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Abstract

In this paper, we present a method to utilize 2D-2D point

matches between images taken during different image con-

ditions to train a convolutional neural network for seman-

tic segmentation. Enforcing label consistency across the

matches makes the final segmentation algorithm robust to

seasonal changes. We describe how these 2D-2D matches

can be generated with little human interaction by geomet-

rically matching points from 3D models built from images.

Two cross-season correspondence datasets are created pro-

viding 2D-2D matches across seasonal changes as well as

from day to night. The datasets are made publicly avail-

able to facilitate further research. We show that adding the

correspondences as extra supervision during training im-

proves the segmentation performance of the convolutional

neural network, making it more robust to seasonal changes

and weather conditions.

1. Introduction

Semantic segmentation is the task of assigning a class

label to each pixel in an image and is one of the funda-

mental problems in computer vision. Semantic segmen-

tation has also been used to integrate higher-level scene

understanding into other computer vision problems, e.g.,

dense 3D reconstruction [6, 13, 14, 23, 28, 31, 55, 56, 61],

SLAM [7,35], Structure-from-Motion [3], 3D model align-

ment [15, 16, 73], and location recognition [1, 42, 60].

Visual localization is the problem of estimating the cam-

era pose of an image [8, 34], typically from a set of 2D-3D

matches between image pixels and 3D scene points. In the

context of long-term visual localization [58, 63–65, 74], se-

mantics are proven useful to be able to handle variations

in scene geometry and appearance, e.g., due to seasonal

changes. These methods are based on the idea that the se-

mantic meaning of a scene part is invariant to such changes.

Semantics are thus used to establish the 2D-3D matches re-

quired for pose estimation when matching solely based on

image appearance fails.

Figure 1. 2D-2D matches between images taken under different

conditions, established using matches against a 3D point cloud.

As of yet, however, the assumption that the same seman-

tic segmentation can be reliably reproduced under different

conditions does not hold. This is mainly due to that the

labeled datasets used to train the semantic segmentation al-

gorithm itself are limited to only a few conditions. As the

pixel-level annotations are performed by hand, adding more

training data is both time consuming and expensive [17,44].

However, even rather noisy segmentations improve local-

ization performance compared to not using semantic infor-

mation [58,65]. This naturally leads to the question whether

it is possible to build a feedback loop: Can semantic seg-

mentation algorithms be improved via visual localization?

Can this in turn lead to more robust localization results?

As part of estimating the camera pose of an image taken

under one condition against a 3D model built from images, a

set of 2D-3D matches is established. Usually, the reference

3D model is built from images [54]. Thus, the 2D-3D corre-

spondences lead to a set of 2D-2D matches between images

taken under different conditions, as depicted in Fig. 1. In

this paper, we show that these pixel-level matches can be

used to improve semantic segmentation algorithms.

In detail, this paper makes the following contributions:

1) A 2D-2D match between two images taken under differ-
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ent conditions provides a constraint on the training process,

namely that these two pixels should receive the same label.

We use this insight to formulate a loss function that can be

added to the training process, without the need to modify

the architecture of the segmentation algorithm. 2) We show

that the required set of correspondences can be generated

with little human supervision, albeit without ground truth

labels. This is in stark contrast to creating labeled train-

ing datasets, where significant human effort is required [49].

We make our cross-season correspondence dataset publicly

available1. 3) We show that using our correspondence-

based loss, together with a few coarsely annotated images

required to prevent trivial solutions, can lead to signifi-

cant improvements in segmentation quality in the context of

changing imaging conditions. The improvements are espe-

cially significant if the base training set covers only a single

condition.

2. Related Work

Semantic Segmentation. The performance of semantic

segmentation algorithms has seen a large increase during

the last few years based on the advances of deep neural

networks. The seminal work of Long et al. [37] showed

that convolutional neural networks (CNNs), initially trained

for classification, can be transformed to fully convolutional

networks (FCNs) for semantic segmentation. Follow up

work has improved upon FCNs by for example enlarging

the receptive field [10, 72], incorporating higher level con-

text [76] or fusing multi-scale features [11,50]. In addition,

the combination of FCNs and structure models, such as con-

ditional random field (CRF), have been thoroughly studied,

either as a post-processing step [10] or as part of the net-

work [33, 36, 77], enabling end-to-end training.

