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Abstract

The main obstacle to weakly supervised semantic image

segmentation is the difficulty of obtaining pixel-level infor-

mation from coarse image-level annotations. Most methods

based on image-level annotations use localization maps ob-

tained from the classifier, but these only focus on the small

discriminative parts of objects and do not capture precise

boundaries. FickleNet explores diverse combinations of lo-

cations on feature maps created by generic deep neural net-

works. It selects hidden units randomly and then uses them

to obtain activation scores for image classification. Fick-

leNet implicitly learns the coherence of each location in the

feature maps, resulting in a localization map which identi-

fies both discriminative and other parts of objects. The en-

semble effects are obtained from a single network by select-

ing random hidden unit pairs, which means that a variety of

localization maps are generated from a single image. Our

approach does not require any additional training steps and

only adds a simple layer to a standard convolutional neu-

ral network; nevertheless it outperforms recent compara-

ble techniques on the Pascal VOC 2012 benchmark in both

weakly and semi-supervised settings.

1. Introduction

Semantic segmentation is one of the most important and

interesting tasks in computer vision, and the development of

deep learning has produced tremendous progress in a fully

supervised setting [3, 36]. However, to use semantic image

segmentation in real life requires a large variety of object

classes and a great deal of labeled data for each class. Label-

ing pixel-level annotations of each object class is laborious,

and hampers the expansion of object classes. This problem

can be addressed by weakly supervised methods that use

annotations, which are less definite than those at the pixel

level and much easier to obtain. However, current weakly
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Figure 1. (a) FickleNet allows a single network to generate mul-

tiple localization maps from a single image. (b) Conceptual de-

scription of hidden unit selection. Selecting all hidden units (de-

terministic, left) produces smoothing effects as background and

foreground are activated together. Randomly selected hidden units

(stochastic, center and right) can provide more flexible combina-

tions which can correspond more clearly to parts of objects.

supervised segmentation methods produce inferior results

to fully supervised segmentation.

Pixel-level annotations allow fully supervised semantic

segmentation to achieve reliability in learning the bound-

aries of objects and the relationship between their compo-

nents. But, it is difficult to use image-level annotations to

train segmentation networks because weakly labeled data

only indicates the existence of objects of a certain class, and

does not provide any information about their locations or

boundaries. Most weakly supervised methods using image-

level annotations depend on localization maps obtained by

a classification network [37] to bridge the gap between
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image-level and pixel-level annotations. However, these lo-

calization maps focus only on the small discriminative parts

of objects, without precise representations of their bound-

aries. To bring the performance of these methods closer to

that of fully supervised image segmentation means divert-

ing the classifier from its primary task of discrimination be-

tween objects to discovering the relations between pixels.

We address this problem with FickleNet, which can gen-

erate a variety of localization maps from a single image us-

ing random combinations of hidden units in a convolutional

neural network, as shown in Figure 1(a). Starting with a fea-

ture map created by a generic classification network such as

VGG-16 [26], FickleNet chooses hidden units at random for

each sliding window position, which corresponds to each

stride in the convolution operation, as shown in Figure 1(b).

This process is simply realized by the dropout method [28].

Selecting all the available hidden units in a sliding window

position (the deterministic approach) tends to produce a

smoothing effect that confuses foreground and background,

which can result in both areas being activated or deactivated

together. However, random selection of hidden units (the

stochastic approach) produces regions of different shapes

which can delineate objects more sharply. Since the patterns

of hidden units randomly selected by FickleNet include the

shapes of the kernel of the dilated convolution with different

dilation rates, FickleNet can be regarded as a generalization

of dilated convolution, but FickleNet can potentially match

objects of different scales and shapes using only a single

network because it is not limited to a square array of hidden

units, whereas dilated convolution requires networks with

different dilation rates just to scale its kernel.

The selection of random hidden units at each sliding win-

dow position is not an operation that is optimized at the

CUDA level in common deep-learning frameworks such as

PyTorch [22]. Thus, a naive implementation of FickleNet,

in which random hidden units are selected at each sliding

window position and then convolved, would require a large

number of iterative operations. However, we can use the

optimized convolution functions provided by deep-learning

frameworks, if we expand the feature maps before making

the random selection of hidden units. The maps need to be

expanded sufficiently to prevent successive sliding window

positions from overlapping. We can then apply dropout in

the spatial axis of the expanded feature maps, and perform a

convolution operation with a stride equal to the kernel size.

