
Modeling Local Geometric Structure of

3D Point Clouds using Geo-CNN

Shiyi Lan1 Ruichi Yu1 Gang Yu2 Larry S. Davis1

1University of Maryland, College Park 2Megvii Inc (Face++)

sylan@cs.umd.edu, {yrcbsg, lsd}@umiacs.umd.edu, yugang@megvii.com

Abstract

Recent advances in deep convolutional neural networks

(CNNs) have motivated researchers to adapt CNNs to di-

rectly model points in 3D point clouds. Modeling local

structure has been proven to be important for the success of

convolutional architectures, and researchers exploited the

modeling of local point sets in the feature extraction hi-

erarchy. However, limited attention has been paid to ex-

plicitly model the geometric structure amongst points in a

local region. To address this problem, we propose Geo-

CNN, which applies a generic convolution-like operation

dubbed as GeoConv to each point and its local neighbor-

hood. Local geometric relationships among points are cap-

tured when extracting edge features between the center and

its neighboring points. We first decompose the edge fea-

ture extraction process onto three orthogonal bases, and

then aggregate the extracted features based on the angles

between the edge vector and the bases. This encourages the

network to preserve the geometric structure in Euclidean

space throughout the feature extraction hierarchy. GeoConv

is a generic and efficient operation that can be easily inte-

grated into 3D point cloud analysis pipelines for multiple

applications. We evaluate Geo-CNN on ModelNet40 and

KITTI and achieve state-of-the-art performance.

1. Introduction

With the development of popular sensors such as RGB-

D cameras and LIDAR, 3D point clouds can be easily

acquired and directly processed in many computer vision

tasks [64, 19, 38, 30, 55, 28, 16, 56, 8, 61]. Although

hand-crafted features on point clouds have been utilized for

many years, recent breakthroughs came with the develop-

ment of convolutional neural networks (CNNs) inspiring

researchers to adapt insights from 2D image analysis with

CNNs to point clouds.

One intuitive idea is to convert irregular point clouds into

regular 3D grids by voxelization [31, 63, 51, 5], which en-

x

y

z

p

q *

*

*

Decompose Aggregate

Edge Feature
x

y

z

p

q

Figure 1. Modeling Geometric Structure between Points via Vec-

tor Decomposition. We first decompose the edge features along

three orthogonal directions and apply direction-associated weights

to extract directional descriptions. Then we aggregate them ac-

cording to the vector’s orientation to construct compact edge fea-

tures between point p and q.

ables CNN-like operations to be applied. However, volu-

metric methods suffer from insufficient resolution, due to

sparsely-occupied 3D grids and the exponentially increas-

ing memory cost associated with making the grid finer. To

learn 3D representation at high resolution, kd-tree and oc-

tree based methods hierarchically partition space to exploit

input sparsity [24, 39]. But those methods focus more on

subdivision of a volume rather than local geometric struc-

ture. An important architectural model that directly pro-

cesses point sets is PointNet [33], which aggregates fea-

tures from points using a symmetric function. To im-

prove the ability to handle local feature extraction, Point-

Net++ [35] aggregates features in local regions hierarchi-

cally. However, these methods still ignore the geometric

structure amongst points by treating points independently

in the global or local point sets.

One recent attempt to model geometric relationships

between points is EdgeConv [50], which extracts fea-

tures from each point and its local k-nearest-neighborhood.

EdgeConv extracts edge features between a center point and

its neighboring points. The geometric structure between

two points p and q is represented by the vector ~pq. How-

ever, EdgeConv only models the distance between points

(which is the norm of ~pq) when constructing the neighbor-

hood, and it ignores the direction of the vector, which leads

to loss of local geometric information. Considering that

3D coordinates are given at the input level of most point

1998



cloud analysis pipelines, One might reasonably assume that

geometric information might be implicitly learned directly

from the coordinates. However, current methods may have

the following two challenges for geometric modeling: first,

the geometric relationship amongst points may be over-

whelmed by the large variance of the 3D coordinates, which

makes it difficult to be learned from data directly; second,

current methods project the 3D coordinates to some high-

dimensional space, which may not preserve the geometric

structure of the points in the original Euclidean space, espe-

cially when the feature extraction hierarchy is deep.

To address these problems, we propose a novel

convolution-like operation GeoConv to explicitly model the

geometric structure amongst points throughout the hierar-

chy of feature extraction. GeoConv is applied to each point

and its local spherical neighborhood determined by a radius.