Training these networks requires a large amount of an-

notated images, which for semantic segmentation can be

costly and time-consuming to acquire. In response many

weakly supervised approaches have been suggested utiliz-

ing labels in the form of bounding boxes [19,29,45], image

level tags [45, 47, 48, 62] or points [4]. Similarly, we im-

prove the segmentation performance of a FCN by utilizing

supervision that requires less manual effort to acquire than

pixel-level annotations. However, instead of using weaker,

but still manually annotated, labels we propose the use of

data that can be acquired in a semi-automatic fashion.

Domain Adaptation. Domain adaptation methods aim at

learning a model that performs well in the target domain,

given that there are only available annotations in the source

domain. Early work includes [30, 52] that transforms the

features to either a domain invariant feature space [52] or

the source feature domain [30]. Several works have fo-

cused on domain adaptation for CNN models [21,38,39,67].

1https://visuallocalization.net

These methods learn models that produce domain invariant

features, either by aligning the target and feature distribu-

tions [38, 39] or by using an adversarial training setup, en-

couraging domain confusion [21, 67].

Recently, several domain adaptation methods for dense

prediction tasks have been presented [12, 26, 53, 66, 68, 69,

78]. Most of these [12, 25, 26, 43, 53, 66, 78] use synthetic

datasets, e.g., [49, 51], enabling automatic generation of

large amount of annotated synthetic images. The methods

presented in [25, 43, 53] all use some form of image trans-

lation method such as to transform the source images into

the target domain before performing segmentation. Another

common approach is to use an adversarial training setting as

in [26, 68, 69] where the network is encouraged to produce

features that fool a domain discriminator.

We are interested in increasing the performance of our

segmentor on images different from the source domain.

Specifically, the different conditions and seasons included

in our correspondences can be seen as target domains.

Rather than using unsupervised domain adaption, we use

3D geometric consistency as a supervisory signal. Our

cross-season correspondence datasets facilitate the adaption

of the segmentation method across the different target do-

mains, removing the need to rely on purely unsupervised

domain adaptation methods.

Semantic 3D Mapping. Semantic 3D reconstruction ap-

proaches [6,13,14,23,28,31,41,55,56,61] uses semantic im-

age segmentations to aid the reconstruction process. They

use a voxel volume to represent the scene and jointly reason

about geometric and semantic occupancy. Using semantics

typically leads to more consistent and complete 3D mod-

els. These 3D models can be projected into the images to

obtain refined semantic segmentations [28]. However, the

semantic reconstruction process is significantly more com-

plex compared to the multi-view stereo process we use to

obtain correspondences. Methods exists that jointly predict

depth and semantics [20, 32] or use depth information to

aid semantic segmentation [24]. Yet, they still rely on la-

belled data. We are not aware of any work using pixel cor-

respondences obtained via 3D models to create additional

constraints for semantic segmentation.

Datasets for 3D and semantics. Large databases for in-

door [9, 18, 70] and outdoor scenes [22, 27] provide both

semantics and 3D geometry and can thus also be used to

semantically annotated images via geometry [71]. Yet, we

are not aware of any such dataset that captures different sea-

sonal and illumination conditions. In this sense, our work

closes a gap in the literature.

3. Semantic Correspondence Loss

The rationale behind using 2D-2D image correspon-

dences is that the CNN initially, being pre-trained on a
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large-scale dataset such as Cityscapes [17], performs well

on images taken during favourable conditions (i.e. similar

conditions as in the training set). We can then use the cor-

respondence data to enforce labeling consistency between

images captured during favourable conditions and images

captured during challenging conditions. To this end we de-

fine and test two different loss functions based on the hinge

loss and the cross-entropy loss that will encourage labeling

consistency. The losses are designed for a CNN where the

value of intermediate feature layers can be extracted and

where the final output is an estimate of the probability dis-

tribution over the class labels for each input pixel.

