
Combinatorial persistency criteria for multicut and max-cut

Jan-Hendrik Lange

Max Planck Institute for Informatics

Saarland University

Bjoern Andres

Max Planck Institute for Informatics

Bosch Center for AI

University of Tübingen

Paul Swoboda

Max Planck Institute for Informatics

Abstract

In combinatorial optimization, partial variable assign-

ments are called persistent if they agree with some optimal

solution. We propose persistency criteria for the multicut

and max-cut problem as well as fast combinatorial routines

to verify them. The criteria that we derive are based on

mappings that improve feasible multicuts, respectively cuts.

Our elementary criteria can be checked enumeratively. The

more advanced ones rely on fast algorithms for upper and

lower bounds for the respective cut problems and max-flow

techniques for auxiliary min-cut problems. Our methods can

be used as a preprocessing technique for reducing problem

sizes or for computing partial optimality guarantees for so-

lutions output by heuristic solvers. We show the efficacy of

our methods on instances of both problems from computer

vision, biomedical image analysis and statistical physics.

1. Introduction

Partitioning graphs into meaningful clusters is a funda-

mental problem in combinatorial optimization with numer-

ous applications in computer vision, biomedical image anal-

ysis, machine learning, data mining and beyond. The MUL-

TICUT problem (a.k.a. correlation clustering) and MAX-CUT

problem are arguably among the most well-known combina-

torial optimization problems for partitioning graphs. They

enable graph clustering purely based on costs between pairs

of nodes and are thus commonly employed to model image

processing and segmentation tasks occurring in computer

vision [34, 3, 22, 18, 5]. The following factors contribute to

the significance of the MULTICUT and MAX-CUT problem:

The former allows for a graph clustering formulation that

determines the number of clusters as part of the optimiza-

tion process. The latter is essentially equivalent to binary

quadratic programming, which has a variety of applications

in image processing. However, as computer vision mod-

els are typically large-scale, standard solution techniques

based on solving LP-relaxations do not scale well enough

and are thus inapplicable. Even more so, finding globally

optimal solutions with branch-and-cut is infeasible with off-

the-shelf commercial solvers. Hence, the need arises for

developing specialized heuristic solvers that output high-

quality solutions for real-world problems, despite the worst-

case NP-hardness of the MULTICUT and MAX-CUT problem.

Unfortunately, although heuristic solvers often achieve a

good empirical performance, they usually come without any

optimality guarantees. Specifically, even if large parts of

the variable assignments computed by a heuristic agree with

globally optimal solutions, such optimality is not recognized.

In this work we consider combinatorial techniques for the

MULTICUT and MAX-CUT problem by which we can effi-

ciently find persistency (a.k.a. partial optimality). Persistent

variable assignments come with a certificate that proves their

agreement with a globally optimal solution. The potential

benefits are twofold: (i) After running a primal heuristic,

we can compute certificates which show that some variables

are persistent. (ii) Even before running a heuristic, we may

determine in a preprocessing step persistent variable assign-

ments. In either case, the problem size can be reduced. In

the first case, a subsequent optimization with exact solvers

is accelerated. In the second case, possibly also the runtime

of a heuristic algorithm is reduced and the solution quality

improved.

A joint treatment of the MULTICUT and MAX-CUT prob-

lem seems instructive, since many criteria have a similar

formulation and are based on analogous arguments. For the

MAX-CUT problem we offer, to our knowledge, a novel ap-

proach for computing persistent variable assignments. For

the MULTICUT problem our empirical evidence suggests that

our method offers substantial improvement over prior work

on persistency. Our empirical results are most significant

for very large scale problems which current heuristics can

barely handle, e.g. in biomedical image segmentation [5]. By

reducing problem size via persistency, our method enables

high quality solutions in such cases.

The paper is organized as follows. In Section 2 we review

the related work. In Section 3 we introduce the MULTICUT

and MAX-CUT problem mathematically in a shared compact

formulation. In Section 4 we recap the concept of improving

16093

mappings in the context of persistency. Further, we introduce

fundamental building blocks for the construction of improv-

ing mappings for the MULTICUT and MAX-CUT problem. In

Section 5 and 6 we present our combinatorial persistency

criteria and devise algorithms to check them. Finally, in

Section 7 we evaluate our methods in numerical experiments

on instances from the literature and compare to related work.

Due to limited space, we provide the proofs for our results

as well as running times for our experiments in the supple-

mentary material. The supplements also contain technical

improvements of our persistency criteria that were omitted

from the main paper for the sake of clarity.

2. Related work

Persistency for Markov Random Fields (MRF) and, as a

special case, for the binary quadratic optimization problem

(a.k.a. Quadratic Pseudo-Boolean Optimization (QPBO)),

has been well studied. It was observed in [31] that a natural

LP-relaxation of the stable set problem has the persistency

property: All integral variables of LP-solutions coincide with

a globally optimal one. This result has been transferred to

QPBO [16, 6, 7] and extended in [45] to find relational persis-

tency, i.e. showing that some pairs of variables must have the

same/different values. For higher order binary unrestricted

optimization problems, the concept of roof duality can be

extended to obtain further persistency results [34, 19, 26].

Going beyond the basic LP-relaxation for QPBO, persistency

certificates involving tighter LP-relaxations for higher order

polynomial 0/1-programs that do not possess the persistency

property (i.e. integral variables need not be persistent) have

been studied in [1].

For general MRFs, criteria that can be elementarily

checked include Dead End Elimination (DEE) [12]. More

powerful techniques generalizing DEE that still can be used

for fast preprocessing can be found in [44]. The MQPBO

method [24] consists of transforming multilabel MRFs to

the QPBO problem and persistency results from QPBO can

subsequently be used to obtain persistency for the origi-

nal multilabel MRF. Persistency criteria for the multilabel

Potts problem that can be efficiently checked with max-flow

computations have been developed in [27, 28] and refined

in [14]. More powerful criteria based on LP-relaxations have

been proposed for the multilabel Potts problem in [41] and

in [38, 42, 40] for general discrete MRFs. An in-depth ex-

position of the concept of improving mappings that is used

implicitly or explicitly for all of the above MRF criteria can

be found in [37]. A comprehensive theoretical discussion

and comparison of the above persistency techniques can be

found in [39].

