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Abstract

In this paper, we propose the first end-to-end convolu-

tional neural network (CNN) architecture, Defocus Map

Estimation Network (DMENet), for spatially varying defo-

cus map estimation. To train the network, we produce a novel

depth-of-field (DOF) dataset, SYNDOF, where each image

is synthetically blurred with a ground-truth depth map. Due

to the synthetic nature of SYNDOF, the feature character-

istics of images in SYNDOF can differ from those of real

defocused photos. To address this gap, we use domain adap-

tation that transfers the features of real defocused photos into

those of synthetically blurred ones. Our DMENet consists

of four subnetworks: blur estimation, domain adaptation,

content preservation, and sharpness calibration networks.

The subnetworks are connected to each other and jointly

trained with their corresponding supervisions in an end-to-

end manner. Our method is evaluated on publicly available

blur detection and blur estimation datasets and the results

show the state-of-the-art performance.

1. Introduction

A defocus map contains the amount of defocus blur or

the size of circle of confusion (COC) per pixel for a defocus-

blurred (in short, defocused) image. Estimation of a defocus

map from a defocused image can greatly facilitate high-

level visual information processing, including saliency de-

tection [12], depth estimation [40], foreground/background

separation [22], and deblurring [39]. A typical approach for

defocus map estimation first detects edges from a blurred

image, then measures the amounts of blur around the edges,

and finally interpolates the estimated blur amounts at edges

to determine the blur amounts in homogeneous regions.

The previous edge-driven approach has a few limitations.

First, the edges in a blurred image are often ambiguous,

leading to inaccurate detection. Second, blur estimation for

edges are inherently prone to errors, as a pixel at object

boundary with depth discontinuity contains a mixture of dif-

ferent COCs in a defocused image [18]. Third, this instability

of blur estimation at edges would result in less reliable pre-

diction in homogeneous regions. That is, the blur amounts

estimated at different parts of an object boundary could be

incoherent and then their interpolation toward the homoge-

neous object interior would produce only smooth but less

accurate blur estimation. For example, the estimated blur

amounts of an object with a single depth may not be con-

stant, because the blur amounts separately measured at the

opposite edges could not be the same when the edges have

different depth discontinuities with nearby objects.

In this paper, we present DMENet (Defocus Map Estima-

tion Network), the first end-to-end CNN framework, which

directly estimates a defocus map given a defocused image.

Our work is distinguished from the previous ones for its

clear definition on which COC we try to estimate among

the mixture of COCs, where we infer the COC size of a

pixel using the depth value in the corresponding pinhole

image. The network trained with our COC definition leads to

more robust estimation of blur amounts, especially at object

boundaries. The network also better handles homogeneous

regions by enlarging its receptive field so that object edges

and interior information are used together to resolve ambigu-

ity. As a result, our network significantly improves the blur

estimation accuracy in the presence of mixtures of COCs.

To enable such network learning, a high-quality dataset

is crucial. However, currently available datasets [29, 4] are

not enough, as they are either for blur detection [29], instead

of blur estimation, or of a small size [4]. To this end, we

generate a defocus-blur dataset, which we call “SYNDOF”

dataset. It would be almost impossible, even manually, to

generate ground-truth defocus maps for defocused photos.

So we use pinhole image datasets, where each image is ac-

companied by a depth map, to synthesize defocused images

with corresponding ground-truth defocus maps.

One limitation of our dataset is that defocus blurs are

synthetic, and there could be domain difference [9] between

the characteristics of real and synthetic defocused images.

To resolve this, we design our network to include domain

adaptation, which is capable of adapting the features of real

defocused images to those of synthetic ones, so that the net-

work can estimate the blur amounts of real images with the
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training of defocus blur estimation using synthetic images.

To summarize, our contributions include:

• the first end-to-end CNN architecture that directly esti-

mates accurate defocus maps without edge detection;

• SYNDOF defocus-blur dataset that contains synthetic

defocused images with ground-truth defocus maps;

• domain adaptation that enables learning through a syn-

thetic dataset for real defocused images.

