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Abstract

Given dense image feature correspondences of a non-

rigidly moving object across multiple frames, this paper

proposes an algorithm to estimate its 3D shape for each

frame. To solve this problem accurately, the recent state-of-

the-art algorithm reduces this task to set of local linear sub-

space reconstruction and clustering problem using Grass-

mann manifold representation [34]. Unfortunately, their

method missed on some of the critical issues associated with

the modeling of surface deformations, for e.g., the depen-

dence of a local surface deformation on its neighbors. Fur-

thermore, their representation to group high dimensional

data points inevitably introduce the drawbacks of categoriz-

ing samples on the high-dimensional Grassmann manifold

[32, 31]. Hence, to deal with such limitations with [34],

we propose an algorithm that jointly exploits the benefit of

high-dimensional Grassmann manifold to perform recon-

struction, and its equivalent lower-dimensional representa-

tion to infer suitable clusters. To accomplish this, we project

each Grassmannians onto a lower-dimensional Grassmann

manifold which preserves and respects the deformation of

the structure w.r.t its neighbors. These Grassmann points in

the lower-dimension then act as a representative for the se-

lection of high-dimensional Grassmann samples to perform

each local reconstruction. In practice, our algorithm pro-

vides a geometrically efficient way to solve dense NRSfM

by switching between manifolds based on its benefit and us-

age. Experimental results show that the proposed algorithm

is very effective in handling noise with reconstruction accu-

racy as good as or better than the competing methods.

1. Introduction

Non-rigid Structure-from-Motion (NRSfM), a problem

where the task is to recover the three-dimensional structure

of a deforming object from a set of image feature correspon-

dences across frames. Any solution to this problem depends

on the proper modeling of structure ∈ M and an efficient

estimation of motion ∈ SE(3), where M denotes some

structure manifold and SE(3) denotes special Euclidean

(a) (b) (c)

Figure 1: Dense 3D reconstruction of facial expression using our

algorithm. The result show the 3D reconstruction of 73,765 points

of a complex non-rigidly deforming surface. These results can

be useful for real world applications such as 3D modeling, virtual

reality etc. The example sequence is taken from Actor dataset [7].

group which is a differentiable manifold [20]. Though, af-

ter Bregler et al. factorization framework to NRSfM [48],

motion estimations are mostly relaxed to rotation estima-

tion ∈ SO(3). Even after such relaxation, the problem still

remains unsolved for any arbitrary motion. The main dif-

ficulty in NRSfM comes from the fact that both the cam-

era and the object are moving and, along with it the object

themselves are deforming, hence, it becomes difficult to dis-

tinguish camera motion from object motion using only im-

age data. Despite such difficulties, many efficient and re-

liable solutions based on the priors are proposed to solve

NRSfM. A reliable solution to this problem is important as

it covers a wide range of applications from medical industry

to the entertainment industry and many more.

To solve NRSfM, the algorithms proposed in the past

can broadly be divided into two major classes 1) sparse

NRSfM and 2) dense NRSfM. This classification is based

on the number of feature points that the algorithm can ef-

ficiently process to model the deformation of the object.

Although many reliable solution to this problem exists for

sparse NRSfM [18, 37, 35, 3, 47, 42, 40, 26, 29], very few

work have been done towards solving the dense NRSfM re-
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liably and efficiently [23, 17, 34, 4]. Also, the existing so-

lutions to dense NRSfM are computationally expensive and

are mostly constrained to analyze the global deformation

of the non-rigid shape [23, 17]. The basis for this gradual

progress in dense NRSfM is perhaps due to its dependence

on per pixel reliable correspondences across frames, and the

absence of a resilient structure modeling framework to cap-

ture the local non-linearities. One may argue on the efficient

motion estimation, however, from image correspondences,

we can only estimate relative motion and reliable algorithms

with solid theory exists to perform this task well [18, 40].

Also, with the recent progress in deep learning algorithms,

per pixel correspondences can be achieved with a remark-

able accuracy [46], which leaves structure modeling as a

potential gray area in dense NRSfM to focus.

Very recently, Kumar et al. [34] has exploited the

Grassmann manifold to model non-rigid surfaces in dense

NRSfM. The key insight in their work is; even though the

overall complexity of the deforming shape is high, each lo-

cal deformation may be less complex [13, 14, 15, 16]. Us-

ing this idea, they proposed a union of local linear subspace

approach to solve dense NRSfM problem. Nevertheless,

their work overlooked on some of the intrinsic issues asso-

ciated with the modeling of non-rigidly deforming surface.