We denote the content of one sample from the cross-

season correspondence dataset as (Ir, It,xr,xt). Here Ir

is an image from the reference traversal, It an image from

the target traversal, and x
r as well as xt are the pixel posi-

tions of the matched points in the reference and target im-

ages, respectively. The reference traversal is chosen as the

one with images captured during the most favourable image

condition. Note that the reference images are taken from

the same traversal while the target images vary between all

other available traversals. The correspondence loss function

Lcorr will be a sum over all such samples

Lcorr =
∑

(r,t)

l(Ir, It,xr,xt) , (1)

where l is a hinge loss lhinge or a cross-entropy loss lCE as

presented below.

Let dx ∈ R
F denote a feature vector of the segmentation

CNN of length F at pixel position x. This can be either the

last layer of the network, where F equals the number of

classes or an earlier, intermediate feature layer. We define

the correspondence hinge loss lhinge for one sample as

lhinge =
1

N

N
∑

i=1

max

(

0,m−
d
T
xr

i

dxt

i

‖dxr

i
‖‖dxt

i

‖

)

, (2)

where m is a margin parameter and N is the number of

corresponding points. The loss will encourage the feature

vectors dxr

i
and dxt

i

to align up to a certain angle depending

on m. In the experiments, we have found empirically that

setting m = 0.8 (approximately 37◦) works well.

For the correspondence cross-entropy loss lCE , we begin

by taking the argument of the maximum of the final feature

map, i.e. the most likely class, of the reference image. By

describing the most likely class for a pixel at position xi us-

ing an one-hot encoding vector cxi
, the loss can be written

as

lCE = −
1

N

N
∑

i=1

c
T
xr

i

log
(

dxt

i

)

, (3)

where log(·) is taken element-wise. The loss will encourage

the pixels in the target image to have the same labels as the

corresponding pixels in the reference image.

During training, we minimize a loss consisting of one

term for the fully supervised data based on standard cross-

entropy Lsup as well as one correspondence term Lcorr.

The resulting overall loss is L = Lsup + λLcorr, where λ

is a weighting term for the impact of the correspondences.

4. A Cross-Season Correspondence Dataset

This section describes the creation and the content of

the cross-season correspondence dataset. Each sample of

the dataset contains two nearby images taken during differ-

ent seasons or weather conditions as well as a set of 2D-

2D point correspondences between the images. The corre-

spondences are automatically established using geometric

3D consistency between the two points. Geometry is typi-

cally more stable than for instance photometric information

across the different conditions.

A visualization of a few samples can be seen in Fig. 2.

Using the datasets presented in [54] as a starting point, we

create two correspondence datasets. The datasets from [54]

used were originally based on the CMU Visual Localization

dataset [2] and the the RobotCar dataset [40] respectively.

The creation of the correspondence dataset can be di-

vided into four main steps. Firstly, the camera poses for all

images in all conditions need to be calculated in a common

coordinate system. In our case these were kindly provided

by the authors of [54]. Secondly, a dense 3D point cloud of

the surrounding geometry is created, individually for each

condition and traversal. Thirdly, the 3D point clouds are

matched across the conditions. Since the point clouds share

the same coordinate system, this matching can be done us-

ing the position of the 3D points. This removes the need for

feature descriptors which might change substantially across

the different conditions. Lastly, given the 3D point cloud

matches, the pixel positions for the 2D-2D correspondences

in each image can be calculated using the known camera

positions. Each step will be detailed separately for the two

datasets below.

4.1. CMU Seasons Correspondence Dataset

The CMU Visual Localization dataset [2] was collected

over a period of 12 months in Pittsburgh, USA. A vehi-

cle with two cameras facing forward/left and forward/right

drove a 8.5 km long route through central and suburban

areas. We use the camera poses from twelve traversals

during different seasons and weather condition available in

the CMU Seasons dataset [54]. The camera poses have

been calculated using bundle adjustment of SIFT points and

some manually annotated image correspondences across

different traversals, for further details we refer to [54]. This

method gives accurate camera positions, where the position

error is estimated to be under 0.10 m.

To create the dense point cloud for each traversal, we use

the Multi-View Stereo (MVS) pipeline presented in [59].
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Figure 2. Visualization of a sample from our cross-season correspondence datasets. Left: CMU, right: RobotCar. Each purple point marks

the pixel position of a correspondence in the respective images. Green lines are drawn to the matching point in the other image. Note that

lines are only drawn for every 50 point pair to avoid cluttering the images.