This saves a significant amount of time without much in-

crease in GPU memory usage, because the number of pa-

rameters to be back-propagated remains constant.

While many existing networks use stochastic regulariza-

tion in their training process (e.g. Dropout [28]), stochas-

tic effects are usually excluded from the inference process.

However, our inference process contains random processes

and thus produces a variety of localization maps. The pixels

that were allocated to a specific class with high scores in

each localization map are discovered, and those pixels are

aggregated into a single localization map. The localization

map obtained from FickleNet is utilized as pseudo-labels

for the training of a segmentation network.

The main contributions of this paper can be summarized

as follows:

• We propose FickleNet, which is simply realized using

the dropout method, that discovers the relationship be-

tween locations in an image and enlarges the regions

activated by the classifier.

• We introduce a method of expanding feature maps

which makes our algorithm much faster, with only a

small cost in GPU memory.

• Our work achieves state-of-the-art performance on the

Pascal VOC 2012 benchmark in both weakly super-

vised and semi-supervised settings.

2. Related Work

Weakly supervised semantic image segmentation meth-

ods substitute inexact annotations such scribbles, bound-

ing boxes, or image-level annotations, for strong pixel-

level annotations. The methods of recent introduction have

achieved successful results using annotations that provide

location information such as scribbles or bounding boxes [4,

29]. We now review some recently introduced weakly su-

pervised approaches which use image-level annotations.

A class activation map (CAM) [37] is a good starting-

point for the classification of pixels from image-level anno-

tations. A CAM discovers the contribution of each hidden

unit in a neural net to the classification score, allowing the

hidden units which make large contributions to be identi-

fied. However, a CAM tends to focus on the small discrim-

inative region of a target object, which makes it unsuitable

for training a semantic segmentation network. Weakly su-

pervised methods of recent introduction expand the regions

activated by a CAM, operating on the image (Section 2.1),

on features (Section 2.2), or by growing the regions found

by a CAM (Section 2.3).

2.1. Imagelevel Processing

Image-level hiding and erasure have been proposed [19,

27, 31] as ways of preventing a classifier from focusing ex-

clusively on the discriminative parts of objects. HaS [27]

hides random regions of a training image, forcing the classi-

fication network to seek other parts of the object. However,

the process of hiding random regions does not consider the

semantics and sizes of objects. AE-PSL [31] starts with a

single small region in the object, and then drives the clas-

sification network to discover a sequence of new and com-

plement any object regions by erasing the regions that have
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already been found. Although it can progressively expand

regions belonging to an object, it requires multiple classifi-

cation networks to perform the repetitive classification and

erasure steps. GAIN [19] has a CAM which is trained to

erase regions in a way that deliberately confuses the clas-

sifier. This CAM has to be large enough to cover an entire

object. However, the classifier mainly reacts to high acti-

vation, and so it can become confused if an object’s only

discriminative parts are erased.

2.2. Featurelevel Processing

Feature-level processing can be used to expand the re-

gions activated by a CAM. ACoL [35] and TPL [14] use

a classifier to identify the discriminative parts of an ob-

ject and erase them based on features. A second classifier

then is trained to find the complementary parts of the ob-

ject from those erased features. This is an efficient tech-

nique which operates at a relatively high level. However,

it has a similar drawback to image-level erasure, in that a

second classifier and training step are essential for those

methods, which may cause a suboptimal performance. In

addition, features whose discriminative parts are erased can

confuse the second classifier, which may not be correctly

trained. PG-CAM [18] collects features from each of sev-

eral densely connected layers and merges the resulting lo-

calization maps.

MDC [33] uses several convolutional blocks, dilated at

different rates, within a generic classification network, and

aggregates CAMs obtained from each block in a process

that resembles ensemble learning. The different-sized re-

ceptive fields produced by different dilation rates can be

shown to capture different patterns, but MDC requires a

separate training procedure for each dilation rate, and its

limitation to integer dilation rates (e.g. 1, 3, 6, 9) means that

only a limited number of ensembles is possible. In addition,

the receptive field produced by a standard dilated convolu-

tion is square with a fixed size, so that MDC tends to iden-

tify false positive regions.