As shown in Fig.1, the vector ~pq which represents the ge-

ometric structure between two points, can be decomposed

into three orthogonal bases. Based on this vector decompo-

sition, we project the edge features between the two points

into three fixed orthogonal bases (the ~x, ~y, ~z in Fig.1) and

apply direction-associated weight matrices (W~x,W~y,W~z

in Fig.1) to extract features along each direction; then we

aggregate them proportional to the angle between ~pq and

the bases (θ ~pq,~x, θ ~pq,~y, θ ~pq,~z in Fig.1). By decomposing the

edge feature extraction process into three orthogonal direc-

tions, we reduce the variance of the absolute coordinates of

the point cloud, and encourage the network to learn edge

features along each basis independently; by aggregating the

features according to the geometric relationship between the

edge vector and the bases, we explicitly model the geomet-

ric structure amongst points. Learning in this fashion de-

composes the complex geometric structure learning prob-

lem into simpler ones while still preserving geometric in-

formation. Finally, to extract local features of the center

point, we weight the edge features from all points in the lo-

cal neighborhood based on the norm of ~pq. Another advan-

tage of GeoConv is that it enables feature level multi-view

augmentation. Our decomposition-aggregation method en-

ables us to approximate the rotation of point clouds at the

feature level via re-weighting the features by manipulating

the angles.

By stacking multiple layers of GeoConv with increas-

ing size of neighborhoods, we construct Geo-CNN, to hier-

archically extract features with increasing receptive fields.

We aggregate the features from all points by channel-wise

max pooling to maintain permutation invariance. GeoConv

is a generic module that models local geometric structure of

points. It can be easily integrated into different pipelines for

3D point cloud analysis, e.g., 3D shape classification, seg-

mentation and object detection. We evaluate Geo-CNN on

ModelNet40 [51] and KITTI [17] and achieve state-of-the-

art performance.

2. Related Work

Motivated by the recent development in 3D sensor tech-

nology, increasing attention has been drawn to developing

efficient and effective representations on 3D point clouds

for shape classification, shape synthesis and modeling, in-

door navigation, 3D object detection, etc.[47, 53, 54, 44,

22, 57, 46, 40, 1, 25, 52, 37, 9, 12]. Some earlier works

constructed hand-crafted feature descriptors to capture lo-

cal geometric structure and model local similarity between

shapes [2, 6, 3, 20, 42, 41]. More recently, deep neural net-

works have been used to learn representations directly from

data. One intuitive way to model the unstructured geomet-

ric data is voxelization, which represents a point cloud as

a regular 3D grid over which 3D ConvNets can be easily

applied [63, 34, 51, 31, 5, 4, 10, 29]. However, volumet-

ric methods usually produce 3D grids which are sparsely

occupied in the space. Their exponentially growing com-

putational cost associated with making the grid finer limits

the resolution in each volumetric grid, and leads to quanti-

zation artifacts. Due to its regular structures and scalability

compared to uniform grids, some indexing techniques such

as kd-tree and octree have also been applied to model point

clouds [24, 39], but those methods still focus more on sub-

division of a volume rather than modeling local geometric

structure.

To directly model each 3D point individually, PointNet

[33], PointNet++ [35] and their variations [32, 27] aggre-

gated point features by a symmetric function to construct a

global descriptor. Instead of working on individual points,

some recent works exploited local structures by construct-

ing a local neighborhood graph and applying convolution-

like operations on the edges connecting neighboring pairs

of points [50, 11]. However, in contrast to our proposed

Geo-CNN, all of the above methods do not explicitly model

the geometric structure of 3D points, which is represented

by the norm and orientation of the vector between two

points. Our proposed GeoConv operation models the geo-

metric structure of points by a decomposition and aggrega-

tion method based on vector decomposition, and can be eas-

ily integrated into different pipelines for 3D object recogni-

tion, segmentation and detection tasks [35, 33, 32, 63].

Instead of modeling the native 3D format of a point

cloud, view-based techniques represent a 3D object as a

collection of 2D views, which is compatible with standard

CNNs used for image analysis tasks [34, 45, 23, 7, 60].

