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Abstract

Visual object recognition under situations in which the

direct line-of-sight is blocked, such as when it is occluded

around the corner, is of practical importance in a wide

range of applications. With coherent illumination, the light

scattered from diffusive walls forms speckle patterns that

contain information of the hidden object. It is possible

to realize non-line-of-sight (NLOS) recognition with these

speckle patterns. We introduce a novel approach based

on speckle pattern recognition with deep neural network,

which is simpler and more robust than other NLOS recogni-

tion methods. Simulations and experiments are performed

to verify the feasibility and performance of this approach.

1. Introduction

Object recognition is essential for various applications

such as face recognition, industrial inspection, medical

imaging, and autonomous driving. One intriguing area of

research is the recognition of objects without direct line-of-

sight [1, 3, 4, 13, 17, 19, 20, 27, 28, 39]. The ability to

carry out recognition without line-of-sight has practical sig-

nificance; for example, in autonomous driving, if the imag-

ing system can recognize pedestrians and vehicles that are

“hidden” around the corner or behind other obstacles, the

vehicle can prevent potential hazards and greatly increase

the safety level of driving.

In this paper, we report an approach to perform recog-

nition without direct line-of-sight by exploiting the coher-

ent light. Objects illuminated by coherent light sources

such as lasers form speckle patterns due to interference.

In a non-line-of-sight situation, for example, as shown

in Figure 1, the object itself is occluded from the cam-
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Figure 1. Object recognition without direct line-of-sight. Coherent

light source such as laser is used to illuminate the hidden object,

which is a car in this example. Light scattered by the object forms

speckle patterns on the wall which is captured by the camera for

recognition.

era; however, the speckle patterns on the wall are a re-

sult of the interference of light scattered owing to the ob-

ject [2, 15, 18, 23, 29, 32, 35, 36, 38, 41]. The informa-

tion in these patterns is not obvious to a human, but with an

appropriate deep network, one can retrieve the information

necessary to identify the object. Compared to current com-

puter vision algorithms that are primarily based on direct

visual images, this approach is applicable to a wide range

of situations in which visual images of the objects cannot

be obtained.

Our primary contribution is a novel NLOS object recog-

nition method that uses the information contained in speckle

patterns under coherent illumination. We use this method to

realize direct recognition of object without line-of-sight by

employing inexpensive electronic devices. In addition to the
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simplest situation of scattering from one diffusive wall, we

demonstrate the feasibility of this method in several more

challenging scenarios: (1) when the light source and the

camera locate at the same side so that neither of them has

direct line-of-sight with the object; this allows for wider ap-

plication of our method in which the object space is not

accessible; (2) when the wall is randomly rotated after each

measurement; this shows that our method is independent of

the specific textures of the wall and is robust; (3) when there

are two scatterings from two diffusive walls before the light

reaches the camera; this shows the potential of our method

to allow multiple scatterings in a complex scene.

We quantitatively evaluate the performance of our pre-

liminary setups using both experiments and simulations on

hand-written digits (MNIST) as well as much more com-

plex visual objects (human body posture) in the aforemen-

tioned scenarios. We demonstrate recognition accuracy of

over 90% with MNIST dataset under various experimental

and simulation conditions. For human body posture dataset,

an accuracy of 78.18% is achieved for classification of 10

body posture categories, higher than the three-way classifi-

cation result of body posture reported in [30].

2. Related Work

Recently, a few interesting works have demonstrated the

formation of images of objects that are without direct line-

of-sight. These methods overcome the traditional limita-

tions of imaging optics, which cannot form clear images in

the absence of direct line-of-sight conditions. These experi-

ments are usually extensive, requiring non-traditional mea-

surement of light, for example, by measuring time-of-flight

(TOF) or in a setup that preserves the memory effect. How-

ever, imaging is not always needed for recognition. To per-

form imaging without line-of-sight, one would require ex-

pensive hardware and suffer from practical limitations such

as a narrow field-of-view. In this study, we perform di-

rect recognition without imaging the object. This aspect

allows our method to overcome some of the critical prac-

tical limitations of the related imaging methods. The pro-

posed method requires hardware (mostly consumer-grade

electronics) that is far less expensive than that required for

the TOF-based NLOS imaging [16, 24, 25, 26, 27, 33, 37,

39, 40], and the method is more robust than the memory-

effect based imaging techniques that have a limited field-of-

view [11, 21]. Moreover, a recent publication [31] also uses

only ordinal digital cameras but would require very specific

scene setup (an accidental occlusion) to obtain better per-

formance.