2.3. Region Growing

Region growing can be used to expand the localization

map produced by a CAM, which initially identifies just the

small discriminative part of an object. AffinityNet [1] learns

pixel-level semantic affinities, which identify pixels belong-

ing to the same object, under the supervision of an initial

CAM, and then expands the initial CAM by a random walk

with the transition matrix computed from semantic affini-

ties. However, the learning of semantic affinities requires an

additional network, and the outcome depends heavily on the

quality of the CAM. SEC [16] uses a new type of loss func-

tion to expand the localization map and constrain it to object

boundaries using a conditional random field (CRF) [17].

DSRG [12] refines initial localization maps during the train-
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Figure 2. (a) Naive implementation of FickleNet, which requires

a dropout and convolution function call at each sliding window

position (the red and green boxes). (b) Implementation using map

expansion: convolution is now performed once with a stride of s.

The input feature map is expanded so that successive sliding ker-

nels (the red and green boxes) do not overlap.

ing of its segmentation network, so that DSRG does not re-

quire additional networks to grow regions. The seeds for re-

gion growing are obtained from a CAM, and if these seeds

only come from the discriminative parts of objects, it is

difficult to grow regions into non-discriminative parts. We

therefore utilize as a segmentation network with the local-

ization maps produced by FickleNet.

3. Proposed Method

Our procedure has the following steps: FickleNet, which

uses stochastic selection of hidden units, is trained for

multi-class classification. It then generates localization

maps of training images. Finally, the localization maps are

used as pseudo-labels to train a segmentation network. We

denote the sort of feature map typically obtained from a

standard deep neural network as x ∈ R
k×h×w, where w and

h are the width and the height of each of k channels, respec-

tively. The procedures for training FickleNet and generating

localization maps are shown as Algorithm 1.

Algorithm 1: Training and Inference Procedure

Input: Image I , ground-truth label c, dropout rate p

Output: Classification score S and localization maps M

1 x = Forward(I) until conv5 layer;

2 Stochastic hidden unit selection: Sec. 3.1

3 xexpand = Expand(x); Sec. 3.1.1

4 x
expand
p = Center-fixed spatial dropout(xexpand, p); Sec. 3.1.2

5 S = Classifier(x
expand
p ); Sec. 3.1.3

6 Training Classifier:

7 Update network by L=SigmoidCrossEntropy(S, c)

8 Inference CAMs: Sec. 3.2

9 For different random selections i (1 ≤ i ≤ N):
10 Mc[i] = Grad-CAM(x, Sc); Sec. 3.2.1

11 Mc = Aggregate(Mc[i]); Sec. 3.2.2

5269



3.1. Stochastic Hidden Unit Selection

Stochastic hidden unit selection is used in FickleNet to

discover relations between parts of objects by exploring the

classification score computed from the randomly selected

pairs of hidden units, with the aim of associating a non-

discriminative part of an object with a discriminative part of

the same object. This process is realized by applying spatial

dropout [28] to the feature x at each sliding window posi-

tion, as shown in Figure 2(a). This differs from the standard

dropout technique, which only samples hidden units in the

feature maps once in each forward pass, and thus hidden

units which are not sampled cannot contribute to the class

scores. Our method samples hidden units at each sliding

window position, which means that a hidden unit may be

activated at some window positions and dropped at others.

This method of selecting hidden units can generate re-

ceptive fields of many different shapes and sizes, as shown

in Figure 3. Some of these fields are likely to be simi-

lar to those produced by a standard dilated convolution;

thus the results produced by this technique can be ex-

pected to contain those produced by standard dilated con-

volution at various rates. This selection process can be sim-

ply and efficiently realized by the expansion technique de-

scribed in Section 3.1.1 with a method which we call center-

preserving dropout, which is described in Section 3.1.2.

3.1.1 Feature Map Expansion

As our method needs to sample new combinations in each

sliding window position, we cannot directly utilize the

CUDA-level optimized convolution functions provided by

popular deep learning frameworks such as PyTorch [22]. If

we were to implement our method naively, as shown in Fig-

ure 2(a), we would have to call the convolution function and

the dropout function in w × h times in each forward pass.