Firstly, their method represents each local linear subspace

independently via a high-dimensional Grassmannian repre-

sentation. Now, such representation may help reconstruct

complex 3D deformation but can lead to wrong clustering,

and it’s very important in joint reconstruction and cluster-

ing framework to have suitable clustering of subspaces, else

reconstruction may suffer. Secondly, their approach to rep-

resent local non-linear deformation completely ignored the

neighboring surfaces, which may result in an inefficient rep-

resentation of the Grassmannians in the trajectory space.

Thirdly, the representation of Grassmannians in the shape

space adopted by [34] results in irredeemable discontinuity

of the trajectories (see Fig.(2)). Hence, temporal represen-

tation of the set of shapes using Grassmannians seems not

an extremely beneficial choice for modeling dense NRSfM

on Grassmannian manifold1. Lastly, although the dense

NRSfM algorithm proposed in [34] works better and faster

than the previous methods, it depends on several manual pa-

rameters which are inadmissible for practical applications.

This paper introduces an algorithm that overcomes the

aforementioned limitations with Kumar et al. method [34].

The main point we are trying to make is that; reconstruction

and grouping of subspace on the same high dimensional

Grassmann manifold seem an unreasonable choice. Even

recent research in the Riemannian geometry has shown that

the low-dimensional representation of the corresponding

high dimensional Grassmann manifold is more favorable

1Purpose behind NRSfM is not the same as activity/action recognition.

See supplementary material for a detail discussion on this.
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Figure 2: Temporal representation using Grassmannians in the

shape space introduces discontinuity in the overall trajectory of

the feature point. Also, to define neighboring subspace depen-

dency graph in the time domain seems very challenging keeping

in mind that the activity/expression may repeat. Red circle shows

the feature point with its trajectory over frames (Black).

for grouping Grassmannians [32, 31]. So, we formulate

dense NRSfM in a way that it takes advantage of both high

and low dimensional representation of Grassmannians i.e.,

perform reconstruction in the original high-dimension and

cluster subspace in its lower-dimension representation.

We devise an unsupervised approach to efficiently rep-

resent the high-dimensional non-rigid surface on a lower

dimensional Grassmann manifold. These low-dimensional

Grassmannians are represented in such a way that it pre-

serves the local structure of the surface deformation in

accordance with its neighboring surfaces when projected.

Now, these low-dimensional Grassmannians serves as a po-

tential representative for its high-dimensional Grassmanni-

ans for suitable grouping, which subsequently help improve

the reconstruction and representation of the Grassmannians

on the high-dimensional Grassmann manifold, hence, the

term Jumping Manifolds (MoJu). Further, we drop the tem-

poral grouping of shapes using Grassmannians to discour-

age the discontinuity of trajectories (see Fig.(2)).

In essence, our work is inspired by [34] and is oriented

towards settling its important limitations. Moreover, in con-

trast to [34], we capture the notion of dependent local sub-

space in a union of subspace algorithm [39] via Grassman-

nian modeling. The algorithm we proposed is an attempt

to supply a more efficient, reliable and practical solution

to this problem. Our formulation gives an efficient frame-

work for modeling dense NRSfM on the Grassmann mani-

fold than [34]. Experimental results show that our method

is as accurate as other algorithms and is numerically more

efficient in handling noise. The main contributions of our

work are as follows:

• An efficient framework for modeling non-rigidly de-

forming surface that exploits the advantage of Grass-

mann manifold representation of different dimensions

based on its geometry.

• A formulation that encapsulates the local non-linearity

of the deforming surface w.r.t its neighbors to enable

the proper inference and representation of local linear

subspaces.

• An iterative solution to the proposed cost function
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based on ADMM [8], which is simple to implement

and provide results as good as the best available meth-

ods. Additionally, it helps improve the 3D reconstruc-

tion substantially, in the case of noisy trajectories.

2. Related Work

A working solution to NRSfM was first introduced in the

seminal work by Bregler et al. [9] which is an extension to

Tomsai-Kannade rigid factorization method[48]. Although

the problem still remains unsolved for arbitrary deforma-

tions, many profound works have been done to achieve a re-

liable solution to this problem under some or the other prior

assumptions about the object [18, 3, 43, 40, 50, 37, 35, 23].

Since the literature on this topic is very extensive, we review

the works that are of close relevance to the dense NRSfM

methods under classical setting2.

Earlier attempts to solve dense NRSfM used piecewise

reconstruction of the shape parts which were further pro-

cessed via a stitching step to get a global 3D shape [12, 45].

To our knowledge, Garg et al. variational approach [24] was

the first to propose and demonstrate per pixel dense NRSfM

algorithm without any 3D template prior. This method in-

troduced a discrete total variational constraint with trace

norm constraint on the global shape, which resulted in a

biconvex optimization problem. Despite the algorithm out-

standing results, it’s computationally very expensive and

needs a GPU to provide the solution.