2.1. Imaging Based on Time­of­Flight

NLOS imaging with TOF has recently received consid-

erable attention. It is a range imaging system that resolves

the distance based on measuring the TOF of a light signal

between the object and the camera for each point of the im-

age. The mechanism of TOF measurement without line-

of-sight is as follows [39]: A laser pulse hits a wall that

scatters the light diffusely to a hidden object; then, the light

returns to the wall and is captured by a camera. By chang-

ing the position of the laser beam on the wall with a set

of galvanometer-actuated mirrors, the shape of the hidden

object can be determined.

Although TOF measurements without line-of-sight can

recover the hidden object with an accuracy of the order of

centimeters, it has some disadvantages. For example, it

requires substantial resources such as single-photon detec-

tors and nanosecond-pulsed lasers, which could cost tens

of thousands of dollars. In contrast, our method only uses

standard lasers and CMOS image sensors, which cost only

some thousands of dollars. TOF also takes minutes for data

acquisition and image reconstruction, while our approach

is only a single-shot measurement that takes less than one

second.

2.2. Imaging Based on Speckle Correlation (Mem­
ory Effect)

Imaging via speckle correlation is another method that

was recently developed. When a rough surface is illumi-

nated by a coherent light (e.g., a laser beam), a speckle pat-

tern is observed in the image plane. The key principle of this

method is that the auto-correlation of the speckle pattern is

essentially identical to the original object’s auto-correlation,

as if it is imaged by a perfect diffraction-limited optical sys-

tem that has replaced the scattering medium. Consequently,

the object’s image can be obtained from its auto-correlation

by an iterative phase retrieval algorithm [17]. In particu-

lar, for seeing without line-of-sight, the light back-scattered

from a diffusive wall is used to image the hidden objects.

For this method to work, the auto-correlation must be

preserved, which limits the field-of-view. To use auto-

correlation to recover an image, the image must be very

sparse. Compared to this imaging technique, our approach

is more robust. It does not depend on the scattering prop-

erty of the wall and a single neural network can be trained

to work for many different types of walls. It also does not

require the object to be sparse, and there is no limit on the

field-of-view.

2.3. Imaging Based on Holographic Approach

In 2014, Singh et al. proposed a holographic approach

for visualizing objects without line-of-sight, based on the

numerical reconstruction of 3D objects by digital hologra-

phy in which a hologram is formed on a reflectively scat-

tering surface [34]. A coherent light source is divided into

two parts: One beam illuminates the object, while the other

is set as the reference beam. The interference between the

two beams forms an aerial hologram immediately in front of
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the scattering surface. Then, the hologram is recorded by a

remote digital camera that focuses on the scattering surface.

This holographic technique requires a reference beam for

holographic recording, which is particularly challenging to

implement in practical scenarios.

3. Method

3.1. Preliminary Knowledge

Light carries information in terms of not only inten-

sity but also phase, frequency, and polarization, among

other factors. Traditional imaging techniques utilize only

the intensity information by using photon-electron conver-

sion through active semiconductor materials. Ordinary light

sources emit incoherent light; therefore, the phase of each

wave packet is random, and it cannot be used to retrieve

scene information. Considering an object with two points

reflecting incoherent light, the total intensity I at the image

plane is the sum of the intensity of the two point sources I1
and I2, and the phase information is effectively lost:

I = I1 + I2. (1)

The light emitted by coherent light sources such as lasers

can form interference patterns. The total intensity with co-

herent illumination contains a phase term, which is a func-

tion of the phase difference ∆φ; it is highly dependent on

the relative locations of the two point sources, and results in

interference patterns [10]:

I = I1 + I2 + 2
√

I1I2 · cos∆φ. (2)

An object illuminated by either incoherent or coherent

light can be considered as a secondary light source. For

incoherent light, a pixel at location ~r on the image plane

captures light from all over the object:

I(~r) =

∫

∣

∣

∣
E(~R,~r)

∣

∣

∣

2

· d~R, (3)

where E(~R,~r) is the amplitude distribution at the image

plane from a point source located at ~R on the object. The

phase variation of different pathways does not affect the in-

tensity. Traditional imaging approaches using incoherent

light therefore do not utilize the phase information of light.

