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Abstract

We address the problem of semantic correspondence, that

is, establishing a dense flow field between images depicting

different instances of the same object or scene category. We

propose to use images annotated with binary foreground

masks and subjected to synthetic geometric deformations

to train a convolutional neural network (CNN) for this task.

Using these masks as part of the supervisory signal offers a

good compromise between semantic flow methods, where the

amount of training data is limited by the cost of manually

selecting point correspondences, and semantic alignment

ones, where the regression of a single global geometric trans-

formation between images may be sensitive to image-specific

details such as background clutter. We propose a new CNN

architecture, dubbed SFNet, which implements this idea. It

leverages a new and differentiable version of the argmax

function for end-to-end training, with a loss that combines

mask and flow consistency with smoothness terms. Experi-

mental results demonstrate the effectiveness of our approach,

which significantly outperforms the state of the art on stan-

dard benchmarks.

1. Introduction

Establishing dense correspondences across images is one

of the fundamental tasks in computer vision [5, 30, 36]. Early

works have focussed on handling different views of the same

scene (stereo matching [19, 36]) or adjacent frames (optical

flow [4, 5]) in a video sequence. Semantic correspondence

algorithms (e.g., SIFT Flow [30]) go one step further, find-

ing a dense flow field between images depicting different

instances of the same object or scene category. This is very

challenging especially in the presence of large changes in

appearance/scene layout and background clutter. Classical

approaches to semantic correspondence [3, 20, 26, 30, 47]

typically use an objective function involving fidelity and

regularization terms. The fidelity term encourages hand-
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Figure 1: We use pairs of warped foreground masks obtained from

a single image (left) as a supervisory signal to train our model.

This allows us to establish object-aware semantic correspondences

across images depicting different instances of the same object or

scene category (right). No masks are required at test time. (Best

viewed in color.)

crafted features (e.g., SIFT [32], HOG [7], DAISY [45])

to be matched along a dense flow field between images,

and the regularization term makes it smooth while aligning

discontinuities to object boundaries. Although they have

proven useful in various computer vision tasks including

object recognition [10, 30], semantic segmentation [26],

co-segmentation [44], image editing [8], and scene pars-

ing [26, 50], hand-crafted features do not capture high-level

semantics (e.g., appearance and shape variations), and are

not robust to image-specific details (e.g., texture, background

clutter, occlusion).

Convolutional neural networks (CNNs) have allowed re-

markable advances in semantic correspondence in the past

few years. Recent methods using CNNs [6, 16, 23, 24, 27,

35, 40, 41, 42, 51] benefit from rich semantic features invari-

ant to intra-class variations, achieving state-of-the-art results.

Semantic flow approaches [6, 16, 27, 35, 51] attempt to find

correspondences for individual pixels or patches. They are

not seriously affected by non-rigid deformations, but are

easily distracted by background clutter. They also require

a large amount of data with ground-truth correspondences
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for training. Although pixel-level semantic correspondences

impose very strong constraints, manually annotating them is

extremely labor-intensive and somewhat subjective, which

limits the amount of training data available [14]. An alterna-

tive is to learn feature descriptor only [6, 27, 35] or to exploit

3D CAD models provided by rendering engines [51]. Seman-

tic alignment methods [23, 24, 40, 41, 42] on the other hand

formulate semantic correspondence as a geometric align-

ment problem and directly regress parameters of a global

transformation model (e.g., affine and thin plate spline) be-

tween images. This leverages self-supervised learning where

ground-truth parameters are generated synthetically using

random transformations with, however, a higher sensitivity

to non-rigid deformations. Moreover, background clutter

prevents focussing on individual objects and distracts es-

timating the transformation parameters. To overcome this

problem, recent methods alleviate the influence of distractors

by inlier counting [41] or an attention process [42].

In this paper, we present a new approach to establishing

an object-aware semantic flow and propose to exploit binary

foreground masks as a supervisory signal (Fig. 1). Our ap-

proach builds upon the insight that correspondences of high

quality between images allow to segment common objects

from background. To implement this idea, we introduce a

new CNN architecture, dubbed SFNet, that outputs a seman-

tic flow field at a sub-pixel level. We leverage a new and

differentiable version of the argmax function, a kernel soft

argmax, together with mask/flow consistency and smooth-

ness terms to train SFNet end-to-end, establishing object-

aware correspondences while filtering out distracting details.