The MVS pipeline pipeline works in two steps. Firstly,

depth and normal information is estimated using geomet-

ric and photometric information. Secondly, the depth and

normal maps are fused forming a dense point cloud. This

was done using the software Colmap [57, 59] with default

settings. Examples of 3D point clouds from the CMU Sea-

sons dataset can be seen in Fig. 1.

To find correspondences between images from two dif-

ferent traversals, we perform geometric matching between

the two corresponding 3D point clouds. Given a reference

and a target traversal, we take the two corresponding dense

3D point clouds and match points using the Euclidean dis-

tance: For each point in the first point cloud, we search

for the nearest neighboring point in the other point cloud

and vice versa. We establish a correspondence between two

points if they are mutual nearest neighbors.

For the resulting matches, we check from which cameras

each matched point was triangulated during MVS, giving us

the cameras where the point is visible. We then go through

each camera pair, where one is from the reference and one

from the target traversal and investigate the number of com-

mon 3D points that can be seen in the cameras. For pairs

with at least 500 common points and where the distance

between the two cameras is less than 0.5 m, we do an ad-

ditional pruning step to get rid of poor matches. The prun-

ing is necessary since the first 3D matching step does not

enforce any constraint that the points need to be close too

each other. In addition, enforcing a closeness constraint for

each camera pair enables us to use a distance threshold that

depends on the distance between the point and the cameras.

This is beneficial since 3D points close to the camera usu-

ally are reconstructed with greater precision. For a match to

be kept, the distance between the two points must be below

a threshold that depends on the distance between the point

and the camera as follows

||X1 −X2|| < κD . (4)

Here X1 and X2 are the positions of the matched 3D points

in the reference and target traversals, respectively, D is the

distance from the camera center to X1 and κ is a unitless

parameter set to 0.01. This means that points that are 10 m

Condition Image pairs Average N

Sunny + Foliage 3185 14361

Sunny + Foliage 2200 17696

Cloudy + Foliage 3312 17711

Sunny + Foliage 3620 18373

Overcast + Mixed Foliage 3300 13770

Low Sun + Mixed Foliage 3286 15441

Low Sun + Mixed Foliage 3384 16081

Cloudy + Mixed Foliage 2729 14111

Low Sun + No Foliage + Snow 2022 19060

Overcast + Foliage 1728 20090

Table 1. Statistics of the CMU Cross-Season Correspondence

dataset. Each row shows the condition, the number of image pairs

as well as the average number of correspondences per image pair

for each traversal. Note that there are several traversals with the

same condition.

from the camera need to be closer than 0.1 m to be kept as a

correspondence. Table 1 provides a summary of the content

of the final CMU Cross-Season Correspondence dataset.

4.2. Oxford RobotCar Correspondence Dataset

The original RobotCar dataset [40] was gathered using

an autonomous vehicle that traversed a 10 km route in Ox-

ford, UK during 12 months. Similarly as for the CMU

dataset, we use the camera poses from ten traversals dur-

ing different seasons and weather conditions available in the

RobotCar Seasons dataset provided by the authors of [54].

For the reference traversal these camera poses were initial-

ized using a GPS/INS system and refined by iteratively tri-

angulating 3D points and performing bundle adjustment.

For the other traversals, the camera poses were calculated

using 3D points clouds built from the measurements of the

LIDAR scanners mounted on the vehicle. The LIDAR point

clouds for each traversal were aligned to the LIDAR point

cloud of the reference traversal using the Iterative Closest

Point algorithm [5] and manual corrections when necessary.

The images included in the RobotCar Seasons dataset

are recorded using three synchronized global shutter Point

Grey Grasshopper2 cameras mounted to the left, rear, and

right of the car. Unfortunately the image quality is poor in

general. A lot of the images are overexposed and there is

a lot of motion blur present. In addition there is also a lot

of image noise for the night time images. This makes the

MVS pipeline that we used for the CMU dataset produce
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Condition Image pairs Average N

Dawn 772 59158

Dusk 646 50159

Night 646 52238

Night + Rain 780 43066

Summer + Overcast 809 51722

Winter + Overcast 671 54466

Rain 683 53276

Snow 823 57578

Sun 681 48150

Table 2. Statistics of the RobotCar Cross-Season Correspondence

dataset. Each row shows the condition, the number of image pairs

s as well as the average number of correspondences per image pair

for each traversal. Note that there are several traversals with the

same condition.