There has been, to our knowledge, less work on per-

sistency for the MULTICUT and MAX-CUT problem. For

MULTICUT, the works [2, 29] proposed simple persistency

criteria that allow to fix some edge assignments. We are not

aware of any persistency results for MAX-CUT. Also it is not

easily possible to transfer persistency results from QPBO

to MAX-CUT, even though there exist straightforward trans-

formations between these two problems. The underlying

reason is that the transformation from MAX-CUT to QPBO

introduces symmetries which current persistency criteria can-

not handle. More specifically, known persistency criteria

rely on an improving mapping, but in symmetric instances

it is always possible to map a labeling to an equivalent one

with the same cost by exploiting symmetries. Consequently,

fixed-points of improving mappings, which amount to persis-

tent variables, cannot be found. For the closely related (yet

polynomial-time solvable) MIN-CUT problem, a family of

persistency criteria were proposed in [32, 17]. They directly

translate to the MAX-CUT problem and we derive them as

special cases in our study below.

The more involved constraints describing the MULTICUT

and MAX-CUT problem make it difficult to directly transfer

some of the powerful persistency techniques that are avail-

able for MRFs. In our work we show how the framework of

improving mappings developed in [37] can be used to derive

persistency criteria for combinatorial problems with more

complicated constraint structures, such as the MULTICUT

and MAX-CUT problem, once a class of mappings that act

on feasible solutions is identified. Specifically, we show

that the known MULTICUT persistency criteria from [29] and

the persistency criteria from [17] (transferred to the MAX-

CUT problem) can be derived in our theoretical framework.

Moreover, we define more powerful criteria that can find

significantly more persistent variables, as shown in the ex-

perimental Section 7, yet can be evaluated efficiently. We

believe that our approach of composing improving mappings

from elementary mappings is instructive in the search for

more persistency criteria.

3. Multicut and max-cut

Let

min 〈θ, x〉 s.t. x ∈ X (P)

with X ⊆ {0, 1}m be a linear combinatorial optimization

problem. In this paper, we study specific instances of (P)

known as the MULTICUT and the MAX-CUT problem, which

are introduced mathematically in this section. To this end,

let G = (V,E, θ) be a weighted graph, where θ ∈ R
E .

We distinguish non-negative and negative edges via E =
E+ ∪ E− with E+ = {e ∈ E | θe ≥ 0} and E− =
{e ∈ E | θe < 0}. For any two disjoint subsets of vertices

U,W ⊆ V let δ(U,W) = {uw ∈ E | u ∈ U,w ∈ W}
denote the set of edges between U and W . Further, we write

δ(U) = δ(U, V \ U) and E(U) = {uv ∈ E | u, v ∈ U}.

Definition 1 (Multicuts and Cuts). Let (U1, . . . , Uk) be a

partition of V , i.e. U1 ∪ . . .∪Uk = V and Ui ∩Uj = ∅ for

6094

all i, j with i 6= j. The set of edges M between any pair of

components of the partition, defined by

M =
⋃

1≤i<j≤k

δ(Ui, Uj),

is called a multicut of G. If k = 2, then M = δ(U1) = δ(U2)
is called a cut of G. For any set of edges F ⊆ E define the

incidence vector ✶F ∈ {0, 1}E of F via

(✶F)e =

{

1 if e ∈ F

0 else.

We write

MC =
{

✶M | M multicut of G
}

,

CUT =
{

✶δ(U) | U ⊆ V
}

⊆ MC

for the set of incidence vectors of multicuts, respectively

cuts of G.

The MULTICUT problem is to find a multicut of minimum

weight w.r.t. θ and can be written as an instance of (P) as

follows:

min 〈θ, x〉 s.t. x ∈ MC. (PMC)

The MAX-CUT problem is to find a cut δ(U), U ⊆ V ,

of maximum weight (or equivalently of minimum weight

for −θ). Therefore, it can w.l.o.g. be written as an instance

of (P) as follows:

min 〈θ, x〉 s.t. x ∈ CUT. (PCUT)

Note that we use min instead of max to conform to (P).

4. Improving mappings

In this section, we introduce improving mappings as a

concept to derive partial optimality results and define ele-

mentary building blocks to construct improving mappings

for the MULTICUT and MAX-CUT problem.

Definition 2 ([38]). A mapping p : X → X with the prop-

erty

〈θ, p(x)〉 ≤ 〈θ, x〉 ∀x ∈ X

is called improving mapping.

An improving mapping p that maps some variable xi to a

fixed value β provides persistency (a.k.a. partial optimality):

For each feasible element x ∈ X , applying p to x and thus

fixing xi = β gives another element that is at least as good.

Lemma 1 (Persistency). Let p : X → X be an improving

mapping and β ∈ {0, 1}. If

p(x)i = β ∀x ∈ X,

then x∗
i = β in some optimal solution x∗ of (P).

a) b) c)
Figure 1. Illustration of elementary mappings. a) Original multicut

x ∈ MC (solid lines) and connected region U (dashed line). b)

Result of cut mapping pδ(U)(x). c) Result of join mapping pU (x).

There are two trivial improving mappings: (i) The iden-

tity mapping id : x 7→ x. It does not provide any persistency

at all, given that no variable is fixed by the constraint x ∈ X
alone. (ii) The mapping p∗ : x 7→ x∗ that maps any x to a

fixed optimal solution x∗ ∈ argminx∈X〈θ, x〉. This map-

ping obviously provides the maximal persistency, i.e. it fixes

all variables, but for NP-hard problems it is generally in-

tractable to compute x∗.

