% 0.0794 0.0793 0.0637 0.0635 52.0% 0.1211 0.1205 0.0910 0.0908 100%

1% 0.0994 0.0971 0.0719 0.0712 60.5% 0.1709 0.1699 0.1217 0.1213 100%

5% 0.2728 0.2563 0.1472 0.1416 77.7% 0.5307 0.5269 0.2881 0.2876 100%

10% 0.5005 0.4712 0.2632 0.2537 82.8% 0.9865 0.9788 0.4953 0.4940 100%

Table 2. Results for the checkerboard experiment with the medium field-of-view setting.

3D error [mm] Reprojection error [px]

mean median mean median

IT ITD IT ITD ITD<IT IT ITD IT ITD ITD<IT

0% 0.1020 0.1013 0.0748 0.0747 51.6% 0.1902 0.1853 0.1439 0.1407 100%

1% 0.1774 0.1603 0.1078 0.1026 68.0% 0.3667 0.3549 0.2536 0.2496 100%

5% 0.7240 0.6255 0.3720 0.3375 83.7% 1.4505 1.3970 0.8300 0.8151 100%

10% 1.4032 1.1967 0.7254 0.6512 88.1% 2.8881 2.7800 1.6210 1.5905 100%

Table 3. Results for the checkerboard experiment with the wide field-of-view setting.

3D error [mm] Reprojection error [px]

mean median mean median

IT ITD IT ITD ITD<IT IT ITD IT ITD ITD<IT

0% 0.1339 0.1319 0.0993 0.0966 61.2% 0.1856 0.1829 0.1410 0.1391 100%

1% 0.2260 0.2064 0.1551 0.1447 74.8% 0.4158 0.4097 0.3294 0.3275 100%

5% 0.9282 0.8086 0.5185 0.4732 86.5% 1.7028 1.6783 1.3161 1.2907 100%

10% 1.6981 1.5176 1.1234 1.0288 88.0% 3.1144 3.0666 2.5120 2.4858 100%

Table 4. Results for the checkerboard experiment with the medium field-of-view setting. Top 5% of most distorted points.

3D error [mm] Reprojection error [px]

mean median mean median

IT ITD IT ITD ITD<IT IT ITD IT ITD ITD<IT

0% 0.2314 0.2162 0.1756 0.1725 61.8% 0.3273 0.3064 0.2441 0.2324 100%

1% 0.5222 0.4180 0.3272 0.2752 77.9% 0.8825 0.8279 0.7542 0.7164 100%

5% 2.2356 1.7182 1.3063 1.0553 88.1% 3.9506 3.7037 3.2601 3.0760 100%

10% 4.5794 3.4405 2.6298 1.9991 90.7% 8.1388 7.6161 6.3812 6.0055 100%

Table 5. Results for the checkerboard experiment with the wide field-of-view setting. Top 5% of most distorted points.

we simulated errors in the distortion parameter. In the table

5% error corresponds to the distortion parameter k being

uniformly drawn from the interval [0.95kGT , 1.05kGT ].

To highlight the benefit of performing the triangulation

in distorted space, we also show the results for the 5% of

points which have undergone the most distortion (i.e. clos-

est to the borders) separately in Table 4 and 5.

5. Conclusions

The paper presents the first optimal, maximal likelihood,

solutions to the two-view triangulation problem for radially

distorted cameras. The proposed solutions minimize the ℓ2-

norm of the reprojection error in the original distorted im-

age space. The first proposed Gröbner basis solution, which

searches for all stationary points of the Lagrange function is

provably optimal, however, it is too slow for practical appli-

cations. The second iterative solver in practice converges

in no more than five iterations to the optimal solution, thus

making it an ℓ2-optimal algorithm de facto.

We thoroughly evaluate the proposed method on both

synthetic and real-world data, and we show the benefit of

performing the triangulation in the distorted space in the

presence of radial distortion.
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