point clouds with too few points to be of any use for us. We

instead use the LIDAR point clouds available in the original

RobotCar dataset. Since we know the pose of the multi-

camera system at each timestamp, as well as the poses of

the individual cameras and LIDAR sensors on the car, we

can transform the LIDAR point clouds into the coordinate

system of the cameras. We then determine which points are

visible in which cameras in a separate step. To determine

which points are visible in each camera the depth of points

projected close to each other in the image is compared.

The matching of the 3D points and pruning of the cor-

respondences are done in the same way as for the CMU

Seasons dataset. However, since we do not have as many

images for the RobotCar Seasons dataset, we use a larger

threshold for the distance between camera pairs, specifically

2.0 m. Table 2 provides a summary of the content of the fi-

nal RobotCar Cross-Season Correspondence dataset.

5. Implementation Details

During the training of the CNN, we minimize the loss

L described in Section 3. As a starting point, we use the

PSPNet [76] network pretrained on the Cityscapes dataset

[17]. In addition to the Cityscapes training images, we also

add a few coarsely annotated images from the CMU and

RobotCar Seasons datasets, respectively. Some examples

of these annotations are shown in Fig 3. This is necessary

to keep the CNN from learning the trivial solution where

the same class is predicted for all pixels on the CMU and

RobotCar images while still producing good segmentations

for the Cityscapes images. Note that only training images

with fine annotations from the Cityscapes dataset are used.

We also add an on-the-fly correspondence refinement

step, where all correspondences that have their pixel posi-

tions in the reference image classified as one of the non-

stationary classes are removed. The classes concerned are

person, rider, car, truck, bus, train, motorcycle, and bicy-

cle. For a correspondence, if the pixel in the reference im-

age is classified as a non-stationary class it means one of

two things: The pixel actually depicts a non-stationary ob-

ject and has been incorrectly added to the correspondence

Figure 3. Examples of the manually labeled images added to the

training set. The top row shows images for the CMU Seasons

dataset (66 images in total) while the bottom row shows images

for the RobotCar Seasons dataset (40 images in total).

dataset, i.e., there is no guarantee that the corresponding

pixel in the target image has the same semantic class. The

other explanation is that the CNN incorrectly classified the

pixel. Adding the loss for said correspondence would not

be useful for any of these scenarios. Additionally, we use a

warm-up period of 500 iterations before the correspondence

loss is added. This ensures that the CNN has produces rea-

sonable segmentations for the reference images.

The optimization method used during training is

Stochastic Gradient Descent with momentum and weight

decay. During all experiments the learning rate was set to

2.5 · 10−5, while the momentum and weight decay were

set to 0.9 and 10−4, respectively. In addition, the loss was

scaled with 1
1+λ

to keep the total loss weight to unity. Due

to GPU memory limitations we train using a batch size of

one. We train the networks for at least 30000 iterations

and use the weights that got the best mean Intersection over

Union (mIoU) on the validation set. For the RobotCar and

CMU Seasons validation and test sets, we take the mean

over only classes present in the respective dataset when cal-

culating the mIoU. The number of validation images for the

CMU Seasons and Robotcar were 25 and 27 respectively.

The corresponding numbers for the test sets were 33 and 27.

The training and evaluation is implemented in PyTorch [46]

and the code is publicly available 2.

All evaluation and testing is done in patches on the origi-

nal image scale only. The patch size is 713×713 pixels and

the patches are extracted from the image with a step size

of 476 pixels in both directions. The output of the network

is paired with an interpolation weight map that is 1 for the

236×236 center pixels of the patch and drops off linearly to

0 at the edges. For each pixel the weighted mean, using the

interpolation maps as weights, of all patches that contain it

2https://github.com/maunzzz/

cross-season-segmentation
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λ CE HingeC HingeF
0.01 63.3 62.0 62.2
0.05 64.4 62.6 62.1
0.1 65.6 63.2 62.3

0.5 65.0 62.3 61.9
1.0 67.2 64.0 60.6
2.0 66.0 63.3 59.5
5.0 66.7 62.6 59.4

Table 3. Parameter study of λ for the loss L = Lsup + λLcorr

(cf . Section 3) on the CMU dataset. The correspondence losses

included are cross-entropy loss lCE and hinge loss lhinge applied

to the final and second to final features, HingeC and HingeF , re-

spectively. All values are mIoU (in %) for the CMU validation

set.

is used to produce the pixel’s class scores. The motivation

behind the interpolation is that the network generally per-

forms better at the center of the patches, since there is more

information about the surroundings available there.