We are hence interested in a middle ground: We want

to find improving mappings that fix as many variables as

possible (unlike id) but that are computable in polynomial

time (unlike p∗). This allows us to simplify the original

problem (P) by fixing the persistent variables. For the MUL-

TICUT problem we can contract those edges that can be

persistently set to 0, which allows to shrink the underlying

graph. For the MAX-CUT problem, however, any value for

persistent variables can be exploited for contractions, as we

show below.

4.1. Elementary mappings

In order to construct improving mappings for the MUL-

TICUT and MAX-CUT problem, we employ the elementary

mappings defined in this section.

Definition 3 (Multicut mappings). Let U ⊆ V be a set of

nodes that induce a connected component of G.

(i) The elementary cut mapping pδ(U) is defined as

pδ(U)(x) = x ∨ ✶δ(U) .

In other words, this means that pδ(U)(x)e = 1 for all edges

e ∈ δ(U) and pδ(U)(x)e = xe otherwise.

(ii) The elementary join mapping pU is defined as

pU (x)uv =































0, uv ∈ E(U)

0, ∃uv-path P such that

∀e ∈ EP :

xe = 0 or e ∈ E(U)

xuv, otherwise.

(1)

Intuitively, the elementary cut mapping pδ(U) adds the

cut δ(U) to the multicut defined by x. The elementary join

mapping pU merges all components that intersect with U ,

6095

a) b)
Figure 2. Illustration of symmetric difference mapping. a) Original

cut x ∈ CUT (solid lines) and cut δ(U) (dashed orange line). b)

Result of symmetric difference mapping p
△

δ(U)(x).

cf. Figure 1. To show well-definedness of the elementary

cut and join mapping rigorously, we need the following

characterization of multicuts.

Fact 1 ([9]). A set M ⊆ E is a multicut iff for every cycle

C of G it holds that |M ∩ C| 6= 1.

Lemma 2 (Well-definedness). The mappings pδ(U) and pU
are well-defined, i.e.

(i) pδ(U) : MC → MC for any connected U ⊆ V

(ii) pU : MC → MC for any connected U ⊆ V .

The elementary mapping for the MAX-CUT problem ex-

ploits the well-known property of cuts that they are closed

under taking symmetric differences (of edges).

Fact 2 ([36]). Let x, y ∈ CUT. Then x△y ∈ CUT.

In particular, since x 7→ x△y is an involution (i.e. its

own inverse) for any cut y ∈ CUT, it holds that CUT△y =
{x△y | x ∈ CUT} = CUT. Given an instance of MAX-

CUT defined by G = (V,E, θ) and a cut y ∈ CUT, this

transformation of the feasible set corresponds to switching

the signs of θe for all e ∈ E with ye = 1 and adding the

constant
∑

e∈E θeye to the objective value. If y is optimal

for the original instance, then y△y = 0 is optimal for the

transformed instance. Hence, whenever we want to compute

persistency for xf = 1, we can transform the instance to an

equivalent one by applying the described switching for any

cut that contains f and then checking whether xf = 0 holds

persistently.

Definition 4 (Symmetric Difference Mapping). Let U ⊆ V .

The elementary symmetric difference mapping p△δ(U) w.r.t.

δ(U) is defined as

p△δ(U)(x) = x△✶δ(U) .

In other words, this means that p△δ(U)(x)e = 1 − xe for

all edges e ∈ δ(U) and p△δ(U)(x)e = xe otherwise. The

symmetric difference mapping is well-defined because of

Fact 2. See Figure 2 for an illustration of p△δ(U).

5. Persistency criteria

In this section, we propose subgraph-based criteria for

finding improving mappings. We provide criteria for small

connected subgraphs such as edges or triangles as well as

criteria for general connected subgraphs. In Section 6, we

present efficient heuristic algorithms to check the subgraph

criteria proposed in this section.

First consider the instructive special case of a single edge

subgraph. The following criterion has been evaluated by [29]

for the MULTICUT problem.

Theorem 1 (Edge Criterion). Let f ∈ E be an edge and

U ⊆ V be connected with f ∈ δ(U). Further, let β =
(1− sign θf)/2. If











































θf ≥
∑

e∈δ(U)\{f}

|θe|, P = PMC, β = 0 (2)

|θf | ≥
∑

e∈δ(U)∩E+

θe, P = PMC, β = 1 (3)

|θf | ≥
∑

e∈δ(U)\{f}

|θe|, P = PCUT (4)

then x∗
f = β in some optimal solution x∗ of (P).

The criteria of Theorem 1 are proved by showing that the

mapping p : X → X that maps any x ∈ X with xf 6= β

to (pf ◦ pδ(U))(x), pδ(U)(x) or p△δ(U)(x), respectively, is im-

proving. Simple candidates for U in Theorem 1 are {u}
and {v} where f = uv. Checking these for every edge

f ∈ E can be done in linear time. All u-v-cuts (the cuts

that separate u from v) can be checked at once by mini-

mizing the right-hand sides of (2) – (4) via max-flow tech-

niques on the weighted graph G|·| = (V,E, |θ|), respectively

G+ = (V,E+, θ) for (3). Note that the condition in (3) is

less restrictive than (2). Computing a Gomory-Hu tree [13]

of G|·| or G+ reduces the total computational effort of check-

ing the criterion for all edges f ∈ E to |V | − 1 max-flow

problems.

5.1. General subgraph criteria

We give a technical lemma that allows to generalize the

persistency criterion stated in Theorem 1.

Lemma 3. Let f ∈ E and β ∈ {0, 1}. Further, let H =
(VH , EH) be a connected subgraph of G such that f ∈ EH .