To aggregate information from different orientations of a

3D object, multi-view methods are applied to pool the fea-

tures extracted from different rendered 2D views, and usu-

ally yield better performance than using a single view. In-

spired by this, we augment different orientations of the 3D

points via approximating rotations of the input point clouds

at feature level to further improve the performance of our

model.

999



3. Our Approach

We propose a generic operation GeoConv to explicitly

model the geometric structure in a local region. By stack-

ing several layers of GeoConv with increasing receptive

field, we construct a Geometric-induced Convolution Neu-

ral Network (Geo-CNN) to hierarchically extract features

that preserve the geometric relationships among points in

Euclidean space. We then aggregate the features from each

point by channel-wise max-pooling to extract a global fea-

ture descriptor of point clouds.

3.1. Hierarchical Feature Extraction with Geo­
CNN

With a set of 3D points as input, we exploit local ge-

ometric structure by applying a convolutional-like opera-

tion (GeoConv) on each point and its local neighborhood.

We build the Geo-CNN by stacking multiple GeoConv lay-

ers with increasing neighborhood size. We progressively

enlarge the receptive field of the convolution and abstract

larger and larger local regions, to hierarchically extract fea-

tures and preserve the geometric structure of points along

the hierarchy (as shown in (a) of Fig.2).

Consider a C dimensional point cloud with n points. We

denote the feature of point p at the lth layer of Geo-CNN

as X
l
~p ∈ R

C . Usually the 3D points at the input level

are represented by their 3D coordinates and additional fea-

tures like appearance, surface normal, etc. For each point

p, we construct its local neighborhood using a sphere cen-

tered at that point with radius r. GeoConv is applied on

point p and all points q in the neighborhood N(~p, r), where

N(~p, r) = {~q | ‖~p− ~q‖ 6 r}. The general formula of Geo-

Conv operation applied at the neighborhood of point p at

layer l + 1 is:

X
l+1
~p =s(~p) +

∑

~q∈N(~p,r)

h(~p, ~q, r)

=WcX
l
~p +

∑
~q∈N(~p,r) d(~p, ~q, r)g(~p, ~q)∑

~q∈N(~p,r) d(~p, ~q, r)

(1)

where we aggregate features from the center point ~p and

the edge features that represent the relationship between the

center point and its neighboring points. Wc is the weight

matrix used to extract features from the center point. g(~p, ~q)
is the function that models edge features, which will be de-

fined in Section3.2, and we weight the features from dif-

ferent neighboring points according to the distance between

point ~p and ~q using d(~p, ~q, r) as:

d(~p, ~q, r) = (r − ‖~p− ~q‖)2 (2)

d(~p, ~q, r) satisfies two desired properties: (1) monotonically

decreasing with ‖~p − ~q‖; (2) as r increases, which means

as the receptive field of our operation becomes larger, the

difference of the weight function d(·) between points that

have similar distance to the center point p will decrease.

After several GeoConv layers, we apply channel-wise

max-pooling to aggregate features of each individual point

to construct a global feature descriptor of the point cloud.

This feature descriptor can be fed into a classifier for 3D

shape recognition, segmentation or detection network. Geo-

Conv is a generic operator that can be easily integrated

into current 3D point set analysis pipelines to extract local

features while preserving geometric structure in Euclidean

space.

3.2. GeoConv: Local Geometric Modeling with
Basis­based Decomposition and Aggregation

The most important part of the GeoConv operation is the

way it models the edge features. A straightforward way

would be to apply a neural network or multi-layer percep-

tron (MLP) to compute its activation against each edge.

However, this method could easily suffer overfitting due to

the large variance of edge geometry, which is represented by

the vector ~pq. On the other hand, the above operation may

also project the features into some high dimensional space,

where the original Euclidean geometric structure among

points is not preserved. In 3D Euclidean space, any vector

can be represented by its projection on the three orthogo-

nal bases (~x, ~y, ~z), and the projection norm of the vector on

each basis represents the "energy" along that direction. So,

we decompose the process of edge feature extraction using

the three orthogonal bases: we apply direction-associated

weight matrices W~b
to extract edge features along each di-

rection independently. Then, we aggregate the direction-

associated features based on the projection of the vector ~pq

on each basis to preserve geometric structure. In practice,

to differentiate between positive and negative directions of

each basis, we consider six bases represented as:

B = {(1, 0, 0), (−1, 0, 0), (0, 1, 0),

(0,−1, 0), (0, 0, 1), (0, 0,−1)}
(3)

As shown in (c) of Fig.2, the six bases separate the space

into 8 quadrants, and any vector in a specific quadrant can

be composed by three bases out of B. Given a neighbor-

ing point q, we first localize the quadrant it lies in (we con-

sider a relative coordinate system by setting p as the origin).