In contrast, Dai et al. extended his simple prior free ap-

proach to solve dense NRSfM problem [18, 17]. The algo-

rithm proposed a spatial-temporal formulation to solve the

problem. The author revisits the temporal smoothness term

from [18] and integrate it with a spatial smoothness term

using the Laplacian of the non-rigid shape. The resultant

optimization leads to a series of least squares to be mini-

mized which makes it extremely slow to process. Recently,

Kumar et al. modeled this problem on the Grassmann man-

ifold [34]. Their work extended the spatiotemporal multi-

body framework to solve dense NRSfM [37]. The algorithm

demonstrated that such an approach is more efficient, faster

and accurate than all the other recent approaches to solve

dense NRSfM task [24, 17, 4].

Consecutive frame-based approach has recently shown

some promising results to solve dense 3D reconstruction of

a general dynamic scene including non-rigid object [36, 44].

Nevertheless, motion segmentation, triangulation, as rigid

as possible constraint and scale consistency quite often

breaks down for the deforming object over frames. There-

fore, dense NRSfM becomes extremely challenging for

such algorithms. Not long ago, Gallardo et al. combined

shading, motion and generic physical deformation to model

dense NRSfM [21].

2By classical setting, we mean without using RGB-D or 3D template.

3. Preliminaries

In this paper, ‖.‖F, ‖.‖∗ denotes the Frobenius norm

and nuclear norm respectively. ‖.‖G represent the notion

of norm on the Grassmann manifold. Single angle bracket

< ., . > denotes the Euclidean inner product. For ease of

understanding and completeness, in this section, we briefly

review few important definitions related to the Grassmann

manifold. Firstly, a manifold is a topological space that is

locally similar to the Euclidean space. Out of several man-

ifolds, the Grassmann manifold is a topologically rich non-

linear manifold, each point of which represent the set of all

right invariant subspace of the Euclidean space [19, 1, 34].

Definition 1. The Grassmann manifold, denoted by G(p, d),
consists of all the linear p-dimensional subspace embedded

in a ‘d’ dimensional Euclidean space Rd such that 0 ≤ p ≤
d [Absil et al., 2009] [1].

A point ‘Φ’ on the Grassmann manifold can be repre-

sented by R
d×p matrix whose columns are composed of or-

thonormal basis. The space of such matrices with orthonor-

mal columns is a Riemannian manifold such that ΦTΦ = Ip,

where Ip is a p× p identity matrix.

Definition 2. Grassmann manifold can be embedded into

the space of symmetric matrices via mapping Π : G(p, d) 7→
Sym(d),Π(Φ) = ΦΦT, where Φ is a Grassmann point

[28, 30]. Given two Grassmann points Φ1 and Φ2, then

the distance between them can be measured using the pro-

jection metric d2g(Φ1,Φ2) = 0.5‖Π(Φ1)−Π(Φ2)‖
2
F [28].

In the past, these two properties of Grassmann mani-

fold has been used in many computer vision applications

[28, 10, 34]. Second definition is very important as it allows

to measure the distance on the Grassmann manifold, hence,

(G, dg) forms a metric space. We used these properties in

the construction of our formulation. For comprehensive de-

tails on this topic readers may refer to [28].

4. Problem Formulation

Let ‘P’ be the total number of feature points tracked

across ‘F’ frames. Concatenating these 2D coordinates of

each feature points for all frames across the columns of a

matrix gives ‘W’ ∈ R
2F×P matrix. This matrix is popularly

known as measurement matrix [48]. Our goal is, given the

image measurement matrix, estimate the camera motion and

3D coordinates of every 2D feature points across all frames.

We start our formulation with the classical representa-

tion to NRSfM i.e. W = RS, where, R ∈ R
2F×3F is a block

diagonal rotation matrix with each block as a 2 × 3 ortho-

graphic rotation matrix, and S ∈ R
3F×P as the 3D structure

matrix. With such a representation, the entire problem sim-

plifies to the estimation of correct rotation matrix ‘R’ and
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structure matrix ‘S’ such that the above relation holds. Fol-

lowing the assumption of the previous work [34], we esti-

mate the rotation using Intersection method [18]. As a re-

sult, the task reduces to composing of an efficient algorithm

that correctly models the surface deformations and provide

better reconstruction results. Recent algorithms in NRSfM

have demonstrated that clustering benefits reconstruction

and vice-versa, however, the existing framework to employ

this idea is not scalable to millions of points. To establish

this idea for dense NRSfM, Kumar et al. [34] used LRR

on Grassmannian manifold. Using the similar notions, we

model dense deforming surface using Grassmannian repre-

sentation to provide more reliable and accurate solution.