By expanding the feature map, we reduce this to a single

call to each function during each forward pass.

Figure 2(b) shows how we expand the input feature maps

so that no sliding window positions overlap. Before expand-

ing the feature map, we apply zero padding on x so that

the size of the final output is equal to that of the input.

The size of the feature map after zero padding becomes

k × (h+ s− 1)× (w + s− 1), where s is the size of the

convolution kernel. We expand the zero-padded feature map

so that successive sliding window positions do not over-

lap, and the size of the expanded feature map xexpand is

k × (sh) × (sw). We then select hidden units on xexpand

using the center-preserving dropout technique explained in

Section 3.1.2. Examples of this expansion process are pre-

sented in the appendix (Section ??). Although the expanded

feature map requires more GPU memory, the number of pa-

rameters to be trained remains constant, and so the load on

the GPU does not increase significantly.

Figure 3. Examples of the selection of 9 hidden units (marked as

blue) from a 7 × 7 kernel. Channels are not shown for simplicity.

The shapes of those selected hidden units sometimes contain the

shape of kernel of convolution with different dilation rates.

3.1.2 Center-preserving Spatial Dropout

We realize stochastic hidden unit selection by applying the

dropout method [28] to spatial locations. We can achieve

the same results as the naive implementation by applying

dropout only once to the expanded feature map xexpand.

Note that dropout is applied uniformly across all channels.

We do not drop the center of the kernel of each sliding

window position, so that relationships between kernel

center and other locations in each stride can be found. After

spatial dropout with a rate of p, we denote the modified

feature map as x
expand
p . While dropout is usually only

employed during training, we apply it to both training and

inference.

3.1.3 Classification

In order to obtain classification scores, convolution with

kernel of size s and stride s are applied to the dropped fea-

ture map x
expand
p . We then obtain an output feature map of

size c×w × h, where c is the number of object classes. By

applying global average pooling and a sigmoid function to

this map, we obtain a classification score S. We then up-

date FickleNet using the sigmoid cross-entropy loss func-

tion, which is widely used for multi-label classification.

3.2. Inference Localization Map

We can now obtain various classification scores from

a single image, which correspond to randomly selected

combinations of hidden units, and each random selec-

tion generates a various localization map. Section 3.2.1

describes how to obtain a localization map from each

random selection, and Section 3.2.2 describes how the

maps from the random selections are aggregated into a

single localization map.

3.2.1 Grad-CAM

We use gradient based CAM (Grad-CAM) [25], which is a

generalization of class activation map (CAM) [37], to ob-
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tain localization maps. Grad-CAM discovers the class spe-

cific contribution of each hidden unit to the classification

score from gradient flows. We compute the gradients of the

target class score with respect to x, which is the feature map

before expansion, and then sum the feature maps along the

channel axis, weighted by these gradients. We can express

Grad-CAM for each target class c as follows:

Grad-CAMc = ReLU(
∑

k

xk ×
∂Sc

∂xk

), (1)

where xk ∈ R
w×h is the kth channel of the feature map x,

and Sc is the classification score of class c.

3.2.2 Aggregate Localization Map

FickleNet allows many localization maps to be constructed

from a single image, because different combinations of hid-

den units are used to compute classification scores at each

random selection. We construct N different localization

maps from a single image and aggregate them into a single

localization map. Let M [i] (1 ≤ i ≤ N) denote the local-

ization map constructed from the ith random selection. We

aggregate the N localization maps so that a pixel located

at u in the aggregated map is allocated to class c if the ac-

tivation score for class c in any M [i] at u is higher than a

threshold θ. Pixels which are not allocated to any class are

ignored during training. If there is a pixel assigned to mul-

tiple classes, we examine its class score in a map averaged

over the N maps and assign the pixel to the class with the

highest score in the average map.

3.3. Training the Segmentation Network

The localization map, whose construction was described

in Sections 3.1 and 3.2, provides pseudo-labels to train a se-

mantic image segmentation network. We use the same back-

ground cues as DSRG [12]. We feed the generated localiza-

tion maps from FickleNet to DSRG as the seed cues for

weakly supervised segmentation.