6. Experimental Evaluation

In this section, we present the results of using the Cross-

Season Correspondence Dataset to train a CNN for segmen-

tation. The two main points of interest are a), how does the

Cross-Season Correspondence Dataset influence the seg-

mentation performance on the images within the dataset,

i.e., the CMU and RobotCar images and b), how does using

the dataset influence the generalization performance of the

segmentor to other datasets. To investigate a), we manually

annotate a set of test images from the RobotCar and CMU

datasets taken from areas that are not included in the cor-

respondence datasets. To answer b), we use the WildDash

dataset [75]. The WildDash dataset is designed to evaluate

the robustness of segmentation methods and contains many

different and challenging images.

We also investigate the effect of training with correspon-

dences together with different amount of annotated train-

ing images. To this end we do experiments both using just

the Cityscapes dataset [17] training set as well as, on top

of that, adding the training set from the Mapillary Vistas

dataset [44]. The Cityscapes training set contains 2975 an-

notated images taken under favorable weather conditions

and in similar environments while the Vistas training set

contains 18000 images from a diverse set of environments,

seasons and weather conditions [44]. As the Vistas dataset

contains many more annotated classes than the Cityscapes

dataset, we only consider the subset of classes which are

in both datasets and treat the rest as unlabeled during train-

ing. For all segmentation experiments, we investigate three

correspondence loss functions: for the first we use the cor-

respondence cross-entropy loss lCE applied to the final fea-

tures. For the other two, we apply the correspondence hinge

loss lhinge to the final and second to final layer, respectively.

Parameter Study. The parameter λ specifies the trade-

Extra Corr
CMU RobotCar

CMU WD RC WD

C
S

31.2 16.4 22.2 16.4
X 73.6 37.0 45.8 25.4
X CE 79.3 39.6 53.8 27.8
X HingeC 72.4 37.9 50.6 25.2
X HingeF 75.3 38.7 55.4 27.9

C
S

+
V

is
ta

s 77.4 49.3 46.8 49.2

X 82.8 51.5 51.2 46.4
X CE 85.9 52.9 59.4 48.5
X HingeC 82.2 54.9 59.0 47.9
X HingeF 84.0 54.5 58.7 45.6

Table 4. Segmentation results for the models trained on the CMU

correspondence data (left) and the RobotCar correspondence data

(right). Results for the CMU test set, the RobotCar (RC) test set

and the WildDash (WD) validation set are shown in terms of mIoU

(in %). For the bottom five rows the Vistas training set was used in

addition to Cityscapes (CS). Column one marks if the extra train-

ing annotations from the CMU/RobotCar dataset were used. Col-

umn two specifies the correspondence training loss used, i.e., cor-

respondence cross-entropy loss (CE) applied to the final layer and

hinge loss applied to the final and second to final features, HingeC
and HingeF , respectively.

off between the fully supervised cross-entropy loss (Lsup)

for the annotated training set and the correspondence loss

(Lcorr). A higher λ means that more emphasis is put on

minimizing the correspondence loss compared to the fully

supervised loss. To investigate the impact of λ, we perform

a parameter study which is summarized in Table 3. The

results presented are the mIoU on the CMU validation set.

As can be seen from the table, the best choice of λ for the

correspondence cross-entropy loss (CE) and the hinge loss

on the final features (HingeC) is λ = 1.0 while for the hinge

loss applied to the second to final feature layers (HingeF ) it

is λ = 0.1. We hence choose these values for the remaining

experiments.