2. Related Work

Defocus map estimation For defocus map estimation,

most of previous works first estimate blur amounts around

explicitly detected edges and then propagate them to the sur-

rounding homogeneous regions. Zhuo et al. [40] and Karaali

et al. [13] use image gradients as local blur cues, and calcu-

late the ratio of the blur cues between edges of the original

and re-blurred images. Tang et al. [32] estimate a sparse

blur map with spectrum contrast near image edges. Shi et

al. [29] utilize frequency-domain features, learned features,

and image gradients to estimate blur amounts. Shi et al. [30]

adopt a sparse representation to detect just noticeable blurs,

which cannot handle large blurs. Xu et al. [37] use the rank

of a local patch as a cue for blur amount. Park et al. [24]

build feature vectors consisting of hand-crafted features as

well as deep-features taken from a pre-trained blur classifi-

cation network, and then feed the feature vectors to another

network to regress the blur amounts on edges. All these meth-

ods commonly rely on features defined only around image

edges, and so blur amounts interpolated from the edges for

homogeneous regions could be less accurate.

Recently, machine learning techniques have been utilized

to densely estimate defocus maps. Andrès et al. [4] create a

dataset where a ground-truth defocus map is labeled with the

radius of point-spread-function (PSF) at each pixel which

minimizes the error on a defocused image. They train regres-

sion tree fields (RTF) to estimate blur amount of each pixel.

However, the method cannot be easily generalized due to

insufficient training images and is not robust at pixels around

depth boundaries where ground-truth blur amounts cannot

be accurately measured. Zhang et al. [38] create a dataset by

manually labeling each pixel of a defocused image into four

levels of blur: high, medium, low, and no blur, for training a

CNN classification. Their method shows the state-of-the-art

performance on CUHK blur detection dataset [29], but it

cannot estimate the exact blur amount, which is essential for

applications, such as deblurring and depth estimation.

Domain adaptation Domain adaptation [5] was devel-

oped to address the generalization ability of a learning based

approach to other domains that it has not been trained for.

Ganin et al. [5] propose an adversarial learning framework

for domain adaptation. Given a source domain with labeled

data and a target domain with unlabeled data, their frame-

work trains a label classifier for source domain data as well

as a domain classifier to classify different domains. They

showed that a classifier trained using their framework gener-

alizes well to a target domain.

Several approaches have been developed since then.

Tzeng et al. [33] use an adversarial discriminative loss func-

tion, and Long et al. [21] propose a residual domain clas-

sifier. Hoffman et al. [10] extend the domain adaptation

framework for semantic segmentation. Chen et al. [2] pro-

pose class-wise domain adaptation for semantic segmenta-

tion of road scenes. Hoffman et al. [9] present cycle con-

sistent adversarial domain adaptation for better adaptation

performance. Bousmalis et al. [1] propose to learn a trans-

formation in the pixel-space that transforms a source domain

image to appear as if drawn from a target domain.

We use domain adaptation to address the gap between

our synthetically generated training images and real ones.

While previous studies used domain adaptation mostly for

binary or multi-label classification tasks such as semantic

segmentation, we adopt it for image-to-image regression.

3. The SYNDOF Dataset

3.1. Data Collection

We first collected both synthetic and real images with

their associated depth maps; we did not use 3D scene models

to avoid time-consuming high quality rendering. Our im-

ages are from MPI Sintel Flow (MPI) [35], SYNTHIA [27],

and Middlebury Stereo 2014 (Middlebury) [28] datasets.

MPI dataset is a collection of game scene renderings, SYN-

THIA dataset contains synthetic road views, and Middlebury

dataset consists of real indoor scene images with accurate

depth measurements.