In the following subsection, we first introduce the Grass-

mannian representation of the surface and how to project

these Grassmannians onto the lower dimension Grassmann

manifold by preserving the neighboring information. In the

later subsection, we use these representations to formulate

the overall cost function for solving dense NRSfM problem.

4.1. Grassmannian representation

Let ‘Φi’ ∈ G(p, d) be a Grassmann point represent-

ing the ith local linear subspace spanned by ith set of

columns of ‘S’. Using this notion, we decompose the en-

tire trajectories of the structure into a set of ‘K’ Grassman-

nians ξ = {Φ1,Φ2,Φ3, ....,ΦK}. Now, such a representa-

tion treats each subspace independently and therefore, its

low-dimensional linear representation may not be suitable

to capture the surface dependent non-linearity. To prop-

erly represent Grassmannian which respects the neighbor-

ing non-linearity in low-dimension, we introduce a different

strategy to model non-rigid surface in low-dimension. For

now, let ∆ ∈ R
d×d̃ be a matrix that maps ‘Φi’ ∈ G(p, d) to

‘φi’ ∈ G(p, d̃) such that d̃ < d. Mathematically,

φi = ∆TΦi (1)

Its quite easy to examine that φi is not a orthogonal ma-

trix and, therefore, does not qualifies as a potential point

on a Grassmann manifold. However, by performing a

orthogonal-triangular (QR) decomposition of φi, we esti-

mate the new representative of φi on the Grassmann mani-

fold of ‘d̃’ dimension.

ΘiUi = qr(φi) = ∆TΦi (2)

Here, qr(.) is a function that returns the QR decomposition

of the matrix. The Θi ∈ R
d̃×p is an orthogonal matrix and

Ui ∈ R
p×p is the upper triangular matrix3. Using Eq.(2),

we represent the equivalence of Φi in low dimension as

Θi = ∆T(ΦiU
−1
i )

Θi = ∆TΩi

(3)

3Note: The value of d̃ ≥ p, Use [Θi, Ui] = qr(φi, 0) in MATLAB to

get a square Ui matrix (Ui ∈ Rp×p)

i"# Grassmann point (	Θi) 

j"# Neighbor Grassmann point (	Θj) 

X

Y

Z

Figure 3: In contrast to [34], our modeling of surface using Grass-

mannians considers the similarity between the neighboring Grass-

mannians while representing it in the lower dimension. Based on

the assumption that spatially neighboring surface tend to span sim-

ilar subspace, defining neighboring subspace dependency graph is

easy and most of the real-world examples follows such assump-

tion. However, building such graph in shape space can be tricky.

where, Ωi = ΦiU
−1
i ∈ R

d×p. The key-point to note is that

both Θi and φi has the same column space. In principle

such a representation is useful however, it does not serve the

purpose of preserving the non-linearity w.r.t its neighbors.

In order to encapsulate the local dependencies (see Fig.(3),

Fig.(4)), we further constrain our representation as:

E(∆) = minimize
∆

K
∑

(i,j)

wij
1

2
‖Π(Θi)−Π(Θj)‖

F
2 (4)

The parameter ‘wij’ accommodate the similarity knowledge

between the two Grassmannians. Using the Definition(2)

and Eq.(3), we further simplify Eq.(4) as

E(∆) ≡ minimize
∆

K
∑

(i,j)

wij
1

2
‖∆TΩiΩ

T
i∆−∆TΩjΩ

T
j∆‖2F

E(∆) ≡ minimize
∆

K
∑

(i,j)

wij
1

2
‖∆T(ΩiΩ

T
i − ΩjΩ

T
j)∆‖2F

E(∆) ≡ minimize
∆

K
∑

(i,j)

wij
1

2
‖∆T(Λij)∆‖2F

(5)

where, Λij ∈ Sym(d). The parameter ‘wij’ (similarity

graph) is set as exp(−d2g(Φi,Φj)) with dg as the projec-

tion metric (see Definition (2)). Eq.(5) is an unconstrained

optimization problem and its solution may provide a trivial

solution. To estimate the useful solution, we further con-

strain the problem. Using ith Grassmann point ‘Ωi’ and

its neighbors, expand Eq.(5). By performing some simple

algebraic manipulation, Eq.(5) reduces to

trace
(

∆T
(

K
∑

i=1

λiiΩiΩ
T
i

)

∆
)

(6)

where, λii =
∑K

j=1 wij. Constraining the value of Eq.(6)
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to 1 provides the overall optimization for an efficient rep-

resentation of the local non-rigid surface on the Grassmann

manifold.

E(∆) ≡ minimize
∆

K
∑

(i,j)

wij
1

2
‖∆T(Λij)∆‖2F

subject to:

trace
(

∆T
(

K
∑

i=1

λiiΩiΩ
T
i

)

∆
)

= 1

(7)

Its easy to verify that the matrix Λ and
(
∑K

i=1 λiiΩiΩ
T
i

)

are symmetric and positive semi-definite, and therefore, the

above optimization can be solved as a generalized eigen

value problem —refer supplementary material for details.