For semi-supervised learning we introduce an additional

loss derived from data fully annotated by a person. Let C be

the set of classes that are present in the image. We train a

segmentation network with the following loss function:

L = Lseed + Lboundary + αLfull, (2)

where Lseed and Lboundary respectively are the balanced seed-

ing loss and boundary loss used in DSRG [12], and

Lfull = −
1∑

c∈C

|Fc|

∑

c∈C

∑

u∈Fc

logHu,c, (3)

where Hu,c is the probability of an entry of class c at lo-

cation u in the segmentation map H , and Fc is the ground-

truth mask.

4. Experiments

4.1. Experimental Setup

Dataset: We conducted experiments on the PASCAL VOC

2012 image segmentation benchmark [6], which contains

21 object classes, including one background class. Using

the same protocol as other work on weakly supervised se-

mantic segmentation, we trained our network using aug-

mented 10,582 training images with image-level annota-

tions. We report mean intersection-over-union (mIoU) for

1,449 validation images and 1,456 test images. The results

for the test images were obtained on the official PASCAL

VOC evaluation server.

Network details: FickleNet is based on the VGG-16 net-

work [26], pre-trained using the Imagenet [5] dataset. The

VGG-16 network was modified by removing all fully-

connected layers and the last pooling layer, and we replaced

the convolution layers of the last block with dilated convo-

lutions with a rate of 2. We set the kernel size s and the

dropout rate p to 9 and 0.9 respectively. Segmentation is

performed by DSRG [12].

Experimental details: We trained FickleNet using a mini-

batch size to 10. We cropped the training images to 321 ×
321 pixels at random locations, so that the size of feature

map x becomes 512×41×41. The initial learning rate was

set to 0.001 and halved every 10 epochs. We used the Adam

optimizer [15] with its default settings. During segmenta-

tion training, we use the same settings as DSRG [12]. We

set the number of different localization maps N for each

image to 200 and the threshold θ to 0.35. We set α to 2 for

semi-supervised learning.

Reproducibility: PyTorch [22] was used for training Fick-

leNet and conducting localization maps, and we used the

Caffe framework [13] in the segmentation step. All the ex-

periments were performed on an NVIDIA TITAN Xp GPU.

4.2. Comparison to the State of the Art

Weakly supervised segmentation: We compared our

method with other recently introduced weakly supervised

semantic segmentation methods with various levels of su-

pervision. Table 1 shows results on PASCAL VOC 2012

images. Our method outperformed others which provide

the same level of supervision through image-level annota-

tions, achieving mIoU values of 61.2 and 61.9 for validation

and test images respectively. This represents a 2.2% and

1.5% improvement respectively on validation and test im-

ages, when compared to DSRG, which is our backbone net-

work. Note that we do not need additional training steps or

additional networks, in contrast to many other recent tech-

niques, such as AffinityNet [1], which requires an additional

network for learning semantic affinities, or AE-PSL [31],

which requires several training steps.

Table 2 shows result on PASCAL VOC 2012 images
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Table 1. Comparison of weakly supervised semantic segmentation

methods on VOC 2012 validation and test image sets. The methods

listed here use DeepLab-VGG16 for segmentation.

Methods Training val test

Supervision: Image-level and additional annotations

MIL-seg CVPR ’15 [23] 700K 42.0 40.6

STC TPAMI ’17 [32] 50K 49.8 51.2

TransferNet CVPR ’16 [9] 70K 52.1 51.2

CrawlSeg CVPR ’17 [10] 970K 58.1 58.7

AISI ECCV ’18 [11] 11K 61.3 62.1

Supervision: Image-level annotations only

SEC ECCV ’16 [16] 10K 50.7 51.1

CBTS-cues CVPR ’17 [24] 10K 52.8 53.7

TPL ICCV ’17 [14] 10K 53.1 53.8

AE_PSL CVPR ’17 [31] 10K 55.0 55.7

DCSP BMVC ’17 [2] 10K 58.6 59.2

MEFF CVPR ’18 [8] 10K - 55.6

GAIN CVPR ’18 [19] 10K 55.3 56.8

MCOF CVPR ’18 [30] 10K 56.2 57.6

AffinityNet CVPR ’18 [1] 10K 58.4 60.5

DSRG CVPR ’18 [12] 10K 59.0 60.4

MDC CVPR ’18 [33] 10K 60.4 60.8

FickleNet (Ours) 10K 61.2 61.9

Table 2. Comparison of weakly supervised semantic segmentation

methods on VOC 2012 validation and test image sets. The methods

listed here use ResNet-based segmentation models.