MPI and SYNTHIA datasets include sequences of similar

scenes, and thus we kept only dissimilar images in terms of

peak-signal-to-noise-ratio (PSNR) and structural similarity

index (SSIM), ending up with 2,006 distinct sample images

in total. Then, we repeated the process of randomly select-

ing an image from the sample set to generate a defocused

image with random sampling of camera parameters and the

focal distance. The total number of defocused images we

generated is 8,231. Table 1 shows the details.

3.2. Thin Lens Model

Given the color-depth pairs, we generated defocused im-

ages using the thin-lens model [25], which is a standard for

defocus blur in computer graphics (Fig. 1). Let the focal

length be F (mm), the object-space focal distance S 1 (mm),

and the f-number N. The image-space focal distance is

f1 =
FS 1

S 1−F
, and the aperture diameter is D = F

N
. Then, the

image-space COC diameter c(x) of a 3D point located at the
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Figure 1: The thin-lens model.

object distance x is defined as:

c(x) = α
|x − S 1|

x
, where α =

f1

S 1

D. (1)

3.3. Defocused Image Generation

To apply defocus blur to an image, we first extract the

minimum and maximum depth bounds, xnear and x f ar, from

the depth map, respectively. Then, we randomly sample S 1

from the range of [xnear, x f ar]. When computing c(x) using

Eq. (1), we only need α that abstracts physical parameters. In

practice, x is not near zero (implying very close to the lens),

having a certain limit. To facilitate meaningful yet random

generation of capture conditions, we limit the COC size up

to cmax. Thereby, the upper bound of α, denoted by αup, is:

αup = cmax ·min

(

x f ar

|x f ar − S 1|
,

xnear

|xnear − S 1|

)

. (2)

Now α is randomly sampled within [0, αup]. We then apply

Gaussian blur to the image with kernel standard deviation σ,

where we empirically define σ(x) =
c(x)

4
.

To blur an image based on the computed COC sizes, we

first decompose the image into discrete layers according

to per-pixel depth values, where the maximum number of

layers is limited to 350. Then, we apply Gaussian blur to

each layer with σ(x), blurring both image and mask of the

layer. Finally, we alpha-blend blurred layer images in the

back-to-front order using the blurred masks as alpha values.

In addition to defocused images, we generate labels (i.e.,

defocus maps), which trivially record σ(x) as the amounts

of per-pixel blur. This layer-driven defocus blur is similar to

the algorithm of [15], but we bypass the matting step as we

do not put different depths into the same layer.

Our SYNDOF dataset enables a network to accurately

estimate a defocus map due to the following properties. First,

our defocus map is densely (per-pixel and not binary) la-

beled. The dense labels respect the scene structure, including

object boundaries and depth discontinuities, and resolve am-

biguities in homogeneous regions. Second, object positions

in the original sharp image are used when pixels are labeled

with blur amounts in a defocused image. Then, even if the

network encounters a mixture of COCs (called the partial

occlusion [20]), a blurry pixel is supervised to have the COC

size that it had in the sharp image. Note that the other COCs

Datasets # samples # outputs Type

MPI 1,064 4,346 synthetic

SYNTHIA 896 3,680 synthetic

Middlebury 46 205 real

Total 2,006 8,231

Table 1: Collection summary of our SYNDOF dataset.

in the mixture are irrelevant at the pixel, as they come from

nearby foreground or hidden surfaces (not revealed in the

sharp image) [19]. This clarification of which COCs are esti-

mated in a defocus map is a drastic improvement over the

previous studies.

4. Defocus Map Estimation

4.1. Overview

Network design Our DMENet has a novel architecture for

estimating a defocus map from a defocused image (Fig. 2).

The network consists of four subnetworks: blur estimation

(B), domain adaptation (D), content preservation (C), and

sharpness calibration networks (S).