Then we project the vector ~pq onto the three bases of this

quadrant, and compute the angle between ~pq and each ba-

sis (shown in Fig.2 (d)). We apply the direction-associated

weight matrices represented as W~b
to extract the compo-

nent of edge features along each direction, and aggregate

them as shown below:

g(~p, ~q) =
∑

~b∈B~q

cos2(θ
~pq,~b

)W~b
X

l
~q (4)

1000



…

x

y

z

p

q

-x

-

y

-z x

y

z

p

qq2 q1

q3 q4

p q

(a)

(b) (c) (d) (e)

Figure 2. Geo-induced Convolution Neural Network (Geo-CNN). We apply Geo-CNN to hierarchically extract feature representations from

a point set. For each point p, GeoConv is applied to its local spherical neighborhood defined by a radius r. We enlarge the receptive field

of GeoConv by increasing r at higher levels of the network (shown as the larger circles in (a)). In the local neighborhood of p, we compute

the edge features between point p and all neighboring points q′s, and weight them with a distance measurement function d(·) as shown

in (b). To extract the edge features between point p and q, we first localize the quadrant that point q belongs to, in a coordinate system

with p as its origin, as illustrated in (c). Then, we compute the edge features along the three bases of that quadrant by direction-associated

weight matrices represented as W~x,W~y,W~z , and aggregate them according to the angles between vector ~pq and the three bases, shown

as θ ~pq,~x, θ ~pq,~y, θ ~pq,~z in (d-e).

where Xl
~q is the feature of point q at the lth layer, and B~q is

a set consisting of three bases selected from B according to

the quadrant in which point ~q lies. The feature along each

direction is aggregated with the coefficients cos2(θ
~pq,~b

),
which corresponds to the square of the ratio between the

norm of each projected component of ~pq and the norm of

~pq, and they naturally sum to 1.

By modeling edge geometry using the basis-based de-

composition, our network learns to extract representations

for each direction independently. This reduces the com-

plexity of the learning task, when compared with directly

learning from the large variance of input 3D coordinates.

By aggregating the features along each basis, we explic-

itly model geometric structure of the edge vector between

each point and its neighbors. By learning geometric mod-

eling using GeoConv, we model and preserve the geometric

structure of 3D point clouds at every level of our hierarchi-

cal feature extraction framework.

3.3. Approximating 3D Multi­view Augmentation
at the Feature Level using Geo­CNN

Inspired by previous works [45, 23] that aggregate infor-

mation of a 3D object by utilizing rendered 2D images with

different virtual camera views, we can also sample from

different orientations by rotating 3D points, and then pool

the multi-view representations to augment information from

different views. In the 3D space, any rotation of the point

clouds can be decomposed into the rotation around the ~z

axis and around the plane spanned by ~x and ~y. For simplic-

ity, "rotation" in this paper refers to rotation around the ~z

axis; our analysis can be easily expanded to other cases.

A naive way to incorporate multiple 3D views at training

time is to use the rotated point sets as data augmentation, but

this method usually leads to even worse performance in our

baseline as well as our implementation of some other works

(e.g., [35, 33]). A possible reason is that the current meth-

ods cannot efficiently learn a compact model from the large

variance introduced by multiple 3D views. An alternative

is to train a specific model for each 3D view and aggregate

the output of multiple networks, which will dramatically in-

crease model complexity.

Instead of input-level multi-view augmentation, we ap-

proximate rotation at the feature level in our network using

the GeoConv operation. This is done by sharing the compu-

tations on edge features along different directions and only

changing the aggregation model. Specifically, we approx-

imate multi-view training and testing by manipulating the

aggregation step in GeoConv:

gMV (~p, ~q) =
∑

v∈V

wv

∑

~b∈B~q

cos2(θ
~pqv,

~b
)W~b

X~q (5)

where wv are learned weights to fuse multi-view features;

θ
~pqv,

~b
are the re-computed angles between the rotated edge

vector and the fixed bases.