4.2. Dense NRSfM formulation

To solve the dense non-rigid structure from motion with

the representation formulated in the previous sub-section

§4.1, we propose to jointly optimize the objective function

over the 3D structure and its local group representation. In

order to build the overall objective function, we introduce

each constraint equation one by one for clear understanding

of our overall cost function.

Ep(S) = minimize
S

1

2
‖W− RS‖2F (8)

The first term constrain the 3D structure such that it satisfies

the re-projection error.

Es(S
♯) = minimize

S♯
‖S♯‖∗ (9)

The second term caters the global assumption about the

non-rigid object; that is the overall shape matrix is low-rank.

To establish this assumption, we perform rank minimization

of the shape matrix. Although the rank minimization of a

matrix is NP-hard, it’s relaxed to nuclear norm minimiza-

tion to find an approximate solution. This term mainly pe-

nalizes the total number of independent shape required to

represent the shape. The choice of minimizing S♯ ∈ R
3P×F

instead to S ∈ R
3F×P is inspired from Dai et al.’s work [18].

Since the dense deforming shape is composed of several lo-

cal linear low-dimensional subspace, the global constraint

(Eq.(9)) may not reflect their local dependency. Therefore,

in order to introduce the local subspace constraint on the

shape, we use the notion of self-expressiveness on the non-

linear Grassmann manifold space.

minimize
E,C,S♯

‖E‖2G + β2‖S
♯‖∗ + β3‖C‖∗

subject to: S♯ = f(S), S = SC+ E

(10)

Here, we define f : S ∈ R
3F×P 7→ S♯ ∈ R

3P×F and

C ∈ R
P×P as the coefficient matrix. We know from the liter-

ature that the Grassmann manifold is isometrically equiva-

lent to the symmetric idempotent matrix [11]. So, we embed

!(p, d&)

!(p, d)

High Dimensional 

Grassmann Manifold

Low Dimensional 

Grassmann Manifold

(a) (b) (c)

X

Y

Z
X

Y

Z

3D Reconstruction

Figure 4: Conceptual illustration of our modeling (a) Modeling of

3D trajectories to Grassmann points (b) The two grassmann mani-

fold and mapping of the points between them to infer better cluster

index that leads to better reconstruction (c) The 3D reconstruction

of the non-rigid deforming object.

the Grassmann manifold into symmetric matrix manifold to

define the self-expressiveness. Let ξ̃ = {Θ1,Θ2, ...,ΘK} be

the set of Grassmannians on a low-dimensional Grassmann

manifold. The elements of ξ̃ are the projection of high-

dimensional Grassmannian representation of the columns

of ‘S’ matrix. Let χ = {(Θ1Θ
T
1), (Θ2Θ

T
2), ..., (ΘKΘ

T
K)} be

its embedding onto symmetric matrix manifold. Using such

embedding techniques we re-write Eq.(10) as

minimize
E,C̃,S♯

‖E‖2F + β2‖S
♯‖∗ + β3‖C̃‖∗

subject to:

S♯ = f(S), χ = χC̃+ E

(11)

where, C̃ ∈ R
K×K and χ ∈ R

d̃×d̃×K denotes the coefficient

matrix of Grassmannians and structure tensor respectively,

with K as the total number of Grassmannians. Generally,

K << P, which makes such representation scalable.

The third term we introduce is composed of few con-

straint functions that provides a way to group Grassman-

nians and recover 3D shape simultaneously. Let P ∈
R

1×P be an ordering vector that contains the index of

columns of S. Our function definition is of the form

{(output, function(.)) : definition}. Using it, we define the

function fg , fh, fp and fs as follows:

{(

ξ, fg(P, S)
)

: order {Si}
K
i=1 columns of S of using P,

ξ := {Φi}
K
i=1where, [ Φi,Σi, ξvi] = svds(Si, p)

}

(12)
{(

ξ̃, fh(∆, ξ)
)

: ξ̃ = {Θi}
K
i=1,Θi = ∆T(ΦiU

−1
i ),

where, ∆ = solution to the minimization of Eq.(7)
} (13)

{

(P, fp(ξ̃, C̃,Po) : P = spectral clustering(ξ̃, C̃,Po)
}

(14)
{(

S, fs(ξ,Σ, ξv)
)

: Si = [ξi Σi ξvi],where Σi ∈ R
p×p

}

(15)

Intuitively, the first function (fg) uses the ordering vector

P ∈ R
1×P to refine the grouping of the trajectories for

suitable Grassmannian representation. The second function
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(fh) projects the Grassmannians to a lower dimension in ac-

cordance with the neighbors using Eq.(7). The third func-

tion (fp) uses the projected Grassmannians to assign proper

labeling to the Grassmann points and update the given or-

dering vector P using spectral clustering. The fourth func-

tion (fs) uses the group of trajectories to reconstruct back

the set of local surface. Σ, ξv are the singular values and

right singular vector matrices in the high-dimension.