The blur estimation network B is the main component

of our DMENet and supervised with ground-truth synthetic

defocus maps from the SYNDOF dataset to predict blur

amounts given an image. To enable network B to measure

the blur amounts on real defocused images, we attach the

domain adaptation network D to it, which minimizes domain

differences between synthetic and real features. The content

preservation network C supplements network B to avoid a

blurry output. The sharpness calibration network S allows

real domain features to induce correct sharpness in a defocus

map by informing network B whether the given real domain

feature corresponds to a sharp or blurred pixel. The details

of our network structure are in the supplementary material.

Training Our ultimate goal is to train the blur estima-

tion network B to estimate blur amounts of real images.

To achieve this, we jointly train networks B, D, and S

parametrized by θB, θD, and θS , respectively, with three

different training sets. Note that network C is fixed dur-

ing our training. DS =
{

. . . , 〈In
S
, yn〉, . . .

}

is a training set

of synthetic defocused images with ground truth defocus

maps, where In
S

and yn are the n-th image and the corre-

sponding defocus map, respectively.DR =
{

. . . , In
R
, . . .

}

is a

training set of real defocused images with no labels. Lastly,

DB =
{

. . . , 〈In
B
, bn〉, . . .

}

is a training set of real defocused

images In
B

with ground truth binary blur maps bn, where bn

is labeled as sharp or blurred at each pixel.

Given the training datasets, we alternatingly train θB and

θS with a loss Lg, and θD with a loss Ld, following the com-
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Figure 2: Architecture of DMENet. During training, we utilize all four subnetworks: blur estimation (B), domain adaptation

(D), content preservation (C) and sharpness calibration (S) networks. They are jointly trained to learn blur amounts from

synthetic defocused images while minimizing the domain difference between synthetic and real defocused images. For testing,

we only utilize network B for estimating a defocus map given a real defocused image.

mon practice of adversarial training. Loss Lg is defined as:

Lg =
1

|DS |

|DS |
∑

n=1

{

LB(In
S , y

n; θB) + λC LC(In
S , y

n; θB)
}

(3)

+
1

|DB|

|DB |
∑

n=1

{

λadvLadv(In
B; θB) + λS LS (In

R, b
n; θB, θS )

}

+
λadv

|DR|

|DR |
∑

n=1

Ladv(In
R; θB),

where |D| is the number of elements in a set D. LB, LC ,

LS , and Ladv are blur map loss, content preservation loss,

sharpness calibration loss, and adversarial loss, respectively,

which will be discussed later. λc, λS , and λadv are hyperpa-

rameters to balance the loss terms. Loss Ld is defined as:

Ld =
λD

|DS |

|DS |
∑

n=1

LD(In
S , 1; θD) (4)

+
λD

|DR| + |DB|















|DR |
∑

n=1

LD(In
R, 0; θD) +

|DB |
∑

n=1

LD(In
B, 0; θD)















,

where LD is discriminator loss and λD is a hyperparameter

for balancing between Lg and Ld.

During training, the networks D, C, and S differently

affect B depending on the domain of the input. In the case of

synthetically blurred images with ground truth defocus maps,

〈IS , y〉 ∈ DS , we directly minimize the difference between

y and the predicted defocus map B(IS ) using the blur map

loss LB that measures the mean squared error (MSE). We

also minimize the content preservation loss LC to reduce

blurriness in the prediction B(IS ) using the network C.

Real defocused images with binary blur maps, 〈IB, b〉 ∈

DB, are used to calibrate sharpness measurement from do-

main transferred features. With the supervision of b, the

sharpness calibration loss LS guides network S to classify

whether an estimated defocus map B(IB) has correct blur

amounts, eventually calibrating network B to estimate cor-

rect degrees of sharpness from domain transferred features.

Finally, IS ∈ DS , IB ∈ DB, and IR ∈ DR are used together

to minimize domain difference between features extracted

from synthetic and real defocused images. For images IS , the

ground-truth domain labels are synthetic, while IB and IR are

labeled as real. We minimize the discriminator loss LD and

the adversarial loss Ladv in an adversarial way, in which we

train network D to correctly classify the domains of features

from different inputs, while train network B to confuse D.