1001



1
x
C
in

Wc

1
x
C
o
u
t

1
x
C
o
u
t

Center

Point

… …

1
x
C
in

1
x
C
r
e
d
u
c

Wenl

1
x
C
o
u
t

Neighbor

Point 1

…
1
x
C
in

1
x
C
r
e
d
u
c

Wenl

1
x
C
o
u
t

Neighbor

Point q

…

Figure 3. Implementation of GeoConv. The filled boxes show the

point features with their dimensionality. The black boxes are the

operations. We employ a bottleneck-like structure to first use our

decomposition-aggregation method to extract edge features with

a lower dimensionality, and then enlarge the dimensionality to

match the features extracted from the center point. We aggregate

edge features from each point following Eq.(1).

4. Implementation Details

4.1. GeoConv Module

The input/output of a GeoConv layer is n × Cin and

n×Cout, where n is the number of points, Cin and Cout are

the input/output dimensionality of each point feature. For

each point, we construct its local spherical neighborhood

defined by a hyper-parameter r. We apply a weight matrix

Wc with size Cin×Cout to extract features from the center

point. For edge feature extraction, we apply a bottleneck

module inspired by ResNet[21] to first extract features with

lower-dimension Creduc (we refer to this layer as "reduc-

tion layer"), and then enlarge their dimensionality as shown

in Fig.3. The hyper-parameter of GeoConv is the radius r.

In practice, we split the training data into training and val-

idation set and apply cross-validation to choose the radius

for each layer.

4.2. Geo­CNN for 3D Shape Classification

For 3D shape classification on ModelNet40 [51], we ran-

domly sample 1,000 points from the 3D model of an ob-

ject. The input features are the 3D coordinates and the

surface normal (6 input channels in total). Geo-CNN has

two branches: (1) similar to PointNet++[35], we sample 16

nearest-neighbors from each of the 1,000 points and apply

three fully-connected (FC) layers with output dimentional-

ity as 64-128-384 on each group of 16 points. The output

size is 1 × 384 for each of the 1000 point. (2) For the sec-

ond branch, we feed the same input points into an FC layer

to project them into a 64-dim feature space. Then we ap-

ply the first GeoConv layer with Cin = 64, Creduc = 64
and Cout = 128. An FC layer with 256 output channels

and a GeoConv layer with Cin = 256, Creduc = 64 and

Cout = 512 follow. At this point, we channel-wisely con-

catenate the features extracted from the two branches to ob-

tain an 896-dim feature vector for each point. Next, we

apply the third GeoConv with Cin = 896, Creduc = 64
and Cout = 768 followed by the last FC layer with 2048-

dim output. Channel-wise max-pooling is then applied to

aggregate features from all points. We conduct shape clas-

sification on the pooled global feature descriptor. The radius

for constructing local neighborhoods for the three GeoConv

layers are 0.15, 0.3 and 0.6 (the 3D coordinates are normal-

ized in ModelNet40). Batch-normalization and ReLU are

applied after every FC layer and each reduction layer in the

GeoConv module.

4.3. Geo­CNN for 3D Object Detection

As a generic feature extraction module, Geo-CNN can

be easily applied in any pipeline for point-based 3D object

detection. We follow Frustum PointNet V1 pipeline and

replace some layers in the segmentation network with Geo-

Conv layers. There are 3 MLP modules in the 3D Instance

Segmentation PointNet of Frustum V1 [32] with 9 FC lay-

ers in total for feature extraction. We directly replace all of

the FC layers with the GeoConv layers. For fair compari-

son, the output dimensionalities of the GeoConv layers are

exactly the same as the replaced FC layers. The radii of the

2 layers in the first MLP block are 0.15-0.2; the radii for the

3 layers in the second block are 0.3-0.4-0.4; for the 4 lay-

ers in the third block, the radii are 0.3-0.2-0.1-0.1. We also

explored replacing the FC layers in the box estimation mod-

ule of Frustum PointNet, but obtained slightly worse results.

One possible reason is that when comparing with segmen-

tation, bounding box regression depends more on modeling

global information of an object, rather than modeling geo-

metric structures of local point sets.

For the 3D object detection pipeline, we construct frus-

tums based on 2D box proposals generated by the object

detection pipeline (similar to 2D object detection methods

[36, 18, 15, 14]) in [32]. Then, the Point Segmentation Net-

work with GeoConv is applied to categorize the points on

the object in each frustum and eliminate the noise caused

by background point clouds. Finally, we use the same Box

Estimation Network as [32] to obtain the orientation, size

and centroid of the 3D bounding box. The implementation

of GeoConv is the same as ModelNet.