Without direct line-of-sight to perform imaging, the object

can hardly be recognized under incoherent illumination.

For coherent light, the light intensity is given by

I(~r) =

∣

∣

∣

∣

Re

[
∫

E(~R,~r) · exp(iφ(~R,~r)) · d~R

]
∣

∣

∣

∣

2

, (4)

where φ(~R,~r) is the phase variation at the image plane

from a point source located at ~R on the object, which is

highly dependent on the object geometry and its location

with respect to the image plane. Objects with a complex

surface geometry at the wavelength scale therefore generate

complex, seemingly random interference patterns I(~r) —

more specifically, speckle patterns, a term commonly used

in laser studies. The phase information is represented by the

bright and dark distributions of light intensity in the speckle

pattern. Therefore, the speckle pattern I(~r) contains infor-

mation of the object, and an appropriate deep learning net-

work can effectively use such information to perform object

recognition.

Figure 2. Speckle patterns of hand-written digits from simulation.

The images in the top row are original images of hand-written dig-

its from the MNIST dataset, and the images in the bottom row are

speckle patterns corresponding to the digits in the top row.

Consider the example of the MNIST hand-written dig-

its. Speckle images of several different hand-written digits

are shown in Figure 2. As described in Equation 4, each

point on a hand-written digit forms a secondary point source

under coherent illumination, whose responses at the image

plane are integrated to form the speckle patterns shown in

the bottom row of Figure 2. Those speckle patterns are in-

tensity distributions that can be captured by traditional im-

age sensors. After training with tens of thousands of speck-

les from different hand-written digits, the deep network is

able to find meaningful invariant features among speckles

generated from the same digit with various hand-written

styles, and infer the properties of these objects that have

interacted with the light during its propagation. In other

words, with well-trained deep networks, one can retrieve

the information from speckle patterns to identify the object.

3.2. Simulation and Experiment Methods

We supported the above theory by performing a set of

experiments and simulations. To recognize objects without

line-of-sight, the simplest situation is shown in Figure 3.

The direct line-of-sight between the object and the cam-

era is blocked by a wall; therefore, direct images cannot
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be formed through traditional imaging systems. However,

in many situations, it is not difficult to find another surface

(usually a diffusive surface) that can reflect part of the light

from the object to the camera. A typical example is another

wall, which is located at a convenient place, as depicted in

Figure 3. Under coherent illumination, the light scattered

off the object forms speckle patterns on the “relay” wall,

which is captured by the camera and understood by the deep

network. The coherent illumination covers the object to be

detected.

Figure 3. Schematic of object recognition with one wall as the

scattering surface. The wall on the left side blocks the direct line-

of-sight between the object and the camera.

Both the simulation and the experiment were performed

under this scheme. In the simulation, the objects were mod-

eled as opaque boards with the transparent features of the

digits allowing light to pass. Coherent illumination was

modeled as a simple plane wave. The Fourier optics method

was used to simulate the light propagation process. The

wall was modeled as a scattering object with pixelated ran-

dom phase modulation. The lens was modeled as a phase

modulation element with perfect image forming ability.

In the experiment, as shown in Figure 4, the object was a

reflective LCD screen (2.5 cm × 2.5 cm) displaying the im-

ages of hand-written digits from the MNIST dataset. The

camera was an off-the-shelf camera (Thorlabs CS2100M

CMOS) with a lens (Thorlabs MVL35M23) focused on the

wall, which is an aluminum board (30.5 cm × 30.5 cm)

painted with white egg-shell wall paint to emulate a real in-

door diffusive wall surface. A HeNe laser (632.8 nm, Thor-

labs HNL150R) was used to provide coherent illumination

to the object, which covered the whole LCD screen. An-

other wall was installed between the camera and the LCD

to completely block the direct line-of-sight between them.