In the remaining of this section, we describe the four

networks and their associated loss functions in more detail.

4.2. Blur Estimation

The blur estimation network B is the core module in our

DMENet. We adopt a fully convolutional network (FCN)

[10], which is based on the U-net architecture [26] with

slight changes. We initialize the encoder using a pretrained

VGG19 [31] for better feature representations at the initial

stage of training. The decoder uses up-sampling convolution

instead of deconvolution to avoid checkerboard artifacts [23].

We also apply scale-wise auxiliary loss at each up-sampling

layer to guide multi-scale prediction of a defocus map. This

structure induces our network not only to be robust on vari-
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ous object scales, but also to consider global and local con-

texts with large receptive fields. After the last up-sampling

layer of the decoder, we attach convolution blocks with short

skip connections to refine domain adapted features.

We use mean squared error (MSE) for the loss function

LB to estimate the overall structure of a defocus map and

densely predict blur amounts in regions. Given a synthetic

defocused image IS of size W × H, LB is defined as:

LB =
1

WH

W
∑

i=1

H
∑

j=1

(B(IS ; θB)i, j−yi, j)
2+λauxLaux, (5)

where B(IS ; θB)i, j is the amount of blur of IS predicted by

network B at pixel (i, j) with learning parameters θB. yi, j is

the corresponding ground-truth defocus value. Laux is the

scale-wise auxiliary loss defined as:

Laux =

LB
∑

ℓ=1

1

WlHl

Wℓ
∑

i=1

Hℓ
∑

j=1

(Bℓ(IS ; θB, θaux)i, j − yℓ,i, j)
2, (6)

where Bℓ(IS ; θB, θaux) = Aℓ(Bℓ(IS ; θB); θaux) is the output at

the ℓ-th up-sampling level of network B converted to a de-

focus map by a small auxiliary network Aℓ parameterized

by θaux. Each auxiliary network Aℓ consists of two convolu-

tional layers, where the number of kernels in the first layer

varies with level ℓ. λaux is a balance parameter. Wℓ × Hℓ is

the size of a defocus map at the ℓ-th level. yℓ is the ground-

truth defocus map resized to Wℓ × Hℓ. LB is the number of

up-sampling layers in B.

4.3. Domain Adaptation

Our domain adaptation network D compares the features

of real and synthetic defocused images captured by the blur

estimation network B. We use adversarial training for net-

work D so that the two domains have the same distributions

in terms of extracted features. In principle, D is a discrimina-

tor in the GAN framework [7], but in our case, it makes the

characteristics of the captured features of real and synthetic

defocused images indistinguishable. We design D as a CNN

with four convolution layers, each of which is followed by

a batch normalization layer [11] and leaky rectified-linear-

unit (ReLU) activation [36].

Discriminator loss We first train the network D as a dis-

criminator to classify features from synthetic and real do-

mains with the discriminator loss LD, defined as

LD = (z − 1) · log(1 − D(Blast(I; θB), θD))

−z · log(D(Blast(I; θB), θD)),
(7)

where z is a label indicating whether the input feature comes

from a real or synthetic defocused image, i.e., whether the

input image I is real or synthetic; z = 0 if the feature is real

and z = 1 otherwise. Blast(I, θB) returns the feature maps of

the last up-sampling layer of B for image I. Note that here

we only train the parameters of the discriminator, θD.

Adversarial loss We then train network B to minimize the

domain difference between features of synthetic and real

defocused images. Given a real defocused image IR, we

define the adversarial loss Ladv for domain adaptation as:

Ladv = − log(D(Blast(IR; θB), θD)), (8)

where we fix parameters θD and only train θB.

Here the main goal is to train the blur estimation network

B so that it treats real and synthetic defocused images as they

are from the same domain. As our domain adaptation net-

work D becomes stronger as the domain classifier, network

B has to generate more indistinguishable features for real

and synthetic domains, minimizing the domain difference in

terms of extracted features.