Our approach has the following advantages: First, it is a good

compromise between current semantic flow and alignment

methods, since masks are available for large dataset, and they

give a good set of constraints. Exploiting binary foreground

masks explicitly for training makes it possible to focus on

learning correspondences between prominent objects and

scene elements. Note that no masks are required at test time.

Second, our method establishes a dense non-parametric flow

field (i.e., semantic flow), which is more robust to non-rigid

deformations than a parametric regression (i.e., semantic

alignment). Finally, the kernel soft argmax enables training

the whole network end-to-end, and hence our approach fur-

ther benefits from high-level semantics specific to the task

of semantic correspondence. The main contributions of this

paper can be summarized as follows:

• We propose to exploit binary foreground masks directly,

that are widely available and can be annotated more easily

than the pixel-level ground truth, to learn semantic flow

by incorporating them into loss functions.

• We introduce a kernel soft argmax, making it less sus-

ceptible to multi-modal distributions while providing a

differentiable flow field at a sub-pixel level.

• We set a new state of the art on standard benchmarks

for semantic correspondence, clearly demonstrating the

effectiveness of our approach to exploiting foreground

masks. We additionally provide an extensive experimental

analysis with ablation studies.

To encourage comparison and future work, our code and

models are available online: https://cvlab-yonsei.

github.io/projects/SFNet.

2. Related work
Correspondence problems cover a broad range of topics

in computer vision including stereo, motion analysis, object

recognition and shape matching. Giving a comprehensive

review on these topics is beyond the scope of this paper. We

briefly review representative works related to ours.

Classical approaches have focussed on finding sparse

correspondences, e.g., for instance matching [32] or estab-

lishing dense matches between nearby views of the same

scene/object, e.g., for stereo matching [19, 36] and opti-

cal flow estimation [4, 5]. Unlike these, semantic corre-

spondence methods estimate dense matches across pictures

containing different instances of the same object or scene

category. Early works on semantic correspondence focus on

matching local features from hand-crafted descriptors, such

as SIFT [3, 20, 26, 30], DAISY [47] and HOG [14, 44, 46],

together with spatial regularization using graphical mod-

els [20, 26, 30, 44] or random sampling [1, 47]. However,

designing hand-crafted features while considering high-level

semantics is extremely hard, and computing similarities be-

tween them is easily distracted e.g., by clutter, texture, oc-

clusion and appearance variations. There are many attempts

to estimate correspondences robust against background clut-

ter or scale changes between objects/object parts, by using

object proposals as candidate regions for matching [14, 46]

or performing matching in scale space [38].

Recently, image features from CNNs have shown the pow-

erful capacity of representing high-level semantics and the

robustness to appearance and shape variations [17, 29, 43].

Long et al. [31] first apply CNNs to establish semantic cor-

respondences between images. They follow the same proce-

dure as the SIFT Flow [30] method, but exploit off-the-shelf

CNN features trained for ImageNet classification tasks due

to a lack of training datasets with pixel-level annotations.

This problem can be alleviated by synthesizing ground-truth

correspondences from 3D models [51] or augmenting the

number of match pairs in a sparse keypoint dataset using

interpolation [44]. More recently, the PF dataset [15] has

been released providing 1300+ image pairs of 20 image cat-

egories with ground-truth annotations from the PASCAL

2011 keypoint dataset [2]. This enables learning local fea-

tures [16, 27, 35] specific to the task of semantic corre-

spondence. Although these approaches using CNN features

outperform early methods by large margins, loss functions

for training do not involve a spatial regularizer mainly due

to a lack of differentiability of the flow field. In contrast,
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Figure 2: Overview of SFNet. SFNet inputs a pair of source and target images, Is and I
t, and extracts local features using a siamese

network. It then computes pairwise matching scores between features and establishes semantic flow, Fs and F
t, for source and target

images, respectively, by the kernel soft argmax. At training time, corresponding foreground masks, Ms and M
t, for source and target

images, respectively, are used to compute mask consistency, flow consistency, and smoothness terms. See text for details.

our flow field is differentiable, allowing to train the whole

network with a spatial regularizer end-to-end.