If for every y ∈ CUT(H) with yf = 1 − β, there exists

a mapping py : X → X such that for all x ∈ X whose

restriction to H agrees with y, i.e. x|EH
= y, we have

(i) 〈θ, py(x)〉 ≤ 〈θ, x〉

(ii) py(x)f = β,

then x∗
f = β in some optimal solution x∗.

6096

a)
u

v

w

b)

u

v

VH \ U

U

V \ VH

Figure 3. a) The conditions presented in Corollary 1 compare the

weights of inner cuts (- -) and outer cuts (- -) around the triangle

{u, v, w}. b) The conditions (9) and (10), presented in Theorem 2

and 3, compare the weights of the inner cut δ(U, VH \ U) and the

outer cut δ(VH) = δ(U, V \ VH) ∪ δ(VH \ U, V \ VH).

The lemma follows by application of py(x) whenever

x|EH
= y. Consider the following special case when H is

a triangle subgraph. If the persistency criterion is satisfied,

then for every assignment of x|EH
there is an improving

combination of elementary mappings from Section 4.1.

Corollary 1 (Triangle Criterion). Let {uw, uv, vw} ⊂ E
be a triangle. Let U ⊂ V be such that uv, uw ∈ δ(U), and

W ⊂ V be such that uw, vw ∈ δ(W).

(i) If

θuw + θuv ≥
∑

e∈δ(U)\{uw,uv}

|θe|, (5)

θuw + θvw ≥
∑

e∈δ(W)\{uw,vw}

|θe| (6)

holds, then x∗
uw = 0 for some optimal solution of (PCUT).

(ii) If additionally

θuw + θuv + θvw ≥
∑

e∈δ({u,v,w})∩E+

θe (7)

holds, then x∗
uw = 0 for some optimal solution of (PMC).

A straightforward choice for the cuts in Corollary 1 are

δ({u}), δ({w}), δ({v, w}) and δ({u, v}), as depicted in Fig-

ure 3 a). It is possible to find better cuts w.r.t. costs |θ|, but

we are not aware of any more efficient technique than to

explicitly compute them via max-flow for every triangle (un-

like computing a Gomory-Hu tree to evaluate the single edge

criterion for all edges).

We further employ Lemma 3 to state general subgraph

criteria for the MULTICUT and MAX-CUT problem. They are

proved by showing that the mapping p : X → X , which suit-

ably applies pVH
◦ pδ(VH), respectively p△δ(U), is improving.

See Figure 3 b) for a schematic illustration.

Theorem 2 (Multicut Subgraph Criterion). Let H =
(VH , EH) be a connected subgraph of G and suppose

uv ∈ EH . If

min
y∈MC(H)

〈θ, y〉 = 0 (8)

and for all U ⊂ VH with u ∈ U and v /∈ U it holds that

∑

e∈δ(U,VH\U)

θe ≥
∑

e∈δ(VH)∩E+

θe, (9)

then x∗
uv = 0 in some optimal solution x∗ of (PMC).

Note that the MULTICUT subgraph criterion stated in The-

orem 2 is different from the edge and triangle criteria when

evaluated on these special subgraphs. If H = (f, {f}) for

some edge f ∈ E, then condition (9) translates to

θf ≥
∑

e∈δ(f)∩E+

θe.

If H is a triangle, i.e. H = ({u, v, w}, {uv, uw, vw}) for

some vertices u, v, w ∈ V , then condition (9) translates to

min{θuv + θuw, θuv + θvw, θuw + θvw}

≥
∑

e∈δ({u,v,w})∩E+

θe.

Theorem 3 (Max-Cut Subgraph Criterion). Let H =
(VH , EH) be a connected subgraph of G and suppose

uv ∈ EH . If for all U ⊂ VH with u ∈ U and v /∈ U it

holds that

∑

e∈δ(U,VH\U)

θe

≥ min

{

∑

e∈δ(U,V \VH)

|θe|,
∑

e∈δ(VH\U,V \VH)

|θe|

}

, (10)

then x∗
uv = 0 in some optimal solution x∗ of (PCUT).

Note that if H is a single edge or a triangle, the subgraph

criterion stated in Theorem 3 specializes to the edge cri-

terion, respectively triangle criterion, where only the cuts

δ({u}), δ({v}), respectively δ({u}), δ({w}), δ({v, w}) and

δ({u, v}) are considered.

6. Algorithms

In this section we devise algorithms that verify, for a

given instance G = (V,E, θ) of the MULTICUT or MAX-

CUT problem, the persistency criteria presented in Section 5.

The edge and triangle criteria can be checked explicitly

for all edges, respectively triangles of G. Note that listing

all triangles of a graph can be done efficiently [35].

Therefore, we focus here on developing efficient algo-

rithms that find subgraphs H which qualify for the criteria

from Theorem 2 and 3. Specifically, we propose routines

that (i) check for a given connected subgraph H whether

some persistency criteria apply and (ii) find good candidates

for H . Our method applies all subroutines repeatedly until

no more persistent edges are found.

6097

6.1. Subgraph evaluation

Let H = (VH , EH) be a subgraph of G that we want to

check for persistency condition (9), respectively (10). Now,

for a given edge uv ∈ EH , we can determine if (9) holds

true for all U ⊂ VH with u ∈ U and v /∈ U by minimizing

the left-hand side w.r.t. U . In contrast, for (10), we also need

to simultaneously maximize the right-hand side, since it de-

pends on U as well. Obviously, minimizing the left-hand

side (of either (9) or (10)) means finding a minimum u-v-cut

w.r.t. θ. Further, since the right-hand sides are non-negative,

the minimum u-v-cut must have non-negative weight. How-

ever, in general the weights θ on H may be negative, which

renders both optimization problems hard in general.