The distances between the object, camera and the wall are

approximately 20 cm.

Figure 4. Experimental setup for object recognition with one wall.

Figure 5. Schematic of object recognition with the coherent light

source on the same side as the camera.

In real application, however, it is often impossible to di-

rectly access the occluded object to provide coherent illu-

mination. One alternative way is to use the “relay” wall to

reflect the coherent light into the “object” space, as shown

in Figure 5. This scheme allows for much wider application

of this technology. To verify its feasibility, we performed

the simulation as follows. The light source was modeled

as a point source that propagates to the wall; the light is

scattered, and then it propagates to the object. The subse-

quent steps are similar to the simulation process described
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above. In practice, the patch of wall surface that the cam-

era is pointed at should be away from the laser spot on the

wall to avoid potential saturation of the sensor from the high

intensity laser beam.

Theoretically, the speckle pattern on the wall is deter-

mined to the first order by the object scattering the light, and

it should stay relatively invariant within a range of varying

wall surface conditions. The surface condition might mod-

ulate the speckle patterns and appear as increased noise. To

verify the feasibility, we designed an experiment in which

the wall is rotating, as shown in Figure 6. In the experiment,

the wall was a round plastic plate painted with white egg-

shell wall paint. The camera lens was focused on the outer

rim of the plastic plate. We rotated the wall by a random de-

gree after every capture so that each instance of the object

was effectively reflected by a different random patch of the

wall. This experiment tested the robustness of this scheme.

Figure 6. Schematic of object recognition with a rotating wall.

We further extended the capability of this scheme to situ-

ations with two diffusive walls, as shown in Figure 7. In the

simulation, the second wall was added after the first wall,

and the camera lens focused on the second wall that was di-

rectly visible to the camera. This opened up the possibility

to use this technology in much more complex environments

in which the light from the object undergoes multiple reflec-

tions before reaching the camera.

3.3. Data Preprocessing

Data (speckle patterns) from both the simulation and the

experiment need to be preprocessed before training with the

deep network. (1) Due to computational limitations, we

only cropped a small part of the output speckle images.

This process reduces both the number of network param-

eters and the required data size for training without overfit-

Figure 7. Schematic of object recognition with two walls.

ting [22]. Because each part of the output speckle image

contains information of the whole object, even a small part

of the speckle image can be used for object recognition. In

other words, image cropping does not affect the final recog-

nition results. (2) In a real environment for recognition,

there could be various disturbances arising from tempera-

ture variation, vibration, drifting, etc. Therefore, adding

simulated random noises to the speckle patterns could in-

crease the recognition accuracy. (3) The speckle images

were normalized between 0 and 1. Typically, two datasets

were used in this study: MNIST dataset of hand-written dig-

its and human body posture dataset.

In the experiment, because the LCD screen had only the

on and off states, the images of the hand-written digits from

the MNIST dataset were binarized for display on the LCD

screen. The first 10,000 hand-written digits in the MNIST

were used in both the experiments and the simulations.

The posture dataset was preprocessed before the simu-

lation by using DeepLab-v3 [6, 7] as a human detector to

remove the background. It was also converted to the gray

scale.
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Figure 8. Human body posture classification using ResNet-18.

3.4. Deep Networks for Speckle Pattern Recognition

We used deep networks to dig the semantic information

in the speckle pattern images to relate them to the original

objects, though the images were not recognizable by hu-

mans. In our experiments and simulations, the object recog-

nition problems were typical image classification problems.

Thus, we could follow the common practices in computer

vision to train and test the classification networks. We ap-

plied two networks, a simple network (termed SimpleNet)

and ResNet-18 [5, 8, 12].