Objective Function: Combining all the above terms and

constraints provides our overall cost function.

minimize
E,C̃,S,S♯

1

2
‖W− RS‖2F + β1‖E‖

2
F + β2‖S

♯‖∗ + β3‖C̃‖∗

subject to:

S♯ = f(S), χ = χC̃+ E,

ξ = fg(P, S), ξ̃ = fh(∆, ξ),

S = fs(ξ,Σ, ξv),P = fp(ξ̃, C̃,Po)
(16)

where Po vector contains the initial ordering of the

columns of ‘W’ and ‘S’. The function (fp) provides the

ordering index to rearrange the columns of ‘S’ matrix to

be consistent with ‘W’ matrix. This is important because,

grouping the set of columns of ‘S’ over iteration, disturbs

its initial arrangements.

5. Solution

The optimization proposed in Eq.(16) is a coupled op-

timization problem. Several methods of Bi-level optimiza-

tion can be used to solve such minimization problem [6, 27].

Nevertheless, we propose ADMM [8] based solution due to

its application in many non-convex optimization problems.

The key point to note is that one of our constraint is com-

posed of separate optimization problem (fh) i.e., the solu-

tion to Eq.(7), and therefore, we cannot directly embed the

constraint to the main objective function. Instead, we only

introduce two Lagrange multiplier L1,L2 to concatenate a

couple of constraints back to the original objective func-

tion. The remaining constraints are enforced over iteration.

To decouple the variable C̃ from χ, we introduce auxiliary

variable C̃ = Z. We apply these operations to our optimiza-

tion problem to get the following Augmented Lagrangian

form:

minimize
Z,C̃,S,S♯

1

2
‖W− RS‖2F + β1‖χ− χC̃‖2F + β2‖S

♯‖∗+

ρ

2
‖S♯ − f(S)‖2F+ < L1, S

♯ − f(S) > +β3‖Z‖∗+

ρ

2
‖C̃− Z‖2F+ < L2, C̃− Z >

subject to: ξ = fg(P, S), ξ̃ = fh(∆, ξ),

S = fs(ξ,Σ, ξv),P = fp(ξ̃, C̃,Po)
(17)

Algorithm 1 Dense Non-rigid Structure from Motion (MoJu)

Require: W, R, {βi}
3
i=1, ρ=e−2, ρm=e8, ǫ=e−10, c =1.1, K;

Initialize: S=pinv(R)W, S♯=f(S), Z=0, {Li}
2
i=1=0, d̃;

∆ = [Id̃×d̃; random values], p %top singular values

Po = kmeans++(S, K), iter = 1, Pstore(iter, :) = Po,

P = Po

while not converged do

1. S := mldivide
(

R
T
R+ ρI, ρ(f−1(S♯) + f−1(L1)

ρ
) + R

T
W

)

;

2. ξ := fg(P, S); see Eq.(12)

3. W := arrange column(P, W)
4. Update the similarity matrix ‘wij’ using ξ. §4.1

5. ξ̃ := fh(ξ,∆); s.t,∆ ≡ minimize
∆

E(∆); see Eq.(13)

6. Γij = Tr[(ΘT
jΘi)((Θ

T
iΘj)]; Γ = (Γij)

K
ij=1; L = chol(Γ)

7. C̃ := mldivide
(

2β1LL
T + ρI, 2β1LL

T + ρ(Z− L2

ρ
)
)

;

8. P := fp(ξ̃, C̃,P);
9. S := fs(ξ,Σ, ξv); see Eq.(14)

10. S♯ := UsS β2

ρ

(Σs)Vs; s.t, [Us,Σs, Vs] := svd(f(S)− L1

ρ
)

11. Z := UzS β3

ρ

(Σz)Vz; s.t, [Uz,Σz, Vz] := svd(C̃+ L2

ρ
);

12. L1 := L1 + ρ(S♯ − f(S));L2 := L2 + ρ(C̃− Z)
13. iter := iter + 1; Pstore(iter, :) := P;
14. ρ := min(ρm, cρ);
15. gap := max{‖S♯ − f(S)‖∞, ‖C̃− Z‖∞};

(gap < ǫ) ∨ (ρ > ρm) → break;%convergence check

end while

return S;

e3D = Estimate error (S, SGT,Pstore); %use Eq.(18)

Note that C̃ provides the information about the subspace,

not the vectorial points. However, we have the chart of

the trajectories and its corresponding subspace. Once, we

group the trajectories based on C̃, fg(.) provides new Grass-

mann sample corresponding to each group. The definition

of fh(.) and fs(.) is provided in Eq.(7) and Eq.(14) respec-

tively. More generally, the solution to the optimization in

Eq.(7) is obtained by solving it as a generalized eigenvalue

problem. To keep the order of columns of ‘S’ matrix consis-

tent with ‘W’ matrix fp(.) provides the ordering index. We

provide the implementation details of our method with suit-

able MATLAB commands in the Algorithm Table (1). For

details on the derivation to each sub-problem, kindly refer

to the supplementary material.