4.4. Baselines

Our baselines have very similar architecture with Geo-

CNN, with two difference in the edge feature extraction

process: first, baselines fuse the edge features from dif-

ferent points by simply averaging them, unlike GeoConv

which weights the features based on the distance measure-

ment d(·); second, at the reduction layer, GeoConv utilizes

three separate weights along each direction, while the base-

line applies a single weight matrix to extract edge features.

1002



5. Experiments

We evaluate GeoConv on 3D shape classification us-

ing ModelNet40[51] and 3D object detection datasets using

KITTI[17]. The improvement made on both datasets shows

the ability of GeoConv to model synthetic and real point

cloud.

5.1. 3D Shape Classification on CAD­Generated 3D
Point Clouds

5.1.1 Dataset

We first evaluate our model on the ModelNet40 [51] data

with 3D point clouds generated from CAD. There are

12,311 CAD models from 40 object categories, with 9,843

training and 2,468 testing samples. For fair comparisons

with previous works, we use the prepared ModelNet40

dataset from [35], where each model is represented by

10,000 points. One can also sample various sizes of point

clouds, e.g., 1000 or 5,000, from the point set.

5.1.2 Comparison with other Methods

Table 1 shows the comparison between our Geo-CNN and

prior methods. Geo-CNN achieves state-of-the-art perfor-

mance on the object classification task with both evaluation

metrics of ModelNet401. Our baseline achieves similar per-

formance with the state-of-the-art PointNet++[35]. By sim-

ply changing the operation on modeling the edge features in

a local point set from a fully-connected layer to GeoConv,

we obtain a gain of 1.6%, which demonstrates the effec-

tiveness of our geometrical modeling method. By further

approximating 3D multi-view at the feature level, we obtain

a further 0.5% performance gain. We implement the multi-

view approximation by virtually rotating the point clouds

around the z-axis from 0 to 360 degrees. We uniformly ap-

proximate 30 views 2 following Eq.(5). Our method, which

is applied directly on point clouds, even outperforms sin-

gle networks with multi-view images, e.g., [34] (92%) and

[45](90.1%), and achieves comparable performance with

the method integrated multiple networks in [34] (93.8%).

However, our single model Geo-CNN with approximated

multi-view learning at feature level is more scalable and

flexible compare to multi-view representations using mul-

tiple networks.

5.2. 3D Object Detection on LIDAR Points

The distribution of real point clouds could vary sig-

nificantly from generated points. For instance, generated

data contains dense points from various orientations while

1Since the two metrics are very similar, "performance" on this dataset

refers "Accuracy Overall" metric.
2The performance gain of multi-view approximation is robust to the

number of views from 10 to 40, with less than ±0.1 changes.

Table 1. ModelNet40 Shape Classification Results. We sort the

previous methods by time.

Method
Accuracy

Overall

Accuracy

Class

PointNet[33] 89.2 86.2

PointNet++[35] 91.9 -

DeepSets[62] 90.3 -

ECC[43] 87.4 83.2

OctNet[39] 86.5 83.8

O-CNN[49] 90.6 -

Kd-Net[24] 91.8 88.5

EdgeConv[50] 92.2 90.2

SO-Net[27] 93.4 90.8

SpiderCNN[53] 92.4 -

SCN[52] 90.0 87.6

MRTNet[13] 91.7 -

SpecGCNN[48] 92.1 -

Our baseline 91.8 88.2

Geo-CNN 93.4 91.1

Geo-CNN+ MV-Approx. 93.9 91.6

point clouds obtained by sensors, e.g., LIDAR, only con-

tain points from frontal surfaces due to occlusion. More-

over, LIDAR point clouds are noisier and contain a large

amount of background, while generated point clouds con-

tain pure on-object points. Evaluation on real data such as

point clouds collected by LIDAR is very important to show

the robustness and practicality of a 3D point cloud analysis

method. To illustrate the effectiveness of Geo-CNN on real-

world 3D points, we evaluate on 3D object detection using

the KITTI dataset [17].