Several recent methods [23, 24, 40, 41, 42] formulate

semantic correspondence as a geometric alignment prob-

lem using parametric models. In particular, these methods

first compute feature correlations between images, and they

are fed into a regression layer to estimate parameters of a

global transformation model (e.g., affine, homography, and

thin plate spline) to align images. This makes it possible

to leverage self-supervised learning [24, 40, 41, 42] using

synthetically generated data and to train the entire CNNs

end-to-end. These approaches apply the same transforma-

tion to all pixels, which has the effect of an implicit spatial

regularization, providing smooth matches and often outper-

forming semantic flow methods [6, 14, 16, 27, 51]. However,

they are easily distracted by background clutter and occlu-

sion [24, 40], since correlations between pairs of features

are noisy and include outliers (e.g., between different back-

grounds). Although this can be alleviated by using atten-

tion models [42] or suppressing outlier metches [41], global

transformation models are highly sensitive to non-rigid de-

formations or local geometric variations. In this context,

our method avoids this problem by establishing semantic

correspondences directly from feature correlations.

Similar to ours, many methods [23, 27, 50, 51] lever-

age object bounding boxes or foreground masks to learn

semantic correspondence. They, however, do not incorpo-

rate the object location prior explicitly into loss functions.

They instead use the prior for pre-processing training sam-

ples, e.g., generating positive/negative training pairs [23, 27]

or limiting the candidate regions for matching [50, 51]. In

contrast, we incorporate the prior directly into loss functions

to train the network, outperforming the state of the art by a

significant margin.

3. Approach
In this section, we describe our approach to establishing

object-aware semantic correspondences including the net-

work architecture (Sec. 3.1) and loss functions (Sec. 3.2).

An overview of our method is shown in Fig. 2.

3.1. Network architecture
Our model is fully convolutional and mainly consists of

three parts (Fig. 2): We first extract features from source and

target images, Is and It, using a siamese network where each

sub-network has the same structure with shared parameters.

We then compute matching scores between all pairs of local

features in the two images, and assign the best match for

each feature by the kernel soft argmax. All components are

differentiable, allowing us to train the whole network end-to-

end. In the following, we describe the network architecture

for source to target matching in detail. A target to source

matching is similarly computed.

Feature extraction and matching. We exploit a ResNet-

101 [17] trained for ImageNet classification [9] for feature

extraction. Although such CNN features give rich semantics,

they typically fire on highly discriminative parts for classi-

fication. This may be less adequate for feature matching

that requires capturing a spatial deformation for fine-grained

localization. We thus use additional adaptation layers to

extract features specific to the task of semantic correspon-

dence, transforming them to be highly discriminative w.r.t

both appearance and spatial context. This gives a feature

map of size h × w × d for each image that corresponds to
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h× w grids of d-dimensional local features. We then apply

L2 normalization to the individual d-dimensional features.

As will be seen in our experiments, the adaptation layers

boost the matching performance drastically.

Matching scores are computed using the dot product be-

tween local features, resulting in a 4-dimensional correlation

map of size h× w × h× w as follows:

c(p,q) = fs(p)⊤f t(q), (1)

where we denote by fs(p) and f t(q) d-dimensional features

at positions p = (px, py) and q = (qx, qy) in the source and

target images, respectively.

Kernel soft argmax layer. We can assign the best matches

by applying the argmax function over a 2-dimensional cor-

relation map cp(q) = c(p,q), w.r.t all features f t(q) at

each spatial location p. However, the argmax is discrete and

not differentiable. The soft argmax [18, 25] computes an

output by a weighted average of all spatial positions with

corresponding matching probabilities. Although it is differ-

entiable and enables fine-grained localization at a sub-pixel

level, the output is influenced by all spatial positions, which

is problematic especially in the case of multi-modal distribu-

tions.

We introduce a hybrid version, the kernel soft argmax,

that takes advantage of both the soft and discrete argmax.

Concretely, it computes correspondences φ(p) for individual

locations p as an average of all coordinate pairs q = (qx, qy)
weighted by a matching probability mp(q) as follows.