SimpleNet contains 4 convolutional layers with ReLu ac-

tivation. The first two convolutional layers have 16 3×3 fil-

ters (with 2×2 max pooling), and the third and fourth con-

volutional layers have 32 3×3 filters (with 2×2 max pool-

ing). A fully connected layer with 1024 neurons is used

right before the output layer of 10 neurons for 10 digits.

SimpleNet has high training and testing speed and it was

used in our MNIST experiments. The speckle patterns were

cropped to 200×200 and fed into SimpleNet. Among the

10,000 samples, a randomly chosen subset of 95% of the

samples were used for training and the remaining 5% were

used for testing.

ResNet is widely applied in understanding visual im-

ages. Due to its unique residual connection design shown

in Figure 8, it is easy to train very deep residual networks.

We use the ImageNet pretrained ResNet models which are

publicly available in PyTorch [9]. The last full connection

layer was replaced with 10 neurons for 10 class human body

posture classifications. An input speckle pattern image was

first resized to 256×256; then randomly cropped 224×224

patches from it were used in training. For testing, a speckle

pattern image was directly resized to 224×224 and then fed

into ResNet. We chose ResNet-18 for its high-speed, high-

performance and good generalization ability.

4. Experiments

4.1. Experimental Results for MNIST

We first used the MNIST dataset to demonstrate its fea-

sibility with the simplest situation where the light scattered

off an object reflects only once before reaching the camera,

as shown in Figure 3. Both an experiment and a simula-

tion were performed. Examples of speckle images on the

wall from the experiment are shown in Figure 9. All images

are full of speckles, indicating strong scattering and inter-

ference effects. The deep network used in the experiment

is SimpleNet defined in Section 3.4. Despite the lack of a

direct line-of-sight, the recognition accuracy in the experi-

ment and the simulation are 95% and 97% respectively. As

expected, the experiment has slightly lower accuracy, likely

due to noise, of which there were multiple sources, includ-

ing image sensor noise, ambient light, temperature fluctua-

tion, vibration, and movement of each element used in the

experiment which could cause speckle pattern drifting.

Figure 9. Speckle patterns of different hand-written digits captured

on the CMOS image sensor in the experiment.

To demonstrate the feasibility of having a laser and a

camera on the same side of the blocking wall, as shown

in Figure 5, we performed a simulation using the MNIST

data. In this case neither the light source nor the detec-

tor had a direct line-of-sight of the object. This arrange-

ment is much more widely applicable than the previous sit-
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uation. Simulation shows that the recognition accuracy is

97%, which is not very different from that in the previous

case. In the experimental demonstration, the light intensity

of the laser will be greatly reduced after it diffusively re-

flects from the wall. Further, the signal-to-noise ratio could

be much smaller and we expect the recognition accuracy to

decrease. It would, however, require additional engineering

effort to achieve satisfying performance. Nonetheless, this

simulation results demonstrate the possibility of having the

laser and detector on the same side, which opens up oppor-

tunities for a wide range of applications.

To demonstrate the robustness of our method, we per-

formed an experiment where the wall is rotated by a random

degree after each measurement and every example of the

object is effectively reflected from a different patch on the

wall, as shown in Figure 6. Recognition accuracy is 91%,

slightly lower than that for a still wall, but still significantly

high. It shows that this configuration of NLOS recognition

is independent of the specific textures of the wall.

Furthermore, we extended the simulation to add another

diffusive wall to the setup, as shown in Figure 7. This in-

creases the complexity of the scene. The recognition ac-

curacy is 97%, similar to the situation of having only one

wall. The simulation results demonstrate the power of this

scheme, which potentially allows object recognition after

multiple reflections in a complex scene.

A summary of the recognition results of the experiments

and the simulations using the MNIST dataset is shown in

Table 1.

4.2. Experimental Results for Human Body Posture

Figure 10. Images from the human body posture dataset showing

the same posture of the 12 different human subjects. The related

speckle patterns obtained via simulation are shown in the bottom

rows.

The MNIST dataset is relatively simple to classify. Com-

plex objects with more detailed features and greater varia-

tions in the shape could result in more challenges to the

recognition task. Here, we used human body posture as an

example to demonstrate the recognition of complex objects.