5.2.1 Dataset

The KITTI 3D object detection benchmark contains 7,481

training and 7,518 testing images/point clouds with three

object categories: Car, Pedestrian, Cyclist. For each class,

detection outcomes are evaluated based on three difficulty

levels: easy, moderate, and hard. The level of difficulty is

based on object size, occlusion state, and truncation level.

For fair comparison with the state-of-the-art detection meth-

ods, we directly replace the PointNet feature extraction

module in the Frustum PointNet v1 [32] detection pipeline

with Geo-CNN, and use the 2D bounding box proposals re-

leased by [32] in our experiments. Since only train/val pro-

posals of frustum pointnet are published, we conduct eval-

uation using the protocol described in [32, 63] and use their

training/testing split.

5.2.2 Comparison with other Methods

Table 5.2 shows the evaluation results on KITTI 3D object

detection. Our implementation of the detection pipeline is

based on Frustum PointNet v1, which involves object pro-

1003



Method
Cars Pedestrians Cyclists

Easy Moderate Hard Easy Moderate Hard Easy Moderate Hard

VoxelNet[63] 81.97 65.46 62.85 57.86 53.42 48.87 67.17 47.65 45.11

Frustum PointNet v1[32] 83.33 69.00 61.97 67.29 56.74 49.84 71.65 53.43 49.20

Frustum PointNet v2[32] 83.42 70.40 63.37 64.30 57.33 50.43 70.51 55.31 52.11

Baseline 84.56 69.16 62.50 64.68 55.59 48.45 72.32 51.36 47.70

Frustum Geo-CNN 85.09 71.02 63.38 69.64 60.50 52.88 75.64 56.25 52.54

Table 2. Performance Comparison in 3D Object Detection: average precision (in %) on KITTI validation set. Geo-CNN achieves sig-

nificantly better performance when compared with the baseline, which demonstrates the effectiveness of our decomposition-aggregation

method on modeling local geometry. Our Frustum Geo-CNN is implemented based on Frustum PointNet v1, and it outperforms both

Frustum PointNet v1 and v2.

posals in 2D object detection [36, 18, 59, 26, 58]. The

performance of v1 was surpassed by Frustum PointNet v2,

which has a more complex architecture. However, by re-

placing the PointNet feature extraction module in the seg-

mentation network of v1 with GeoConv, Frustum with Geo-

CNN outperforms both Frustum PointNet v1 and v2. The

performance of Frustum v1 and v2 on the validation set is

evaluated based on the released code of [32], and it is very

similar with the performance reported in [32]. We visualize

the detection results of Frustum with Geo-CNN on 2D and

3D images in Fig.4.

5.3. Ablation Study

Can we model local geometry by directly learning from

3D coordinates? We study different ways to model local

geometry between points in the feature extraction hierar-

chy. Since the geometric structure is encoded in the 3D

coordinates of points, one straightforward way to learn ge-

ometric structure is to apply an FC layer to directly learn

from the coordinates. However, previous hierarchical fea-

ture extraction methods project the 3D coordinates input

to some high-dimensional feature space at the first layer of

their networks, which may lead to the loss of the Euclidean

geometry amongst points. Our baseline method takes the

3D coordinates at the input level to directly learn the geo-

metric structure implicitly. To preserve the Euclidean ge-

ometry throughout the feature extraction hierarchy, we ap-

ply an FC layer to learn the geometric structure between

points directly from the 3D coordinates of point p and q at

every layer of our baseline model, and concatenate the ex-

tracted features with the original ones channelwisely. We

refer to this method as "Baseline + 3D Coords". We also in-

vestigated alternative approaches to model the angle of the

vector ~pq in GeoConv. Instead of using g(·) function as pro-

posed, we directly learn these aggregation coefficients using

an FC layer with the 3D coordinates of point p and q as in-

put. We refer to this method as "GeoConv - Learned-Agg".

As shown in Table 3, directly learning geometric structure

between points or the coefficients to aggregate the decom-

posed features from the 3D coordinates does not help. This

reveals that modeling the local geometry is non-trivial, and

Accuracy Overall

Baseline 91.8

Baseline + 3D Coords 91.7

GeoConv - Learned-Agg 91.5

GeoConv 93.4
Table 3. Ablation Study: Different Geometric Modeling Meth-

ods. We study different ways to model local geometry amongst

points using ModelNet40 dataset. "Baseline + 3D Coords" directly

learns the geometric structure with 3D coordinates of the two

points at every layer of the network; "GeoConv - Learned-Agg"

aggregates the direction-associated features by learned weights.