4.4. Content Preservation

Our blur estimation loss LB is a MSE loss and has a nature

of producing blurry outputs, as it takes the smallest value

with the average of desirable targets [17]. To reduce the

artifact, we use a content preservation loss [6] that measures

the distance in a feature space φ, rather than in the image

space itself. We define our content preservation network C

as the pre-trained VGG19 [31]. During training, network B

is optimized to minimize:

LC =
1

WℓHℓ

Wℓ
∑

i=1

Hℓ
∑

j=1

(φℓ(B(IS ; θB))i, j − φℓ(y)i, j)
2, (9)

where Wℓ × Hℓ is the size of a feature map φℓ(·) at the last

convolution layer in the ℓ-th max pooling block of VGG19.

4.5. Sharpness Calibration

Our domain adaptation network D concentrates on modu-

lating the overall distributions of extracted features among

real and synthetic defocused images, and it does not specifi-

cally align the amounts of blurs corresponding to the features

between the two domains. In other words, the blur amounts

learned by our blur estimation network B for synthetic de-

focused images cannot be readily applied to real defocused

images, and we need to calibrate the estimated blur amounts

for the two domains. To resolve this problem, our sharpness

calibration network S provides additional information for

the features captured from real defocused images in network

B by correlating them with the blur information available

in a blur detection dataset, where each pixel in an image is

labeled as either sharp or blurred.

For a given real defocused image from the dataset, we

train network S to classify the output of network B in terms

of the correctness of estimated blurriness. The prediction

is considered to be correct, only when a pixel estimated as

sharp belongs to a sharp region in the input image. We build

the network S with 1× 1 convolutional layers, each of which
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(a) Input (b) DMENetB (c) DMENetBD (d) DMENetBDC (e) DMENet
w/o Laux

BDCS
(f) DMENetBDCS (g) ground-truth

Figure 3: Outputs generated with incremental additions of subnetworks in our network. The top row shows the defocus maps

estimated from a synthetic defocus-blur image and the bottom row shows the results given a real DOF image. We can observe

that each subnetwork improves the quality of the output. In (g), the ground-truths are a defocus map in SYNDOF dataset (top)

and a binary blur mask in CUHK dataset (bottom).

is followed by batch normalization and leaky ReLU layer,

enforcing the network B to densely estimate the blurriness.

We apply a sigmoid cross entropy loss for optimization:

LS =
1

WH

W
∑

i=1

H
∑

j=1

∥

∥

∥

∥

∥

1

1 + exp(−S(B(IB; θB); θS )i, j)
− bi, j

∥

∥

∥

∥

∥

2

2

, (10)

where b is a ground truth binary blur map.

We used 1 × 1 kernels to maintain the same size of recep-

tive field between the networks B and S. Otherwise, as the

receptive field of S becomes larger, gradients passed from S

to B would be propagated to larger regions than the receptive

fields of B. A larger kernel for S eventually leads B to gen-

erate a smudged defocus map. Refer to the supplementary

material for more details.

5. Experiments

This section reports our experiments that assess the per-

formance of DMENet in generating defocus maps. We first

summarize the setting of our experiments, and then discuss

the influence of reciprocal connections between the subnet-

works, B, D, C, and S. We then compare our results with

the state-of-the-art methods on CUHK dataset [29] and RTF

dataset [4], followed by a few applications of our DMENet.

Details of evaluation results are accompanied in the supple-

mentary material.

5.1. Experimental Configuration

Training details We use Adam [14] for optimizing our

network. The network is trained with the batch size of 4, and

the learning rate is initially set to 0.0001 with exponential

decaying rate of 0.8 for every 20 epochs. Our model con-

verged after around 60 epochs. The loss coefficients in Eqs.