Segmentation. Table 4 summarizes the results of the seg-

mentation experiments on the CMU as well as the RobotCar

datasets. For the networks trained on the CMU dataset, the

mIoU on the CMU test set and the WildDash validation set

is presented for several baselines as well as networks trained

with the correspondence dataset. For the networks trained

on the RobotCar dataset the RobotCar test set is used in-

stead of the CMU test set. Comparing the two baselines,

there is a large difference in performance between the net-

work trained with both Cityscapes and Vistas compared to

the one trained with Cityscapes only. This is to be expected

since the Vistas dataset has much more diversity when it

comes to seasons and weather conditions, enabling a net-

work trained on it to generalize well to the CMU or Robot-

Car test set.

When investigating the effect of the correspondence

dataset, it is reasonable to compare the network trained with
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Image Annotation E E + C V + E V + E + C

Figure 4. Qualitative results on the CMU test set. Four different networks are compared, the notation used is: E: trained with extra CMU

annotations, C: trained with correspondence data, V: trained with Vistas training set. The most notable performance difference when adding

correspondences are for areas that are visually different between seasons. This can be seen for the terrain areas covered in leaves for row

two as well as the area of snow in row four. The image in row four is especially challenging since it contains a lot of snow as well as an

apparent lens glare. Yet, the networks trained with correspondences still manages to get part of the snow patch correctly labeled.

Image Annotation E E + C V + E V + E + C

Figure 5. Qualitative results on the RobotCar test set. Four different networks are compared, the notation used is: E: trained with extra

RobotCar annotations, C: trained with correspondence data, V: trained with Vistas training set. The most notable performance difference

when adding correspondences are for the night images, row one and two. Comparing the results of E and E + C, we can see that adding

correspondences enables the network to label the road correctly. It however fails at labeling sky and cars correctly since these are not

included in the correspondence dataset.
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the extra annotations with the networks trained with extra

annotations and the correspondence loss. As can be seen

in Table 4, we get an improvement in mIoU when adding

the correspondence loss for both the network trained with

Cityscapes and extra annotations as well as the one trained

with Cityscapes, Vistas and extra annotations. This holds

both for the CMU and RobotCar datset. As can be seen

in Fig. 4 where qualitative results on the CMU test set are

presented, adding the correspondences improves segmenta-

tions for areas that are very visually different between sea-

sons. Some examples are yellow leaves on the ground dur-

ing autumn or snow during the winter. These confuse the

network trained only on Cityscapes since there are no such

examples in the training set. The baseline that is also trained

on Vistas handles these situations better but there is still an

improvement when adding the correspondence training, es-

pecially when it comes to, e.g., patches covered in snow,

as these are not included in the subset of classes present in

both datasets and, thus, excluded from the training. For the

RobotCar dataset, the most prevalent improvements are on

the night images, which can be seen in some example seg-

mentations in Fig. 5. Additional qualitative results can be

seen in the supplementary material. Worth to note is also

that we manage to get a larger performance increase us-

ing just a few coarsely annotated images and the correspon-

dence dataset compared to adding the entire Vistas training

set, both for the CMU and the RobotCar data. The Cross-

Season Correspondence datasets required about 30 hours of

manual labour each in the form of annotating correspon-

dences and verifying poses. Adding the two hours it took

to coarsely annotate a few images gives a total of 32 hours

of manual labour required. This, compared to an estimated

28200 hours to annotate the Vistas training set.

The best performing correspondence loss differs be-

tween the datasets. On the CMU dataset, the CE loss per-

forms best both with and without the Vistas training set.

However, for the RobotCar dataset without the Vistas la-

bels, the loss that performs best is HingeF . A difference

between HingeF and CE is that CE imposes a harder con-

straint on the output of the network for the correspondences.

It basically treats the output of the network on the reference

image as the ground truth for the corresponding pixels in

the target image. Since the RobotCar Cross-Season Corre-

spondence dataset is created using LIDAR data, the point

measurements are not perfectly synchronized with the im-

ages which creates a slight misalignment for some corre-

spondences. If there are some erroneous correspondences,

having a hard constraint can be harmful for the performance

of the network. In these cases, imposing a softer constraint

via the HingeF loss, which basically stipulates that the fea-

tures should be similar, can give a better performance, es-

pecially when using a strong baseline training set.