GeoConv effectively captures geometric structures amongst

points to improve the feature extraction framework.

Does the performance gain of GeoConv come from in-

creasing model complexity? By decomposing the edge

feature extraction process into three directions using sep-

arate neural networks, GeoConv increases the number of

parameters in the reduction layer of edge feature extraction.

The number of parameters for the edge feature extraction

operation is Cin ∗ nbases ∗ Creduc + Creduc ∗ Cout, where

Cin and Cout are the input/output channel numbers. creduc
is the output channel number of the channel reduction step,

and the difference between GeoConv and the baseline is

nbases (nbases = 6 for GeoConv and nbases = 1 for the

baseline). We increase creduc from 64-64-64 to 192-192-

256 for the three reduction layers in the baseline model to

roughly match the number of parameters for edge feature

extraction of GeoConv operation. The enlarged baseline is

referred to as "Baseline-Large" shown in Table 5.3, which is

evaluated on the ModelNet40 classification task. It is worth

noting that the number of parameters in the reduction lay-

ers accounts for a very small portion of the total number of

parameters, and the experiment setting of the other compo-

nents of the networks except for the reduction layers, are

exactly the same for both baseline and Geo-CNN. It is clear

that simply enlarging the number of channels does not im-

prove performance, and the gain of GeoConv is not due to

the increasing number of parameters.

1004



Figure 4. We visualize the detection results on KITTI with 2D and 3D images. The red boxes are the groundtruth boxes and the blue boxes

are the prediction results. Some of the false positive detection results are because of missing annotation.

Method Baseline Baseline-Large GeoConv

Accuracy Overall 91.8 91.7 93.4

#. of parameters for

edge feature extraction
167.9K 610.8K 557.1K

Table 4. Ablation Study: Model Complexity. We add channels

to the weight matrix of the reduction layer of the baseline method

(Baseline-Large) to match the number of parameters of GeoConv.

We show the sum of number of parameters of the 3 reduction lay-

ers in each model. The results on ModelNet40 shows that simply

increasing model complexity does not help.

Method Accuracy Overall

Baseline 91.8

Baseline + Data Aug. 91.6

Geo-CNN 93.4

Geo-CNN + Data Aug. 92.6

Geo-CNN + MV-Approx. 93.9
Table 5. Overall Accuracy on ModelNet40 with Different Multi-

view Augmentations. "Data Aug." and "MV-Approx." refer to

input-level augmentation and our feature-level multi-view approx-

imation.

3D Multi-view Augmentation. We evaluate the effect of

our feature-level multi-view augmentation. As a straightfor-

ward way to incorporate multi-view information to the net-

work learning process, one can simply rotate the input point

clouds randomly as data augmentation at training time. On

the other hand, our proposed decomposition-aggregation

method in GeoConv enables us to approximate 3D multi-

view augmentation at the feature level. Table 5.3 shows the

performance of input-level multi-view augmentation and

feature-level approximation on ModelNet40 dataset. We

observe that input-level multi-view data augmentation leads

to performance degradation of both the baseline method

and Geo-CNN. One possible reason is that the input-level

data augmentation brings in large variance between differ-

ent views, which cannot be properly learned with a single

compact model. Another possible solution is to learn sep-

arate models with different views and then aggregate them.

However, the models with multiple networks are less flexi-

ble and scalable due to their high complexity.

6. Conclusion

We address the problem of modeling local geometric

structure amongst points with GeoConv operation and a hi-

erarchical feature extraction framework dubbed Geo-CNN.

Inspired by the success of exploiting local structure using

CNNs on 2D image analysis task, we propose to extract

features from each point and its local neighborhood with

a convolutional-like operation. GeoConv explicitly models

the geometric structure between two points by decompos-

ing the feature extraction process onto three orthogonal di-

rections, and aggregating the features based on the angles

between the edge vector and the bases. The Geo-CNN with

GeoConv operation achieves state-of-the-art performance

on the challenging ModelNet40 and KITTI datasets.

7. Acknowledgement

This research was partially supported by National Key

R&D Program of China (No. 2017YFA0700800).

The research was partially supported by the Office of

Naval Research under Grant N000141612713: Visual Com-

mon Sense Reasoning for Multi-agent Activity Prediction

and Recognition.

1005