φ(p) =
∑

q

mp(q)q. (2)

The matching probability mp is computed by applying a

spatial softmax function to a L2-normalized version np of

the correlation map cp:

mp(q) =
exp(βkp(q)np(q))

∑

q′∈np
exp(βkp(q′)np(q′))

, (3)

where kp is a 2-dimensional Gaussian kernel centered on the

position, computed by applying the discrete argmax to np
1.

That is, we perform element-wise multiplication between

the score map np and kernel kp, and then apply the softmax

function. This retains the scores np near the output of the

discrete argmax while suppressing others, having the effect

of restricting the range of averaging in (2) and making it less

susceptible to multi-modal distributions (e.g., from ambigu-

ous matches in background clutter and repetitive patterns)

while maintaining differentiability. β is a “temperature" pa-

rameter adjusting a distribution of the softmax output. Note

that as it becomes larger, the softmax function approaches the

discrete one with one clear peak, but this may cause an un-

stable gradient flow at training time. Different from [18, 25],

1At training time, we compute the kernel kp every iterations and no

gradients are propagated through the discrete argmax, making the matching

probability mp differentiable.

we perform L2 normalization on the 2-dimensional correla-

tion map cp, adjusting the matching scores fs(p)⊤f t(q) to

a common scale before applying the softmax function. Note

that the normalization is particularly important for seman-

tic alignment methods [23, 40, 41, 42] (see, for example,

Table 2 in [40]) but for different reasons. It penalizes fea-

tures having multiple highly-correlated matches, boosting

the scores of discriminative matches.

3.2. Loss

We exploit binary foreground masks as a supervisory

signal to train the network, which gives a strong object prior.

To this end, we define three losses that guide the network

to learn object-aware correspondences without pixel-level

ground truth as

L = λmaskLmask + λflowLflow + λsmoothLsmooth, (4)

which consists of mask consistency Lmask, flow consis-

tency Lflow and smoothness Lsmooth terms, balanced by the

weight parameters (λmask, λflow, λsmooth). In the following,

we describe each term in detail.

Mask consistency loss. We define a flow field Fs from

source to target images as

Fs(p) = φ(p)− p. (5)

Similarly, a flow field F t from target to source images are

defined as φ(q) − q. We denote by Ms and M t binary

masks of source and target images, respectively. The val-

ues of 0 and 1 in the masks indicate background and fore-

ground regions, respectively. We assume that reconstructing

foreground/background masks by feature matching requires

computing reliable similarities between features and dense

correspondences of a high quality. To implement this idea,

we transfer the target mask M t by warping [22] using the

flow field Fs and obtain an estimate of the source mask M̂s

as follows.
M̂s = W(M t;Fs). (6)

Here, we denote by W a warping operator using a flow

field, e.g., W(M t;Fs)(p) = M t(p + Fs(p)). We then

compute the difference between the source mask Ms and its

estimate M̂s. Similarly, we reconstruct the target mask M̂ t

from Ms using the field F t and compute its difference

from M t. Accordingly, we define the mask consistency

loss as

Lmask =
∑

i∈{s,t}

(

1

|N i|

∑

p

(M i(p)− M̂ i(p))2

)

, (7)

where |N i| is the number of pixels in the mask M i. Al-

though the mask consistency loss does not enforce not align-

ing the background with anything, it prevents matches from

foreground to background regions and vice versa by penaliz-

ing them. This encourages correspondences to be established

between features within foreground masks and background
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masks, guiding our model to learn object-aware correspon-

dences. Note that the mask consistency loss does not restrict

a many-to-one matching. That is, it does not penalize a case

when many foreground features in an image are matched to

a single one in other image, since binary masks do not give

a positional certainty of correspondences.

Flow consistency loss. A flow consistency loss measures

consistency between flow fields Fs and F t within fore-

ground masks defined as

Lflow =
∑

i∈{s,t}

(

1

|N i
F |

∑

p

||(F i(p)+F̂ i(p))⊙M i(p)||22

)

,

(8)
where |N i

F | is the number of foreground pixels in the

mask M i, and
F̂s = W(F t;Fs), (9)

which aligns the flow field F t with respect to Fs by warping.