For this reason, we simplify the problem by restriction to

suitable subgraphs H that satisfy Assumption 1 below. We

shall see subsequently how to utilize this condition. In order

to state Assumption 1 rigorously, we need to briefly recap

the following integer linear programming (ILP) formulation

of the MULTICUT problem.

The MULTICUT problem can be stated equivalently

to (PMC) as finding the minimum weight edge set w.r.t. |θ|
that covers every cycle with exactly one negative edge, the

so-called erroneous or conflicted cycles [11, 29]. The corre-

sponding ILP formulation reads

min
x̂

〈|θ|, x̂〉+
∑

e∈E−

θe (11)

s.t.
∑

e∈EC

x̂e ≥ 1, ∀ conflicted C

x̂ ∈ {0, 1}E .

The associated packing dual is the linear program

max
λ

〈✶, λ〉+
∑

e∈E−

θe (12)

s.t.
∑

C:e∈EC

λC ≤ |θe| ∀e ∈ E,

λ ≥ 0.

For any dual feasible λ ≥ 0, the associated reduced costs for

the primal problem (11) are given by

θ̃e =

(

|θe| −
∑

C:e∈EC

λC

)

sign θe ∀e ∈ E. (13)

Assumption 1. Let H = (VH , EH , θ) be a weighted graph

such that

i) The graph H has a trivial optimal MULTICUT solution

y∗ = 0, i.e. miny∈MC(H)〈θ, y〉 = 0 = 〈θ, y∗〉.

ii) An optimal packing dual solution λ∗ that corresponds

to y∗ for the MULTICUT problem on H is at hand.

Note that Assumption 1 i) also implies a trivial MAX-CUT

solution, since CUT ⊆ MC. Assumption 1 has the following

expedient consequence.

Lemma 4. Let H = (VH , EH , θ) be a weighted graph that

satisfies Assumption 1. Then the reduced costs θ̃ defined by

(13) satisfy θ̃e ≥ 0 for all e ∈ EH and for any cut δ(U) of

H it holds that

0 ≤
∑

e∈δ(U)

θ̃e ≤
∑

e∈δ(U)

θe. (14)

Our method exploits Assumption 1 and Lemma 4 as fol-

lows. First, we compute a heuristic solution to the packing

dual (12) by the fast Iterative Cycle Packing (ICP) algorithm

from [29]. Then, if the computed dual bound shows that H
has a trivial MULTICUT solution (and thus the dual solution

is optimal), we can compute lower bounds to the left-hand

side of (9) and (10) by applying max-flow techniques on H
with capacities θ̃.

In the case of the MULTICUT problem, the right-hand side

of (9) is constant w.r.t. U so it suffices to compute a Gomory-

Hu tree on H . In the case of the MAX-CUT problem, however,

this is not sufficient, since the right-hand side of (10) also

depends on U . Here, after replacing θe by θ̃e for all e ∈ EH ,

we need to solve the following minmax problem

min
U⊂VH :

u∈U,v/∈U

(

∑

e∈δ(U,VH\U)

θ̃e

−min

{

∑

e∈δ(U,V \VH)

|θe|,
∑

e∈δ(VH\U,V \VH)

|θe|

})

= −
∑

e∈δ(VH)

|θe|+ min
U⊂VH :

u∈U,v/∈U

(

∑

e∈δ(U,VH\U)

θ̃e

+max

{

∑

e∈δ(U,V \VH)

|θe|,
∑

e∈δ(VH\U,V \VH)

|θe|

})

.

(15)

As solving this problem exactly appears to be difficult,

we propose to solve a relaxation that is obtained by replacing

the inner max term with

max
α∈[0,1]

α
∑

e∈δ(U,V \VH)

|θe|+ (1− α)
∑

e∈δ(VH\U,V \VH)

|θe|

and then swapping the order of min and max. This yields

(15) ≥ −
∑

e∈δ(VH)

|θe|+ max
α∈[0,1]

min
U⊂VH :

u∈U,v/∈U

(

∑

e∈δ(U,VH\U)

θ̃e+

α
∑

e∈δ(U,V \VH)

|θe|+ (1− α)
∑

e∈δ(VH\U,V \VH)

|θe|

)

.

6098

The right-hand side is the maximization of a concave, non-

smooth function on the unit interval, which can be solved

efficiently with the bisection method. In every iteration, the

inner minimization problem needs to be solved for a fixed

α ∈ [0, 1], which can be formulated again as a max-flow

problem.

For solving the max-flow problems that occur in our

method, we use Boykov-Kolmogorov’s algorithm with

reused search trees [8, 25]. For computing Gomory-Hu

trees, we use a parallelized implementation of Gusfield’s

algorithm [15, 10].

6.2. Finding candidate subgraphs

To efficiently find good candidate subgraphs, we employ

the following strategy. First, we compute a primal feasible

solution x̄ ∈ X by a fast heuristic method such as greedy

edge contraction algorithms [20, 23]. If the heuristic solu-

tion x̄ is reasonably good, then many components defined

by x̄ should be close to optimal. Thus, in the case of the

MULTICUT problem, the components may already serve as

candidate subgraphs. In the case of the MAX-CUT problem,

we use x̄ to transform the instance by the switching operation

described in Section 4.

Then, we compute a heuristic packing dual solution λ̄
by ICP for the entire graph G = (V,E, θ). The candidate

subgraphs are determined as the connected components of

the positive residual graph (V, {e ∈ E | θ̃e > 0}), where θ̃
is defined as before in (13). The intuition behind this strat-

egy is that, by construction, the edges within the subgraphs

have relatively higher weight than the outgoing edges. This

facilitates the application of the conditions (9) and (10).

Reduced cost fixing. Further, whenever both a primal

solution and dual solution are available, we use the following

technique known as reduced cost fixing [4] to determine

additional persistent variables. Let γ = 〈θ, x̄〉 − 〈✶, λ̄〉 −
∑

e∈E−
θe denote the duality gap of the primal-dual solution

pair and suppose γ < θ̃f for some f ∈ E. Then, it follows

that xf = 1 cannot be optimal and thus we can fix xf = 0.