We performed a simulation following the scheme shown in

Figure 3 with one still wall and using the human body pos-

ture dataset. The dataset contains 10 posture categories, and

the image data is collected from 12 human subjects [14].

Images in this dataset contain much more complex features

of the human body than the hand-written digits, and the

same body posture shows appreciable variations among dif-

ferent human subjects, as shown in Figure 10. The recog-

nition task was therefore much harder compared to the sit-

uation using the MNIST dataset. We extracted the human

body posture data using a DeepLab-v3 person segmenta-

tion model [6, 7] to remove the background, based on the

assumption that in real applications the background is of-

ten at a distance from the object to be recognized and there-

fore, light scattered from the object will have a larger impact

on the speckle pattern on the wall. We also converted the

color images to the gray scale because the coherent source

is monochromatic.

Figure 11. Images from the human body posture dataset showing

the 10 different postures of the same human subject. The related

speckle patterns obtained via simulation are shown in the bottom

rows.

Figure 11 shows the representative speckle patterns sim-

ulated from the different postures. Similar to the case of the

MNIST hand-written digits, the speckle patterns from the

same category of postures had some meaningful invariant

features which could be used for recognition. Those speckle

images were trained and tested using the ResNet-18 net-
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Experiments Recognition Accuracy

One wall (simulation) 0.97

One wall (experiment) 0.95

One rotating wall (experiment) 0.91

One wall, laser and camera on the same side (simulation) 0.97

Two walls (simulation) 0.97

Table 1. Deep network recognition accuracy when using MNIST data. Recognition accuracy from experiments and simulations are well

above 90%.

work. The training was performed on 11 out of 12 human

subjects and tested on the remaining one human subject.

This was repeated 12 times and the recognition rate was

taken as the average of these 12 experiments. We achieved

an average recognition accuracy of 78.18%, which is higher

than the three-way human body posture classification result

reported in [30]. The recognition rate could be further im-

proved by increasing the number and diversity of human

subjects. The confusion matrix of the 10 different postures

(labels 0-9) is shown in Figure 12. These results demon-

strate the potential of our approach to recognize complex

objects.

Figure 12. Deep network recognition accuracy and confusion ma-

trix for the 10 body postures.

5. Conclusions

We demonstrated direct object recognition without line-

of-sight. Direct object recognition does not require forming

a clear image, thereby greatly reduces the complexity of the

system hardware. Such recognition is enabled by optical co-

herence, which is provided by illuminating an object with a

laser. The resulting speckle pattern from the scattered light

is analyzed using a deep-learning algorithm.

To verify the feasibility and performance of this new

approach, we quantitatively evaluated NLOS recognition

based on simulations and experiments with MNIST hand-

written digits and human body postures. The results show

that the recognition accuracy can be well above 90% for

the MNIST data in various scenarios, and 78.18% for the

human body posture data. That the final recognition result

was highly dependent on the deep-learning algorithm indi-

cates that there are many opportunities to further improve

the recognition accuracy with additional optimization of the

deep network model, especially for objects with complex

features.

In addition to the advantages of this new approach, there

are limitations which afford opportunities for future work.

For example, noises (e.g. vibration) in the experiment could

cause drifting of the speckle patterns, which would re-

duce the recognition accuracy. Moreover, the light intensity

could be greatly reduced after it diffusively reflects from the

wall, resulting in a much lower signal-to-noise ratio and po-

tentially lower recognition accuracy. A filter could be used

to reject ambient light. To increase working distance and

area, a laser with a diverging beam could be used, such as

edge-emitting diode laser. More robust hardware and deep-

learning algorithm will be needed to further improve the

performance.

In brief, this NLOS object recognition using coherent il-

lumination opens a new gate to situations where direct line-

of-sight is blocked, and provides plenty of opportunities for

research and application.
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Adrian Jarabo, Min H. Kim, Xin Tong, and Diego Gutierrez.