F̂ t is computed similar to (9). We denote by ‖·‖
2

and ⊙
the L2 norm and element-wise multiplication, respectively.

The multiplication is applied separately for each x and y

component. The flow consistency term favors a one-to-one

matching, spreading flow fields over foreground regions and

alleviating the many-to-one matching problem in the mask

consistency loss. For example, when the flow fields are con-

sistent with each other, Fs and F̂s have the same magnitude

with opposite directions. Similar ideas have been explored in

stereo matching [13, 49] and optical flow [33, 52], but with-

out considering appearance and shape variations. It is hard to

incorporate this term in current semantic flow methods based

on CNNs [6, 16, 27] mainly due to a lack of differentiability

of the flow field. Recently, Zhou et al. [51] exploit cycle

consistency between flow fields, but they regress correspon-

dences directly from concatenated features from source and

target images and do not consider background clutter. In

contrast, our method establishes a differentiable flow field by

computing feature similarities explicitly while considering

background clutter.

Smoothness loss. The differentiable flow field also allows

to exploit a smoothness loss, which has been widely used in

classical energy-based approaches [20, 26, 30]. We define a

smoothness loss using the first-order derivative of the flow

fields Fs and F t as

Lsmooth =
∑

i∈{s,t}

(

1

|N i
F |

∑

p

||∇F i(p)⊙M i(p)||1

)

,

(10)

where ‖·‖
1

and ∇ are the L1 norm and the gradient opera-

tor, respectively. This regularizes (or smooths) flow fields

within foreground regions while not accounting for corre-

spondences at background.

4. Experiments
In this section we present a detailed analysis and evalua-

tion of our approach including ablation studies on different

losses and network architectures.

4.1. Implementation details

Following [41, 42], we use CNN features from ResNet-

101 [17] trained for ImageNet classification [9]. Specifically,

we use the networks cropped at conv4-23 and conv5-3

layers, respectively. This results in two feature maps of

size 20× 20× 1024 and 10× 10× 2048, respectively, for

a pair of input images of size 320 × 320, which gives a

good compromise between localization accuracy and high-

level semantics. Adaptation layers are trained with random

initialization, separately for each feature map in a residual

fashion [17]. To compute residuals, we add 5× 5 and 3× 3
convolutional layers with padding on top of conv4-23 and

conv5-3, respectively, with batch normalization [21] and

the ReLU [29]. The residuals are then added to the cor-

responding input features. With the resulting two feature

maps of size 20 × 20 × 1024 and 20 × 20 × 20482, we

compute pairwise match scores and then combine them by

element-wise multiplication, resulting in a correlation map

of size 20 × 20 × 20 × 20. We do not finetune the whole

network due to a lack of training data, and train adaptation

layers only. We empirically set the temperature parame-

ter β to 50 and standard deviation σ of Gaussian kernel kp
to 5. Other parameters for losses are fixed to all experi-

ments (λmask = 3, λflow = 16, λsmooth = 0.5). We use

a grid search to set these parameters, and choose the ones

that give the best performance on the validation split of the

PF-PASCAL dataset [15, 41]. At test time, we upsample a

flow field of size 20× 20 using bilinear interpolation.

4.2. Training

Training our network requires pairs of foreground masks

for source and target images depicting different instances

of the same object category. Although the TSS [44] and

Caltech-101 [12] datasets provide such pairs, the number

of masks is not enough to train our network [44] or there is

a lack of background clutter [12]. Our model trained with

these datasets suffers from a overfitting problem or may not

generalize well for other images containing clutter. Moti-

vated by [24, 34, 40, 42], we generate pairs of source and

target images synthetically from single images by apply-

ing random affine transformations and use the synthetically

warped pairs as training samples. Corresponding foreground

masks are also transformed with the same transformation

parameters. Contrary to [24, 34, 40, 42], our model does

not perform a parametric regression, and thus it does not

require ground-truth transformation parameters for training.