7. Experiments

In order to study the effectiveness of our methods, we

evaluate them on a collection of more than 200 instances

from the literature. The size of the instances ranges from

a few hundred to hundreds of millions of variables (edges).

We measure and compare the average relative size reduction

of test instances that is obtained by applying our algorithms.

Instances. For the MULTICUT problem we use segmen-

tation and clustering instances from the OpenGM bench-

mark [21] as well as biomedical segmentation instances

provided by the authors of [5] and [33]. The dataset Image

Segmentation contains planar graphs that are constructed

Table 1. The table gathers for each data set the number of instances

(#I), the graph sizes and instance type (P).

Data set #I |V | |E| P

Image Segmentation 100 156–3764 439–10970 PMC

Knott-3D-150 8 572–972 3381–5656 PMC

Knott-3D-300 8 3846–5896 23k–36k PMC

Knott-3D-450 8 15k–17k 94k–107k PMC

Knott-3D-550 8 27k–31k 173k–195k PMC

Modularity Clustering 6 34–115 561–6555 PMC

CREMI-small 3 20k–35k 170k–235k PMC

CREMI-large 3 430k–620k 3.2M–4.1M PMC

Fruit-Fly Level 1–4 4 5M–11M 28M–72M PMC

Fruit-Fly Global 1 90M 650M PMC

Ising Chain 30 100–300 4950–44850 PCUT

2D Torus 9 100–400 200–800 PCUT

3D Torus 9 125–343 375–1029 PCUT

Deconvolution 2 1001 11k–34k PCUT

Super Resolution 2 5247 15k–25k PCUT

Texture Restoration 4 7k–22k 59k–195k PCUT

Table 2. For each dataset the table reports the average fraction of

remaining nodes and edges after applying our method, respectively

the method from [29] (lower is better). †Results for Fruit-Fly

Global are without ICP-based candidate subgraphs.

Our [29]

Data set |V | |E| |V | |E|

Image Seg. 27.7% 27.4% 63.7% 62.7%
Knott-3D-150 9.7% 9.6% 75.2% 88.3%
Knott-3D-300 54.8% 61.6% 76.7% 91.6%
Knott-3D-450 66.9% 77.6% 77.6% 92.4%
Knott-3D-550 67.8% 79.0% 77.8% 92.6%
Mod. Clustering 88.7% 80.6% 92.0% 85.1%

CREMI-small 33.8% 31.9% 76.6% 75.3%
CREMI-large 44.0% 44.2% 83.7% 86.6%

Fruit-Fly Level 1–4 8.7% 9.6% 24.6% 27.9%

Fruit-Fly Global† 56.3% 51.8% 77.9% 74.5%

from superpixel adjacencies of photographs. The Knott-3D

data sets contains non-planar graph arising from volume

images acquired by electron microscopy. The set Modular-

ity Clustering contains complete graphs constructed from

clustering problems on small social networks. The CREMI

data sets contain supervoxel adjacency graphs obtained from

volume image scans of neural tissue. The Fruit-Fly instances

were generated from volume image scans of fruit fly brain

matter. The global problem is the largest instance in this

study with roughly 650 million variables. It represents the

current limit of what can be tackled by state-of-the-art local

search algorithms. The instances Level 1–4 are progres-

sively simplified versions of the global problem obtained via

block-wise domain decomposition [33].

6099

∅ [2] [29] Edge △ Greedy ICP

100

80

60

40

20

0

%
|E

|

Image Seg.

CREMI-small

Figure 4. The figure shows the average fraction of remaining vari-

ables after shrinking the instance with progressively more expen-

sive persistency criteria. The criteria added are from left to right:

none [∅], connected components of G+ [2], single node cuts [29],

edge subgraphs [Edge], triangle subgraphs [△], greedy subgraphs

[Greedy], ICP candidate subgraphs and reduced cost fixing [ICP].

For the MAX-CUT problem we use two different types

of instances. (i) The datasets Ising Chain, 2D Torus and

3D Torus contain instances that stem from applications in

statistical physics [30]. The instances in Ising Chain assume

a linear order on the nodes. For any pair of nodes there

is an edge with an associated weight. The absolute values

of the weights decrease exponentially with the distance of

the nodes in the linear order. The instances in 2D Torus

and 3D Torus are defined on toroidal grid graphs in two,

resp. three dimensions with Gaussian distributed weights.

(ii) The datasets Deconvolution, Super Resolution and Tex-

ture Restoration contain QPBO instances originating from

image processing applications [34, 43] that are converted

to our formulation of the MAX-CUT problem. The transfor-

mation introduces an additional node that is connected with

all other nodes. A cut (uncut) edge to the additional node

signifies label 0 (resp. 1). The instance size statistics for all

data sets are summarized in Table 1.

Results. In Table 2, we report for the MULTICUT instances

the average graph sizes after shrinking the instances with

our algorithms from Section 6. In Figure 4, the contribu-

tions of the individual persistency criteria are separated and

compared. It can be seen from Table 2 and Figure 4 that our

criteria enable finding substantially more persistent variables

than the prior work [2, 29]. In relation to the graph sizes

after shrinking with the baseline [29], our method achieves

an additional size reduction of about 30–60% for the large

CREMI and Fruit-Fly instances. This shows that our algo-

rithms find persistent variable assignments that are harder to

detect than with the criteria from prior work.

In Table 3 we report for the MAX-CUT instances the av-

erage graph size reduction on each dataset. For the QPBO

instances we compare to the QPBO method [34]. For the

original MAX-CUT instances we are unaware of any baseline

method and the QPBO method is not applicable. In Figure 5

we compare the contribution of the different subgraph cri-

teria. It can be seen that our method solves all Ising Chain

Table 3. For each dataset, the table reports the average fraction of

remaining nodes and edges after applying our method, respectively

the QPBO method [34] (lower is better). Note that the latter is not

applicable to original MAX-CUT instances due to symmetries.