6. Initialization and Evaluation

We performed experiments and evaluation on the avail-

able standard benchmark datasets [23, 49, 7]. To keep our

evaluations consistent with the previous methods, we com-

pute the mean normalized 3D reconstruction error of the

estimated shape ‘Sest’ after convergence as

e3D =
1

F

F
∑

i=1

‖Siest − SiGT‖F
‖SiGT‖F

(18)
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(a) (b) (c) (d)
Figure 5: From left: 3D reconstruction results on Back [23],

Heart [23], Paper[49] and T-shirt [49] data sequence respectively.

here ‘SGT’ denotes the ground-truth 3D shape matrix.

Initialization: We used Intersection method [18] to esti-

mate the rotation matrix and initialize S = pinv(R)W. The

initial grouping of the trajectories or columns of S is done

using k-means++ algorithm [5]. These groups are then used

to initialize Po, P and the Grassmann points {Φi}
K
i=1 ∈ ξ

via subset of singular vectors. To represent the Grassman-

nians in the lower-dimension, we solve Eq.(7) to initialize ξ̃

and store corresponding singular values. The similarity ma-

trix or graph in Eq.(7) is build using the distance measure

between the Grassmannians in the embedding space §4.1.

1. Results on synthetic Face dataset: The synthetic face

dataset is composed of four distinct sequence [23] with

28,880 feature points tracked over multiple frames. Each

sequence captures the human facial expression with a dif-

ferent range of deformations and camera motion. Sequence

1 and Sequence 2 are 10 frame long video with rotation

in the range ±30◦ and ±90◦ respectively. Sequence 3 and

Sequence 4 are 99 frame long video that contains high fre-

quencies and low frequencies rotation respectively which

captures real human facial deformations. Table (1) shows

the statistical results obtained on these sequences using our

algorithm. For qualitative results on these sequences kindly

refer to the supplementary material.

2. Results on Paper and T-shirt dataset: Varol et al. in-

troduced ‘kinect paper’ and ‘kinect tshirt’ datasets to test

the performance of NRSfM algorithm under real condi-

tions [49]. This dataset provides sparse SIFT [41] feature

tracks and noisy depth information captured from Microsoft

Kinect for all the frames. As a result, to get dense 2D

feature correspondences of the non-rigid object for all the

frames becomes difficult. To circumvent this issue, we used

Garg et al. [22] algorithm to estimate the measurement ma-

trix. To keep the numerical comparison consistent with the

previous work in dense NRSfM [34], we used the same co-

ordinate range for tracking the features. Numerically, its xw

(a) (b) (c) (d)
Figure 6: 3D reconstruction results on the Actor sequence [7].

= (253, 253, 508, 508), yw = (132, 363, 363, 132) rectangu-

lar window across 193 frames for kinect paper sequence.

For kinect tshirt sequence, we considered rectangular win-

dow of xw = (203, 203, 468, 468), yw = (112, 403, 403, 112)
across 313 frames, same as used in Kumar et al. work [34].

Fig.(5) shows the reconstruction results on these sequence

with comparative results provided in Table (1).

3. Results on Actor dataset: Beeler et al. [7] introduced

Actor dataset for high-quality facial performance capture.

This dataset is composed of 346 frames captured from seven

cameras with 1,180,232 vertices. The dataset captures the

fine details of facial expressions which is extremely useful

in the testing of NRSfM algorithms. Nevertheless, for our

experiment, we require dense 2D image feature correspon-

dences across all images as input, which we synthesized us-

ing ground-truth 3D points and synthetically generated or-

thographic camera rotations. To maintain the consistency

with the previous works in dense NRSfM for performance

evaluations, we synthesized two different datasets namely

Actor Sequence1 and Actor Sequence2 based on the head

movement as described in Ansari et al. work [4]. Fig.(6)

shows the dense detailed reconstruction that is achieved us-

ing our algorithm. Table (1) clearly indicates the benefit of

our approach to reconstruct such complex deformations.