We use the Pascal VOC 2012 segmentation dataset [11]

that consists of 1,464, 1,449, and 1,456 images for training,

validation and test, respectively. We exclude 122 images

from train/validation sets that overlap with the test split in

the PF-PASCAL [15], and train our model with the corre-

sponding 2,791 images. We augment the training dataset by

2We upsample the features adapted from conv5-3 using bilinear inter-

polation.
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Type Methods
PCK (α = 0.1)

WILLOW PASCAL

H
an

d
-c

ra
ft

ed F DeepFlow [39] 0.20 0.21

F GMK [10] 0.27 0.27

F SIFTFlow [30] 0.38 0.33

F DSP [26] 0.29 0.30

F HOG+PF-LOM [15] 0.56 0.45

C
N

N
-b

as
ed

A (T) ResNet-101+CNNGeo [40] 0.68 0.68

A (T) ResNet-101+A2Net [42] 0.69 0.67

A (T+P) ResNet-101+WS-SA [41] 0.71 0.72

F (B+P) FCSS+PF-LOM [27] 0.58 0.46

F (M) ResNet-101+Ours 0.74 0.79

Table 1: Quantitative comparison with the state of the art on the

PF-WILLOW [14] and the test split of the PF-PASCAL [15, 16]

in terms of the average PCK. We measure the PCK scores with

height and width of the bounding box size. All numbers except for

the methods of [40, 41, 42] are taken from [15, 42]. Numbers in

bold indicate the best performance and underscored ones are the

second best. We denote by “F” and “A”, respectively, semantic flow

and semantic alignment methods. The characters in parentheses

are types of a supervisory signal for training; T: Transformation

parameters; P: Image pairs depicting different instances of the same

object category; B: Bounding boxes; M: Foreground masks.

horizontal flipping and color jittering. Note that we do not

use segmentation masks, provided by the Pascal VOC 2012

dataset, that specify the class of the object at each pixel. We

instead generate binary foreground masks using all labeled

objects, regardless of image categories and the number of

object, at training time. We train our model with a batch

size of 16 about 7k iterations, giving roughly 40 epochs

over the training data. We use the Adam optimizer [28]

with β1 = 0.9 and β2 = 0.999. A learning rate initially set

to 3e-5 is divided by 5 after 30 epochs. All networks are

trained end-to-end using PyTorch[37].

4.3. Results

We compare our model to the state of the art on seman-

tic correspondence including hand-crafted and CNN-based

methods with the following three benchmark datasets: PF-

WILLOW [14], PF-PASCAL [15], and Caltech-101 [12].

The results for all comparisons have been obtained from the

source code or models provided by the authors.

PF-WILLOW & PF-PASCAL. The PF-WILLOW [14]

and PF-PASCAL [15] datasets provide 900 and 1,351 image

pairs of 4 and 20 image categories, respectively, with corre-

sponding ground-truth object bounding boxes and keypoint

annotations. These benchmarks are more challenging than

other datasets [12, 44] for semantic correspondence evalua-

tion, featuring different instances of the same object class in

the presence of large changes in appearance and scene lay-

out, clutter and scale changes between objects. To evaluate

our model, we use the PF-WILLOW and the test split of the

PF-PASCAL provided by [16, 41] corresponding roughly

900 and 300 image pairs, respectively. We use the probabil-

ity of correct keypoint (PCK) [48] to measure the precision

of overall assignment, particularly at sparse keypoints of

semantic relevance. We compute the Euclidean distances

between warped keypoints using an estimated dense flow

and ground truth, and count the number of keypoints whose

distances lie within αmax(h,w) pixels, where α = 0.1 and

h and w are the height and width of the object bounding box,

respectively.

We show in Table 1 the average PCK scores for the

PF-WILLOW and PF-PASCAL datasets, and compare our

method with the state of the art including hand-crafted [10,

15, 26, 30, 39] and CNN-based methods [27, 40, 41, 42]. The

PCK scores in [40, 41, 42] are obtained by the provided mod-

els (affine + TPS). All other numbers are taken from [15, 42].

From this table, we observe four things: (1) Our model

outperforms the state of the art by a significant margin in

terms of the PCK especially for the PF-PASCAL datasets.