Methods Backbone val test

MCOF [30] ResNet 101 60.3 61.2

DCSP [2] ResNet 101 60.8 61.9

DSRG [12] ResNet 101 61.4 63.2

AffinityNet [1] ResNet 38 61.7 63.7

FickleNet (ours) ResNet 101 64.9 65.3

with a ResNet-based segmentation network. We achieved

mIoU values of 64.9 and 65.3 for validation and test im-

ages respectively using DeepLab-v2-ResNet101. This rep-

resents 3.5% and 2.1% improvement, respectively, on val-

idation and test images, when compared to DSRG. Affin-

ityNet [1] uses ResNet-38 based network [34], which has

more powerful representation ability than ResNet-101.

Our method also significantly outperforms methods

based on additional supervision except AISI [11]. These

methods include TransferNet [9], which was trained on

pixel-level annotations of 60 classes (not Pascal VOC

classes) of COCO [20] images, and CrawlSeg [10], which

was provided with a very large number of unlabeled

YouTube videos. AISI [11] utilized salient instance detec-

tor [7] which is trained using well-annotated instance-level

annotations.

Figure 4 shows qualitative results of predicted segmen-

tation masks, in FickleNet and DSRG. The supervision pro-

Table 3. Comparison of semi-supervised semantic segmentation

methods on VOC 2012 validation sets. We also give the perfor-

mances of DeepLab using 1.4K and 10.6K strongly annotated data.

Methods Training Set mIoU

DeepLab [3] 1.4K strong 62.5

WSSL [21] 1.4K strong + 9K weak 64.6

GAIN [19] 1.4K strong + 9K weak 60.5

MDC [33] 1.4K strong + 9K weak 65.7

DSRG [12] (baseline) 1.4K strong + 9K weak 64.3

FickleNet (ours) 1.4K strong + 9K weak 65.8

DeepLab [3] 10.6K strong 67.6

Table 4. Run time and GPU memory usage for training and CAM

extraction without and with map expansion.

Methods Training CAM Extract GPU Usage

Naive 20 sec/iter 2.98 sec/img 8.4 GB

Expansion 1.3 sec/iter 0.21 sec/img 10.1 GB

Table 5. Comparison of mIoU scores using different dropout rates

(p) on PASCAL VOC 2012 validation images.

Methods Dropout Rate (p) mIoU

Deterministic 0.0 56.3

General Dropout
0.5 45.6
0.9 49.1

FickleNet

0.3 58.8
0.5 59.4
0.7 60.0
0.9 61.2

vided by FickleNet produces larger and more accurate re-

gions of a target object than that used in DSRG, allowing

the segmentation network to consider a wider range of tar-

get objects. Thus, the segmentation network trained with lo-

calization maps generated by FickleNet produces more ac-

curate results than DSRG in that FickleNet can make fewer

false positives and cover larger regions of a target object.

Semi-supervised segmentation: Table 3 shows that the

mIoU of 65.8 produced by our method, trained on only

13.8% of images with pixel-level annotations in the PAS-

CAL dataset, was 97.3% of that of Deeplab, which is trained

with fully annotated data. The performance of FickleNet on

validation images was 1.5% better than that of DSRG which

is our baseline network. Note that GAIN shows lower per-

formance than Deeplab, trained on only 1.4K fully anno-

tated data. GAIN uses pixel-level annotations for the train-

ing of a classifier, rather than a segmentation network so that

pixel-level ground-truth indirectly affects the training of the

segmentation network. Figure 4 shows examples of seg-

mentation maps from DSRG and FickleNet, which demon-

strate that our system is able to operate satisfactorily in a

semi-supervised manner.
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Input Image Ground Truth
DSRG Ours--VGG16 DSRG Ours

Weakly Supervised

Ours--ResNet101

Semi-supervised

Figure 4. Examples of predicted segmentation masks for Pascal VOC 2012 validation images in weakly and semi-supervised manner.
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Figure 5. (a) Localization maps from each random selection of hidden unit with different dropout rates p. (b) Performance on Pascal VOC

2012 validation images for different N .