4. Results on Face, Heart, Back dataset: To evaluate the

variational approach to dense NRSfM [23] Garg et al. intro-

duced these datasets. Its sequences are composed of monoc-

ular video’s captured in a natural environment with vary-

ing lighting condition and large displacements. It consists

of three different videos with 120, 150 and 80 frames for

face sequence, back sequence and heart sequence respec-

tively. Additionally, it provides dense 2D feature track for

the same with 28332, 20561, and 68295 features track over

the frames for face, back and heart sequence. No ground-

truth 3D is available with this dataset for evaluation. Fig.(5)

show reconstruction results on back and heart sequence. For

more qualitative results on these sequences, kindly refer to

the supplementary material.
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Dataset ↓ / Method → MP [42] PTA [2] CSF1 [25] CSF2[26] DV [23] DS [17] SMSR [4] SDG[34] Ours

Face Sequence 1 0.2572 0.1559 0.5325 0.4677 0.0531 0.0636 0.1893 0.0443 0.0404

Face Sequence 2 0.0644 0.1503 0.9266 0.7909 0.0457 0.0569 0.2133 0.0381 0.0392

Face Sequence 3 0.0682 0.1252 0.5274 0.5474 0.0346 0.0374 0.1345 0.0294 0.0280

Face Sequence 4 0.0762 0.1348 0.5392 0.5292 0.0379 0.0428 0.0984 0.0309 0.0327

Actor Sequence 1 0.5226 0.0418 0.3711 0.3708 - 0.0891 0.0352 0.0340 0.0274

Actor Sequence 2 0.2737 0.0532 0.2275 0.2279 - 0.0822 0.0334 0.0342 0.0289

Paper Sequence 0.0827 0.0918 0.0842 0.0801 - 0.0612 - 0.0394 0.0338

T-shirt Sequence 0.0741 0.0712 0.0644 0.0628 - 0.0636 - 0.0362 0.0386

Table 1: Statistical comparison of our method with other competing approaches. Quantitative evaluations for SMSR [4] and DV [23] are

not performed by us due to the unavailability of their code, and therefore, we tabulated their reconstruction error from their published work.
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Figure 7: (a) Variation in the average 3D reconstruction error with change in the noise ratio’s for face dataset[23]. (b) Fluctuation in the

3D reconstruction accuracy with change number of top singular values and corresponding singular vectors used by our algorithm for face

sequence[23]. (c) Processing time againt other competing algorithm’s on Intel Core i7-4790 CPU @3.60GHz x 8 Desktop with MATLAB

2017b, our method show comparable execution timing to SDG[34]. (d) A typical ADMM optimization convergence curve of our algorithm.

6.1. Algorithmic Analysis

We performed some more experiments to understand the be-

havior of our algorithm under different input parameters and

evaluation setups. In practice these experiment help analyze

the practical applicability of our algorithm.

1. Performance over noisy trajectories: We utilized the

standard experimental procedure to analyze the behavior of

our algorithm under different noise levels. Similar to the

work of Kumar et al. [34], we added the Gaussian noise to

the input trajectories. The standard deviation of the noise

are adjusted as σg = λgmax{|W|} with λg varying from

0.01 to 0.055. Fig.(7(a)) show the quantitative comparison

of our approach with recent algorithms namely DS [17] and

SDG [34]. The graph is plotted by taking the average re-

construction error of all the four synthetic face dataset [23].

The procured statistics indicate that our algorithm is more

resilient to noise than other competing methods.

2. Performance with change in the number of singular

values: The selection of ‘p’ in G(p, d) i.e. the number of

top singular vectors for Grassmannian representation and

its corresponding singular values to perform reconstruction

can directly affect the performance of our algorithm. How-

ever, it has been observed over several experiments that we

need very few singular value and singular vectors to recover

dense detailed 3D reconstruction of the deforming object.

Fig.(7(b)) show the variation in average 3D reconstruction

with the values of ‘p’ for synthetic face dataset [23].

3. Processing Time and Convergence: Our algorithm ex-

ecution time is almost at par or a bit slower than SDG [34].

Fig.(7(c)) show the processing time taken by our method

on different datasets. Fig.(7(d)) show a typical convergence

curve of our algorithm. Ideally, it takes 120-150 iteration to

provide an optimal solution to the problem.

7. Conclusion

Our Grassmannian representation of a non-rigidly deform-

ing surface exploits the advantage of Grassmannians of

different dimensions to jointly estimate better grouping of

subspaces and their corresponding 3D geometry. Our ap-

proach explicitly leverages the geometric structure of the

non-rigidly moving object w.r.t its neighbors on manifold

via similarity graph and, it’s embedding in the lower dimen-

sion. We empirically demonstrated that our method is able

to achieve 3D reconstruction accuracy which is better or as

good as the state-of-the-art, with significant improvement in

handling noisy trajectories.
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