Our [34]

Data set |V | |E| |V | |E|

Ising Chain 0.0% 0.0% n/a n/a

2D Torus 23.6% 27.9% n/a n/a

3D Torus 94.8% 98.1% n/a n/a

Deconvolution 61.0% 56.5% 61.0% 56.5%
Super Resolution 0.0% 0.0% 0.2% 0.1%
Texture Restoration 98.4% 98.5% 58.8% 57.3%

∅ Edge △ ICP

100

80

60

40

20

0
%

|E
|

2D Torus

Super Res.

Figure 5. The figure shows the average fraction of remaining vari-

ables after shrinking the instance with progressively more expensive

persistency criteria. The criteria added are from left to right: none

[∅], edge subgraphs [Edge], triangle subgraphs [△], ICP candidate

subgraphs and reduced cost fixing [ICP].

instances to optimality, which is facilitated by their partic-

ular distribution of the weights. On 2D Torus we achieve

substantial size reductions and on the denser 3D Torus in-

stances we find few persistencies. Our results on the QPBO

instances are on a par with [34] for Deconvolution and Super

Resolution while our method is less effective for Texture

Restoration.

8. Conclusion

We have presented combinatorial persistency criteria for

the MULTICUT and MAX-CUT problem. Moreover, we have

devised efficient algorithms to check our criteria. For MUL-

TICUT our method achieves a substantial improvement over

prior work when evaluated on common benchmarks as well

as practical instances. For MAX-CUT we are, to the best of

our knowledge, the first to propose an algorithm that com-

putes persistent variable assignments for the general problem.

For the special case of QPBO problems, our method matches

the performance of prior work on some instances. Our results

demonstrate the feasibility of computing persistent variable

assignments for NP-hard graph cut problems in practice. Be-

sides acquiring partial optimality guarantees, our approach is

a helpful tool for shrinking problem sizes and thus essential

toward identifying globally optimal solutions.

6100

References

[1] Warren P. Adams, Julie Bowers Lassiter, and Hanif D. Sherali.

Persistency in 0-1 polynomial programming. Mathematics of

Operations Research, 23(2):359–389, 1998.

[2] Amir Alush and Jacob Goldberger. Ensemble segmenta-

tion using efficient integer linear programming. TPAMI,

34(10):1966–1977, 2012.

[3] Bjoern Andres, Jörg H. Kappes, Thorsten Beier, Ullrich

Köthe, and Fred A. Hamprecht. Probabilistic image seg-

mentation with closedness constraints. In ICCV, 2011.

[4] Egon Balas and Clarence H. Martin. Pivot and complement-

a heuristic for 0-1 programming. Management Science,

26(1):86–96, 1980.

[5] Thorsten Beier, Constantin Pape, Nasim Rahaman, Timo

Prange, Stuart Berg, Davi D. Bock, Albert Cardona, Gra-

ham W. Knott, Stephen M. Plaza, Louis K. Scheffer, Ullrich

Koethe, Anna Kreshuk, and Fred A. Hamprecht. Multicut

brings automated neurite segmentation closer to human per-

formance. Nature Methods, 14(2):101–102, 2017.

[6] Endre Boros and Peter L. Hammer. Pseudo-boolean opti-

mization. Discrete Applied Mathematics, 123(13):155 – 225,

2002.

[7] Endre Boros, Peter L. Hammer, Richard Sun, and Gabriel

Tavares. A max-flow approach to improved lower bounds for

quadratic unconstrained binary optimization (qubo). Discrete

Optimization, 5(2):501 – 529, 2008. In Memory of George B.

Dantzig.

[8] Yuri Boykov and Vladimir Kolmogorov. An experimental

comparison of min-cut/max-flow algorithms for energy mini-

mization in vision. TPAMI, 26(9):1124–1137, 2004.

[9] Sunil Chopra and M.R. Rao. The partition problem. Mathe-

matical Programming, 59(1–3):87–115, 1993.

[10] Jaime Cohen, Luiz A. Rodrigues, Fabiano Silva, Renato

Carmo, André L. P. Guedes, and Elias P. Duarte. Parallel im-

plementations of gusfield’s cut tree algorithm. In Algorithms

and Architectures for Parallel Processing, pages 258–269,

2011.

[11] Erik D. Demaine, Dotan Emanuel, Amos Fiat, and Nicole

Immorlica. Correlation clustering in general weighted graphs.

Theoretical Computer Science, 361(2–3):172–187, 2006.

[12] Johan Desmet, Marc De Maeyer, Bart Hazes, and Ignace

Lasters. The dead-end elimination theorem and its use in

protein side-chain positioning. Nature, 356(6369):539, 1992.

[13] R. E. Gomory and T. C. Hu. Multi-Terminal Network Flows.

Journal of the Society for Industrial and Applied Mathematics,

9(4):551–570, 1961.

[14] Igor Gridchyn and Vladimir Kolmogorov. Potts model, para-

metric maxflow and k-submodular functions. In ICCV, 2013.

[15] Dan Gusfield. Very simple methods for all pairs network flow

analysis. SIAM J. Comput., 19(1):143–155, 1990.

[16] Peter L. Hammer, Pierre Hansen, and Bruno Simeone. Roof

duality, complementation and persistency in quadratic 0–1

optimization. Mathematical Programming, 28(2):121–155,

1984.

[17] Monika Henzinger, Alexander Noe, Christian Schulz, and

Darren Strash. Practical minimum cut algorithms. In Proceed-

ings of the Twentieth Workshop on Algorithm Engineering

and Experiments (ALENEX), pages 48–61. SIAM, 2018.