In particular, it shows better performance than other object-

aware methods [15, 27] that focus on establishing region

correspondences between prominent objects. A plausible

explanation is that establishing correspondences between ob-

ject proposals is susceptible to shape deformations. (2) We

can clearly see that our model gives better results than se-

mantic alignment methods [40, 41, 42] on both datasets, but

performance gain for the PF-PASCAL dataset, which typ-

ically contains pictures depicting a non-rigid deformation

and clutter (e.g., in cat and person classes), is more signifi-

cant. For example, the PCK gain over WS-SA [41] for the

PF-PASCAL (0.79 vs. 0.72) is about two times more than

that for the PF-WILLOW (0.74 vs. 0.71), indicating that

our semantic flow method is more robust to non-rigid de-

formations and background clutter than semantic alignment

approaches. (3) By comparing our model with a CNN-based

semantic flow method [27], we can see that involving a spa-

tial regularizer is significant. It focuses on designing fidelity

terms (e.g., using a contrastive loss [6]) only to learn a fea-

ture space preserving semantic similarities. This is because

of a lack of differentiability of the flow field. In contrast,

our model gives a differentiable flow field, allowing to ex-

ploit a spatial regularizer while further leveraging high-level

semantics from CNN features more specific to semantic cor-

respondence. (4) We confirm once more a finding in [31]

that CNN features trained for ImageNet classification [9]

clearly show the better ability to handle intra-class variations

than hand-crafted ones such as SIFT [32] and HOG [7].

Caltech-101. The Caltech-101 [12] dataset, originally in-

troduced for image classification, provides pictures of 101

image categories with ground-truth object masks. Unlike

the PF [14, 15] and TSS [44] datasets, it does not provide

ground-truth keypoint annotations. For fair comparison, we

use 15 image pairs, provided by [16, 41], for each object

category, and use the corresponding 1,515 image pairs for
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Source image. Target image. CNNGeo [40]. A2Net [42]. WS-SA [41]. Ours.

Figure 3: Visual comparison of alignment results between source and target images on the PF-PASCAL dataset [15]. Keypoints of the

source and target images are shown in diamonds and crosses, respectively, with a vector representing the matching error. All methods use

the ResNet-101 features. Compared to the state of the art, our method is more robust local non-rigid deformations, scale changes between

objects, and clutter. See text for details. (Best viewed in color.)

Type Methods LT-ACC IoU

H
an

d
-c

ra
ft

ed

F DeepFlow [39] 0.74 0.40

F GMK [10] 0.77 0.42

F SIFTFlow [30] 0.75 0.48

F DSP [26] 0.77 0.47

F HOG+PF-LOM [15] 0.78 0.50

F OADSC [46] 0.81 0.55

C
N

N
-b

as
ed

A (T) VGG-16+A2Net [42] 0.80 0.57

A (T) ResNet-101+CNNGeo [40] 0.83 0.61

A (T+P) ResNet-101+WS-SA [41] 0.85 0.63

F (C+P) VGG-16+SCNet-AG+ [16] 0.79 0.51

F (B+P) FCSS+PF-LOM [27] 0.83 0.52

F (M) ResNet-101+Ours 0.88 0.67

Table 2: Quantitative comparison on the Caltech-101 dataset [12].

All numbers are taken from [15, 41, 42]. Numbers in bold indicate

the best performance and underscored ones are the second best. C:

Ground-truth correspondences.

evaluation. Following the experimental protocol in [26],

we compute matching accuracy with two metrics using the

ground-truth masks: Label transfer accuracy (LT-ACC) and

the intersection-over-union (IoU) metric. Both metrics count

the number of correctly labeled pixels between ground-truth

and transformed masks using dense correspondences, where

the LT-ACC evaluates the overall matching quality while

the IoU metric focusses more on foreground objects. Fol-

lowing [41, 42], we exclude the LOC-ERR metric, since

it measures the localization error of correspondences using

object bounding boxes due to a lack of keypoint annota-

tions, which does not cover rotations, affine or deformable

transformations. The LT-ACC and IoU comparisons on the

Caltech-101 dataset are shown in Table 2. Although this

dataset provides ground-truth object masks, we do not re-

train or fine-tune our model to evaluate its generalization

ability on other datasets. From this table, we can see that

(1) our model generalizes better than other CNN-based meth-
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Mask Flow
Smoothness

PCK

consistency consistency (α = 0.1)

✓ ✗ ✗ 0.675

✗ ✓ ✗ 0.718

✓ ✓ ✗ 0.782

✓ ✓ ✓ 0.787

Table 3: Average PCK comparison of different loss functions.

ods for other images outside the training dataset; and (2)

it outperforms the state of the art in terms of the LT-ACC

and IoU, verifying once more that our model focuses on

regions containing objects while filtering out background

clutter, even without using object proposals [15, 16, 27, 46]

or an inlier counting [41].