Adding the correspondence training does improve the

segmentation performance on the WildDash images slightly

for the CMU dataset but not for the RobotCar dataset. A

reason that there is no significant performance gain could

be that the camera poses relative to the vehicle (front facing)

and the image resolution are very similar for the Cityscapes,

Vistas and WildDash datasets. For the CMU Seasons

dataset, there is no front facing camera, only one facing

forward/left and one forward/right. Hence, learning to seg-

ment these well does not necessarily improve the segmenta-

tion performance on WildDash. In addition, the image qual-

ity for both the CMU and the RobotCar images are poorer

than those of Cityscapes, Vistas and WildDash. Despite

this, adding the correspondence loss improves the results for

the network trained on the CMU data and on the RobotCar

data without Vistas. The advantage of learning to segment

images during other weather conditions seems to be large

enough to make a difference on the WildDash validation

set.

7. Conclusion

In this paper, we have introduced two Cross-Season Cor-

respondence datasets, each consisting of a set of 2D-2D

matches between images taken under different conditions.

We described how these datasets can be generated with little

human supervision and demonstrated the usefulness of the

datasets by training an image segmentation network. To this

end we presented and investigated three different training

losses, based on cross-entropy and hinge loss, that can be

used for the correspondence data. Our experiments showed

that adding the correspondences as extra supervision dur-

ing training improves the segmentation performance of the

network, making it more robust to seasonal changes and

weather conditions. Improving the semantic segmentation

performance could in turn lead to more robust localiza-

tion results which provides the first step towards an itera-

tive feedback loop improving localization and semantic seg-

mentation. An investigation on how the improved image

segmentation network affect semantic localization methods

is left for future work.

Important future research directions include investigat-

ing options to remove the need for a few, manually anno-

tated images. Possible approaches include an additional un-

supervised domain adaptation step, adapting the segmen-

tation algorithm to the reference images of the correspon-

dence dataset. Additionally, the Cross-Season Correspon-

dence Datasets provide opportunities for other application

such as training robust feature detectors and descriptors.
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[13] Ian Cherabier, Christian Häne, Martin R. Oswald, and Marc

Pollefeys. Multi-Label Semantic 3D Reconstruction using

Voxel Blocks. In Proc. 3DV, 2016. 1, 2

[14] Ian Cherabier, Johannes L. Schönberger, Martin R. Oswald,

Marc Pollefeys, and Andreas Geiger. Learning Priors for

Semantic 3D Reconstruction. In Proc. ECCV, 2018. 1, 2

[15] Andrea Cohen, Torsten Sattler, and Marc Pollefeys. Merg-

ing the Unmatchable: Stitching Visually Disconnected SfM

Models. In Proc. ICCV, 2015. 1

[16] Andrea Cohen, Johannes L. Schönberger, Pablo Speciale,

Torsten Sattler, Jan-Michael Frahm, and Marc Pollefeys.

Indoor-Outdoor 3D Reconstruction Alignment. In Proc.

ECCV, 2016. 1

[17] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo

Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe

Franke, Stefan Roth, and Bernt Schiele. The cityscapes

dataset for semantic urban scene understanding. In Proc.

CVPR, 2016. 1, 3, 5, 6

[18] Angela Dai, Angel X. Chang, Manolis Savva, Maciej Hal-

ber, Thomas Funkhouser, and Matthias Niessner. ScanNet:

Richly-annotated 3D Reconstructions of Indoor Scenes. In

Proc. CVPR, 2017. 2

[19] Jifeng Dai, Kaiming He, and Jian Sun. Boxsup: Exploit-

ing bounding boxes to supervise convolutional networks for

semantic segmentation. In Proc. ICCV, 2015. 2

[20] David Eigen and Rob Fergus. Predicting Depth, Surface Nor-

mals and Semantic Labels With a Common Multi-Scale Con-

volutional Architecture. In Proc. ICCV, 2015. 2

[21] Yaroslav Ganin, Evgeniya Ustinova, Hana Ajakan, Pas-

cal Germain, Hugo Larochelle, François Laviolette, Mario

Marchand, and Victor Lempitsky. Domain-adversarial train-

ing of neural networks. JMLR, 2016. 2

[22] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel

Urtasun. Vision meets robotics: The kitti dataset. Proc.

IJRR, 2013. 2
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