[18] Eldar Insafutdinov, Leonid Pishchulin, Bjoern Andres,

Mykhaylo Andriluka, and Bernt Schiele. Deepercut: A

deeper, stronger, and faster multi-person pose estimation

model. In ECCV, pages 34–50, 2016.

[19] Fredrik Kahl and Petter Strandmark. Generalized roof duality.

Discrete Applied Mathematics, 160(16-17):2419–2434, 2012.

[20] Sera Kahruman-Anderoglu, Elif Kolotoglu, Sergiy Butenko,

and Illya V. Hicks. On greedy construction heuristics for the

MAX-CUT problem. International Journal of Computational

Science and Engineering (IJCSE), 3(3):211–218, 2007.

[21] Jörg H. Kappes, Björn Andres, Fred A. Hamprecht, Christoph

Schnörr, Sebastian Nowozin, Dhruv Batra, Sungwoong

Kim, Bernhard X. Kausler, Thorben Kröger, Jan Lellmann,

Nikos Komodakis, Bogdan Savchynskyy, and Carsten Rother.

A comparative study of modern inference techniques for

structured discrete energy minimization problems. IJCV,

115(2):155–184, 2015.

[22] Margret Keuper, Bjoern Andres, and Thomas Brox. Motion

trajectory segmentation via minimum cost multicuts. In ICCV,

2015.

[23] Margret Keuper, Evgeny Levinkov, Nicolas Bonneel, Guil-

laume Lavoué, Thomas Brox, and Bjoern Andres. Efficient

decomposition of image and mesh graphs by lifted multicuts.

In ICCV, 2015.

[24] P. Kohli, A. Shekhovtsov, C. Rother, V. Kolmogorov, and P.

Torr. On partial optimality in multi-label MRFs. In ICML,

2008.

[25] Pushmeet Kohli and Philip H. S. Torr. Effciently solving

dynamic markov random fields using graph cuts. In ICCV,

pages 922–929, 2005.

[26] Vladimir Kolmogorov. Generalized roof duality and

bisubmodular functions. Discrete Applied Mathematics,

160(4):416 – 426, 2012.

[27] Ivan Kovtun. Partial optimal labeling search for a np-hard

subclass of (max,+) problems. In Bernd Michaelis and Gerald

Krell, editors, Pattern Recognition, pages 402–409, 2003.

[28] Ivan Kovtun. Sufficient condition for partial optimality for

(max,+)-labeling problems and its usage. Control systems

and machines, (2):35–42, 2011.

[29] Jan-Hendrik Lange, Andreas Karrenbauer, and Bjoern An-

dres. Partial optimality and fast lower bounds for weighted

correlation clustering. In ICML, 2018.

[30] Frauke Liers, Michael Jünger, Gerhard Reinelt, and Giovanni

Rinaldi. Computing Exact Ground States of Hard Ising Spin

Glass Problems by Branch-and-Cut, chapter 4, pages 47–69.

Wiley-Blackwell, 2005.

[31] George L Nemhauser and Leslie Earl Trotter. Vertex pack-

ings: structural properties and algorithms. Mathematical

Programming, 8(1):232–248, 1975.

[32] M. Padberg and G. Rinaldi. An efficient algorithm for the

minimum capacity cut problem. Mathematical Programming,

47(1):19–36, May 1990.

[33] Constantin Pape, Thorsten Beier, Peter Li, Viren Jain, Davi D.

Bock, and Anna Kreshuk. Solving large multicut problems

for connectomics via domain decomposition. In ICCV Work-

shops, 2017.

6101

[34] Carsten Rother, Vladimir Kolmogorov, Victor S. Lempitsky,

and Martin Szummer. Optimizing binary MRFs via extended

roof duality. In CVPR, 2007.

[35] Thomas Schank and Dorothea Wagner. Finding, counting

and listing all triangles in large graphs, an experimental study.

In Experimental and Efficient Algorithms, 4th International

Workshop, (WEA), Proceedings, pages 606–609, 2005.

[36] Alexander Schrijver. Combinatorial Optimization. Springer,

2003.

[37] Alexander Shekhovtsov. Exact and Partial Energy Minimiza-

tion in Computer Vision. PhD Thesis CTU–CMP–2013–24,

Center for Machine Perception, K13133 FEE Czech Techni-

cal University in Prague, Prague, Czech Republic, 2013.

[38] Alexander Shekhovtsov. Maximum persistency in energy

minimization. In CVPR, 2014.

[39] Alexander Shekhovtsov. Higher order maximum persistency

and comparison theorems. Computer vision and image under-

standing, 143(C):54–79, 2 2016.

[40] A. Shekhovtsov, P. Swoboda, and B. Savchynskyy. Maximum

persistency via iterative relaxed inference with graphical mod-

els. TPAMI, PP(99), 2017.

[41] Paul Swoboda, Bogdan Savchynskyy, Jörg H. Kappes, and

Christoph Schnörr. Partial optimality via iterative pruning

for the Potts model. In Scale Space and Variational Methods

(SSVM), 2013.

[42] Paul Swoboda, Alexander Shekhovtsov, Jörg H. Kappes,

Christoph Schnörr, and Bogdan Savchynskyy. Partial opti-

mality by pruning for MAP-inference with general graphical

models. TPAMI, 38(7):1370–1382, 7 2016.

[43] Tanmay Verma and Dhruv Batra. Maxflow revisited: An

empirical comparison of maxflow algorithms for dense vision

problems. In BMVC, 2012.

[44] Chen Wang and Ramin Zabih. Relaxation-based preprocess-

ing techniques for Markov Random Field inference. In CVPR,

2016.

[45] Di Wang and Robert Kleinberg. Analyzing quadratic uncon-

strained binary optimization problems via multicommodity

flows. Discrete Applied Mathematics, 157(18):3746 – 3753,

2009.

6102