Qualitative comparison. Figure 3 shows a visual compari-

son of alignment results between source and target images

with the state of the art on the test split of the PF-PASCAL

dataset [15]. We can see that our method is robust to a local

non-rigid deformation (e.g., bird’s beaks and horse’s legs in

the first two rows), scale changes between objects (e.g., front

wheels in the third row), and clutter (e.g., wheels in the last

row). In particular, the fourth example clearly shows that our

method gives more discriminative correspondences, cutting

off matches for non-common objects. For example, it does

not establish correspondences between a person and back-

ground regions in the source and target images, respectively,

while others fail to cut off matches on these regions. We

can also see that all methods do not handle occlusion (e.g., a

bicycle saddle in the last row).

4.4. Ablation study

We show an ablation analysis on different components

and losses in our model. We measure PCK scores with height

and width of the bounding box size, and report the results on

the test split of PF-PASCAL dataset [15, 16, 41].

Training loss. We show the average PCK for three vari-

ants of our model in Table 3. The mask consistency term

encourages establishing correspondences between promi-

nent objects. Our model trained with this term only, how-

ever, may not yield spatially distinctive correspondences,

resulting in the worst performance. A flow consistency

term, which spreads flow fields over foreground regions,

overcomes this problem, but it does not differentiate corre-

spondences between background and objects. Accordingly,

these two terms are complementary each other and exploit-

ing both significantly boosts the performance of our model

from 0.675/0.718 to 0.782, already outperforming the state

of the art by a large margin (see Table 1). An additional

smoothness term further boosts performance to 0.787.

Network architecture. Table 4 compares the performance

of networks with different components in terms of the aver-

age PCK. The baseline models in the first three rows com-

pute matching scores using both features from conv4-23

Adaptation Multi-level Argmax PCK

layer feature Train Test (α = 0.1)

✗ ✓ - H 0.458

✗ ✓ - S 0.088

✗ ✓ - KS 0.284

✓ ✗ S H 0.725

✓ ✗ S S 0.717

✓ ✗ KS KS 0.750

✓ ✓ S H 0.768

✓ ✓ S S 0.762

✓ ✓ KS KS 0.787

Table 4: Average PCK comparison of different components. We

denote by “H”, “S”, and “KS” hard, soft, and kernel soft argmax

operators, respectively.

and conv5-3, and estimate correspondences with different

argmax operators. They do not involve any training similar

to [31] that uses off-the-shelf CNN features for semantic

correspondence. We can see that applying the soft argmax

directly to the baseline model degrades performance severely,

since it is highly susceptible to multi-modal distributions.

The results in the next three rows are obtained with a single

adaptation layer on top of conv4-23. This demonstrates

that the adaptation layer extracts features more adequate for

pixel-wise semantic correspondences, boosting performance

of all baseline models significantly. Particularly, we can see

that the kernel soft argmax outperforms others by a large mar-

gin, since it enables training our model end-to-end including

adaptation layers at a sub-pixel level and is less susceptible

to multi-modal distributions. The last three rows suggest that

exploiting deeper level of features is important, and using

all components with the kernel soft argmax performs best in

terms of the average PCK.

5. Conclusion
We have presented a CNN model for learning an object-

aware semantic flow end-to-end, and introduced the corre-

sponding CNN architecture, dubbed SFNet, with a novel

kernel soft argmax layer that outputs differential matches at

a sub-pixel level. We have proposed to use binary foreground

masks directly to train a model for learning pixel-to-pixel cor-

respondences that are widely available and can be obtained

easily compared to pixel-level annotations. The ablation

studies clearly demonstrate the effectiveness of each compo-

nent and loss in our model. Finally, we have shown that the

proposed method is robust to distracting details and focuses

on establishing dense correspondences between prominent

objects, outperforming the state of the art on standard bench-

marks by a significant margin.
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