(3), (4) and (5) are set to: λadv = 1e−3, λD = 1.0, λC = 1e−4,

λS = 2e−2, and λaux = 1.0. We use ℓ = 4 for φℓ, which

indicates the last convolution layer before the fourth max-

pooling layer in VGG19. We jointly train all the networks

in an end-to-end manner on a PC with an NVIDIA GeForce

TITAN-Xp (12 GB).

Dataset For synthetic defocused images IS used for train-

ing network B (Eq. (5)), C (Eq. (9)), and D (Eq. (7)), we

use images of SYNDOF dataset. We limit the maximum

size cmax of COC to 28. For real defocused images IR for

domain adaptation, we used 2,200 real defocused images

collected from Flickr and 504 images from CUHK blur de-

tection dataset [29]. For sharpness calibration, we also use

the same 504 images from CUHK dataset for real defocused

images IB, which require binary blur maps. During training,

we augment all images with random flip, rotation, and crop.

For evaluation, we used 200 images of CUHK dataset and 22

images of RTF dataset [4], which are not used for training.

5.2. Evaluation on Subnetworks

Fig. 3 shows the effects of incremental addition of sub-

networks to estimate defocus maps from synthetic (upper

row) and real (lower row) images. Given a synthetic image,

DMENetB estimates a defocus map reasonably well. How-

ever, for a real defocused image, the sole use of subnetwork

B for blur estimation fails (Fig. 3b), confirming there is

significant domain difference between features of synthetic

and real defocused images. With our domain adaptation,

DMENetBD starts to recognize the degree of blur for a real im-

age to some extents (Fig. 3c), yet with blurry output. Adding

content preservation subnetwork (DMENetBDC) effectively

removes blur artifacts from the estimated defocus map, en-

hancing the estimation in texture regions (Fig. 3d). Finally,

with the sharpness calibration subnetwork S, DMENetBDCS

correctly classifies real-domain features corresponding to

blurry or sharp regions (Fig. 3f). We also compare results of

DMENetBDCS with and without the scale-wise auxiliary loss

Laux (Eq. (6)). Fig. 3e demonstrates that the network without

the auxiliary module generates a less clear and inaccurate

defocus map.

5.3. Evaluation on CUHK and RTF Datasets

We compare our results with the state-of-the-art meth-

ods [40, 30, 24, 13, 38]. For ours, we used the final model

DMENetBDCS . To quantitatively assess the quality, we mea-
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Figure 5: Precision-Recall comparison on CUHK dataset.

Figure 6: Qualitative comparison with [38]. From left to

right: input, defocus map estimated by [38] and ours.

sured the accuracy and precision-recall of each method for

200 test images from CUHK blur detection dataset. As the

dataset contains only binary blur maps for the ground-truths,

we convert estimated defocus maps into binary blur maps.

Following the method of Park et al. [24], the threshold τ

for binarization is determined by τ = α vmax + (1 − α) vmin,

where vmax and vmin are the maximum and minimum values

in the estimated defocus map, respectively, and α = 0.3.

Figs. 4 and 5 show quantitative comparison results. Our

network significantly outperforms the previous methods in

accuracy, which is the ratio of correctly classified pixels in a

given image. Precision-recall curves also show superiority

of our method in detecting blurred regions, where the curves

are computed using defocus maps barbarized with different

levels of τ that is slided from vmin to vmax.

Fig. 7 visually compares results generated by our network

against previous methods, confirming the benefits of ours.

First, our defocus maps show more continuous spectrum for

the degrees of blur compared to others. In the first row of Fig.