Deeptof: Off-the-shelf real-time correction of multipath in-

terference in time-of-flight imaging. ACM Trans. Graph.,

36(6):219:1–219:12, Nov. 2017. 2

[25] N. Naik, A. Kadambi, C. Rhemann, S. Izadi, R. Raskar,

and Sing Bing Kang. A light transport model for mitigat-

ing multipath interference in time-of-flight sensors. In 2015

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), pages 73–81, June 2015. 2

[26] Nikhil Naik, Shuang Zhao, Andreas Velten, Ramesh Raskar,

and Kavita Bala. Single view reflectance capture using mul-

tiplexed scattering and time-of-flight imaging. ACM Trans.

Graph., 30(6):171:1–171:10, Dec. 2011. 2

[27] M. O’Toole, D. B. Lindell, and G. Wetzstein. Confocal non-

line-of-sight imaging based on the light-cone transform. Na-

ture, 555:338–341, 2018. 1, 2

[28] R. Pandharkar, A. Velten, A. Bardagjy, E. Lawson, M.

Bawendi, and R. Raskar. Estimating motion and size of mov-

ing non-line-of-sight objects in cluttered environments. In

CVPR 2011, pages 265–272, June 2011. 1

[29] G. Satat, B. Heshmat, D. Raviv, and R. Raskar. All photons

imaging through volumetric scattering. Sci. Rep., 6:33946,

2016. 1

[30] Guy Satat, Matthew Tancik, Otkrist Gupta, Barmak Hesh-

mat, and Ramesh Raskar. Object classification through scat-

tering media with deep learning on time resolved measure-

ment. Opt. Express, 25(15):17466–17479, Jul 2017. 2, 8

[31] C. Saunders et al. Computational periscopy with an ordinary

digital camera. Nature, 565:472–475, 2019. 2

[32] Y. C. Shih, A. Davis, S. W. Hasinoff, F. Durand, and W. T.

Freeman. Laser speckle photography for surface tampering

detection. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 33–40, June 2012. 1

[33] Shikhar Shrestha, Felix Heide, Wolfgang Heidrich, and Gor-

don Wetzstein. Computational imaging with multi-camera

time-of-flight systems. ACM Trans. Graph., 35(4):33:1–

33:11, July 2016. 2

11745



[34] Alok Kumar Singh, Dinesh N. Naik, Giancarlo Pedrini, Mit-

suo Takeda, and Wolfgang Osten. Looking through a diffuser

and around an opaque surface: A holographic approach. Opt.

Express, 22(7):7694–7701, Apr 2014. 2

[35] Ayan Sinha, Justin Lee, Shuai Li, and George Barbastathis.

Lensless computational imaging through deep learning. Op-

tica, 4(9):1117–1125, Sep 2017. 1

[36] Brandon M. Smith, Matthew O’Toole, and Mohit Gupta.

Tracking multiple objects outside the line of sight using

speckle imaging. In The IEEE Conference on Computer Vi-

sion and Pattern Recognition (CVPR), June 2018. 1

[37] S. Su, F. Heide, R. Swanson, J. Klein, C. Callenberg, M.

Hullin, and W. Heidrich. Material classification using raw

time-of-flight measurements. In 2016 IEEE Conference on

Computer Vision and Pattern Recognition (CVPR), pages

3503–3511, June 2016. 2

[38] Eadan Valent and Yaron Silberberg. Scatterer recognition

via analysis of speckle patterns. Optica, 5(2):204–207, Feb

2018. 1

[39] A. Velten, T. Willwacher, O. Gupta, A. Veeraraghavan, M. G.

Bawendi, and R. Raskar. Recovering three-dimensional

shape around a corner using ultrafast time-of-flight imaging.

Nat. Commun., 3:745, 2012. 1, 2

[40] D. Wu, M. O’Toole, A. Velten, A. Agrawal, and R. Raskar.

Decomposing global light transport using time of flight

imaging. In 2012 IEEE Conference on Computer Vision and

Pattern Recognition, pages 366–373, June 2012. 2

[41] K. M. Yoo, Qirong Xing, and R. R. Alfano. Imaging ob-

jects hidden in highly scattering media using femtosecond

second-harmonic-generation cross-correlation time gating.

Opt. Lett., 16(13):1019–1021, Jul 1991. 1

11746