4.3. Ablation studies

Effects of the Map Expansion Technique: In order to

show the effect of the map expansion technique presented

in Section 3.1.1, we compare runtime and GPU usage of

a naive implementation of FickleNet (Fig. 2(a)) with that

of an implementation of FickleNet with map expansion

(Fig. 2(b)). Table 4 shows that training and CAM extrac-

tion times are reduced factors of 15.4 and 14.2 respectively,

at a cost of 12% in GPU memory usage.

Analysis of Iterative Inference: We compare mIoU scores

with different numbers of localization maps N from a single

image. Figure 5(b) shows that the mIoU increases with the

number of maps N . We interpret this as meaning that addi-

tional random selection identifies more regions of a target

object, so that larger regions of that object are represented

by the aggregated localization map. If N is greater than 200,

the mIoU converges to 61.2. Examples of different CAMs

obtained from a single image are shown in Figure 5(a).

Table 6. Effectiveness of each step. G− general dropout, S−

stochastic selection, D− deterministic approach.

Training G G G S S D
Inference G S D S D D

mIoU 49.1 55.5 57.1 61.2 59.6 59.0

Effects of dropout rate: We analyzed the effects of the

dropout rate used by FickleNet. Figure 6 shows that a

dropout rate p of 0.9 allows FickleNet to cover larger re-

gions of the target object than DSRG, which uses the local-

ization maps from deterministic classifiers. Higher dropout

rates also lead to more widely activated localization maps,

because it becomes more likely that the discriminative part

of an object will be dropped, leaving the non-discriminative

parts of the object to be considered for classification. Con-

versely, if the dropout rate is low, the discriminative parts of

objects are unlikely to be dropped, and they usually suffice

for classification; so the classifier is unlikely to activate non-
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Figure 6. Localization maps from DSRG and FickleNet, with various dropout rates (p = 0 denotes a deterministic network), and from the

general dropout method. Localization maps of DSRG (the 2nd column) were visualized using the publicly available DSRG localization cue.

discriminative parts. As shown in Figure 5(a), FickleNet

with a low dropout rate tends to activate only the discrimina-

tive part of objects, even though random sampling produces

many patterns of hidden units. Higher dropout rates result

in more randomness in the activated patterns so that differ-

ent non-discriminative parts of an object are more likely to

be considered for each random selection. This effect is also

reflected in the quantitative results shown in Table 5.

Comparison to general dropout: We compared FickleNet

with a network created using a general dropout method

rather than the hidden unit selection. Figure 6 shows that

localization maps from the network created with general

dropout tend to show noisy activation: hidden units which

are not sampled cannot contribute to the class score during a

forward pass, which means these dropped units do not con-

tribute to the localization map. Note that a hidden unit in

FickleNet may be activated at some window positions and

dropped at others so that every hidden unit is able to affect

the classification score. In Table 5, a segmentation network

trained with localization maps from the network with gen-

eral dropout shows inferior results to FickleNet.

Effectiveness of each step: Table 6 shows results obtained

using several combinations of general dropout (G), stochas-

tic selection (S), and the deterministic approach (D) for

training and inference. As expected, “train S + infer D" is

better than “train D + infer D", because stochastic selection

lets the network consider the non-discriminative part, but

the best mIoU is obtained by “train S + infer S".

5. Conclusions

We have addressed the problem of semantic image seg-

mentation using only image-level annotations. By choos-

ing features at random during both training and inference,

we obtain many different localization maps from a single

image, and then aggregate those maps into a single local-

ization map. This map contains regions corresponding to

parts of objects which are both larger and more consistent

than those on a map produced by an equivalent determin-

istic technique. Our method can be implemented efficiently

using operations readily available on a GPU by expanding

the feature maps to avoid overlaps between the sliding ker-

nels used during convolution. We show that the results pro-

duced by FickleNet on both weakly supervised and semi-

supervised segmentation are better than those produced by

other state-of-the-art approaches.
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