7, our results exhibit less noise and smoother transitions with

depth changes. Second, our network estimates more accurate

blur for objects (e.g., human, sky), as it is trained to consider

scene contexts with mixture of COCs at object boundaries

and ground-truth blur amounts on object interiors. In the

second row of the figure, our result shows coherently labeled

blur amounts while clearly respecting object boundaries. In

[40] [30] [4] [24] [13] Ours

MSE 0.037 0.082 0.033 0.024 0.064 0.012

MAE 0.143 0.241 0.106 0.129 0.199 0.088

Table 2: Evaluation of defocus map estimation result on RTF

dataset in terms of mean squared error (MSE) and mean

absolute error (MAE).

the third row, our method estimates consistent blur amounts

both for the box surface and the symbol on it, while some

other methods differently handle the symbol due to its strong

edges. Lastly, our method is more robust in homogeneous

regions. In the second and fourth rows, our results shows

little smudginess around some objects, but they are still

accurate in terms of relative depths. For instance, the sky

should be farther than the mountain, which is not necessarily

preserved with other methods.

We also report qualitative results compared with the most

recent approach [38], whose implementation has not been

publicized yet. Fig. 6 shows that our model can handle wider

depth range of a scene. While our defocus map includes all

the people who are located throughout the depth range in

the scene, the result of [22] only deals with people within

narrow depth range.

In addition, we conducted evaluation on RTF dataset [4],

which consists of 22 real defocused images and ground truth

defocus maps labeled with radii of disc PSFs. For all com-

pared methods considering Gaussian PSF (including ours),

we rescaled defocus maps using a conversion function that

authors of [4] provide, which maps a Gaussian PSF into a

disc PSF by measuring the closest fit. Our network shows

the state-of-the-art accuracy on the dataset (Table 2). More

detailed evaluation are in the supplementary material.

5.4. Applications

Defocus blur magnification Given an input image and its

estimated defocus map, we can generate a magnified defocus-

blur image (Fig. 8). We first estimate the blur amount σi, j

for each pixel using DMENetBDCS . Then, we blur each pixel

using m · σi, j for σ of Gaussian blur kernel, where m is a

magnifying scale (m = 8 in Fig. 8). We used the same blur

algorithm used for generating our SYNDOF dataset. The

defocus blur magnification result demonstrates the accuracy

of our estimated defocus map.

All-in-focus image generation Our estimated defocus

map can be naturally utilized for deblurring (Fig. 9). From

the estimated defocus map, we generate a Gaussian blur

kernel for each pixel with the estimated σ. We then use

non-blind image deconvolution technique leveraging hyper-

Laplacian [16]; to handle spatially-varying deblur, we ap-

plied deconvolution to the decomposed layers, and compose

deconvolved layer images.

Depth from blur Even without the presence of precise

parameters related to the optical geometry (focus point, fo-
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(a) (b) (c) (d) (e) (f) (g)

Figure 7: Qualitative comparison between DMENetBDCS and other methods: (a) Input and the defocus maps estimated by (b)

Zhou et al. [40], (c) Shi et al. [30], (d) Park et al. [24], (e) Karaali et al. [13], (f) ours, and (g) ground-truth binary blur masks.

Figure 8: Defocus blur magnification using the defocus map

estimated by DMENetBDCS . From left to right: Input and our

blur magnification result.

Figure 9: Deblurring using our defocus map estimated by

DMENetBDCS . From left to right: input and our deblurring

result.

cal length, and aperture number), we can approximate the

pseudo-depth using a scaled defocus map in a limited yet

common scenario (i.e., a focus point is at either depth znear

or zfar). We used a light-field dataset [8, 34] to compare with

the ground-truth depth map. Fig. 10 shows our estimated

defocus map can provide a good approximation for the depth

map.

Figure 10: Depth from our defocus map estimated by

DMENetBDCS . From left to right: input, depth from our esti-

mated defocus map and ground truth depth.

6. Conclusions

SYNDOF dataset can be improved with a more precise

DOF rendering technique (e.g., distributed ray tracing [3])

and a more realistic optical model (e.g., a thick-lens or

compound-lens model). A more systematic capture of train-

ing images to cover more varieties of real world defocused

images is also an interesting direction for future work. Our

network works best with LDR images, and strong highlights

(i.e., bokeh) may not be properly handled. We plan to include

the bokeh and HDR images as well in our SYNDOF dataset.
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