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Abstract

Pruning methods have shown to be effective at reduc-

ing the size of deep neural networks while keeping accu-

racy almost intact. Among the most effective methods are

those that prune a network while training it with a spar-

sity prior loss and learnable dropout parameters. A short-

coming of these approaches however is that neither the size

nor the inference speed of the pruned network can be con-

trolled directly; yet this is a key feature for targeting de-

ployment of CNNs on low-power hardware. To overcome

this, we introduce a budgeted regularized pruning frame-

work for deep CNNs. Our approach naturally fits into tra-

ditional neural network training as it consists of a learn-

able masking layer, a novel budget-aware objective func-

tion, and the use of knowledge distillation. We also provide

insights on how to prune a residual network and how this

can lead to new architectures. Experimental results reveal

that CNNs pruned with our method are more accurate and

less compute-hungry than state-of-the-art methods. Also,

our approach is more effective at preventing accuracy col-

lapse in case of severe pruning; this allows pruning factors

of up to 16× without significant accuracy drop.

1. Introduction
Convolutional Neural Networks (CNN) have proven to

be effective feature extractors for many computer vision

tasks [12, 15, 18, 31]. The design of several CNNs involve

many heuristics, such as using increasing powers of two as

the number of feature maps, or width, of each layer. While

such heuristics allow achieving excellent results, they may

be too crude in situations where the amount of compute

power and memory is restricted, such as with mobile plat-

forms. Thus arises the problem of finding the right number

of layers that solve a given task while respecting a budget.

Since the number of layers depends highly on the effective-

ness of the learned filters (and their combination), one can-

not determine these hyper-parameters a priori.

Convolution operations constitute the main computa-

tional burden of a CNN. The execution of these operations

benefit from a high degree of parallelism, which requires

them to have regular structures. This implies that one can-

not remove isolated neurons from a CNN filter as they must

be full grids. To achieve the same effect as removing a neu-

ron, one can zero-out its weights. While doing this reduces

the theoretical size of the model, it does not reduce the com-

putational demands of the model nor the amount of feature

map memory. Therefore, to accelerate a CNN and reduce

its memory footprint, one has to rely on structured sparsity

pruning methods that aim at reducing the number of feature

maps and not just individual neurons.

By removing unimportant filters from a network and re-

training it, one can shrink it while maintaining good perfor-

mance [10, 19]. This can be explained by the following hy-

pothesis: the initial value of a filter’s weights is not guaran-

teed to allow the learning of a useful feature; thus, a trained

network might contain many expendable features [7].

Among the structured pruning methods, those that im-

plement a sparsity learning (SL) framework have shown

to be effective as pruning and training are done simulta-

neously [1, 17, 21, 22, 24, 27]. Unfortunately, most SL

methods cannot prune a network while respecting a neuron

budget imposed by the very nature of a device on which the

network shall be deployed. As of today, pruning a network

while respecting a budget can only be done by trial-and-

error, typically by training multiple times a network with

various compression hyperparameters.

In this paper, we present a SL framework which allows

learning and selecting filters of a CNN while respecting a

neuron budget. Our main contributions are:

• We present a novel objective function which includes

a variant of the log-barrier [2] function for simultane-

ously training and pruning a CNN while respecting a

total neuron budget;

• We propose a variant of the barrier method [2] for op-

timizing a CNN;

• We demonstrate the effectiveness of combining SL and

knowledge distillation [14];

• We empirically confirm the existence of the auto-

matic depth determination property of residual net-

works pruned with filter-wise methods, and give in-

sights on how to ensure the viability of the pruned net-

work by preventing “fatal pruning”;
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• We propose a new mixed-connectivity block which

roughly doubles the effective pruning factors attain-

able with our method.

2. Previous Works

Compressing neural networks without affecting too

much their accuracy implies that networks are often over-

parametrized. Denil et al. [5] have shown that typical neural

networks are over-parametrized; in the best case of their ex-

periments, they could predict 95% of the network weights

from the others. Recent work by Frankle et al. [7] sup-

port the hypothesis that a large proportion (typically 90%)

of weights in standard neural networks are initialized to a

value that will lead to an expendable feature. In this sec-

tion, we review six categories of methods for reducing the

size of a neural network.

Neural network compression aims to reduce the stor-

age requirements of the network’s weights. In [6, 16],

low-rank approximation through matrix factorization, such

as singular-value decomposition, is used to factorize the

weight matrices. The factors’ rank is reduced by keeping

only the leading eigenvalues and their associated eigenvec-

tors. In [8], quantization is used to reduce the storage taken

by the model; both scalar quantization and vector quantiza-

tion (VQ) have been considered. Using VQ, a weight matrix

can be reconstructed from a list of indices and a dictionary

of vectors. Thus, practical computation savings can be ob-

tained. Unfortunately, most network compression methods

do not decrease the memory and compute usage during in-

ference.

Neural network pruning consists of identifying and re-

moving neurons that are not necessary for achieving high

performance. Some of the first approaches used the second-

order derivative to determine the sensitivity of the network

to the value of each weight [19, 11]. A more recent,

very simple and effective approach selects which neurons

to remove by thresholding the magnitude of their weights;

smaller magnitudes are associated with unimportant neu-

rons [10]. The resulting network is then finetuned for better

performance. Nonetheless, experimental results (c.f. Sec-

tion 5) show that variational pruning methods (discussed

below) outperform the previously mentioned works.

Sparsity Learning (SL) methods aim at pruning a net-

work while training it. Some methods add to the train-

ing loss a regularization function such as L1 [21], Group

LASSO [33], or an approximation of the L0 norm [22, 28].

Several variational methods have also been proposed [1,

17, 27, 24]. These methods formalize the problem of

network pruning as a problem of learning the parameters

of a dropout probability density function (PDF) via the

reparametrization trick [17]. Pruning is enforced via a spar-

sity prior that derives from a variational evidence lower

bound (ELBO). In general, SL methods do not apply an ex-

plicit constraint to limit the number of neurons used. To

enforce a budget, one has to turn towards budgeted pruning.

Budgeted pruning is an approach that provides a di-

rect control on the size of the pruned network via some

“network size” hyper-parameter. MorphNet [9] alternates

between training with a L1 sparsifying regularizer and ap-

plying a width multiplier to the layer widths to enforce the

budget. Contrary to our method, this work does not lever-

age dropout-based SL. Budgeted Super Networks [32] is

a method that finds an architecture satisfying a resource

budget by sparsifying a super network at the module level.

This method is less convenient to use than ours, as it re-

quires “neural fabric” training through reinforcement learn-

ing. Another budgeted pruning approach is “Learning-

Compression” [4], which uses the method of auxiliary co-

ordinates [3] instead of back-propagation. Contrary to this

method, our approach adopts a usual gradient descent opti-

mization scheme, and does not rely on the magnitude of the

weights as a surrogate of their importance.

Architecture search (AS) is an approach that led to ef-

ficient neural networks in terms of performance and param-

eterization. Using reinforcement learning and vast amounts

of processing power, NAS [35] have learned novel archi-

tectures; some that advanced the state-of-the-art, others that

had relatively few parameters compared to similarly effec-

tive hand-crafted models. PNAS [20] and ENAS [30] have

extended this work by cutting the necessary compute re-

sources. These works have been aggregated by EPNAS

[29]. AS is orthogonal to our line of work as the learned ar-

chitectures could be pruned by our method. In addition, AS

is more complicated to implement as it requires learning a

controller model by reinforcement learning. In contrast, our

method features tools widely used in CNN training.

3. Our Approach

3.1. Dropout Sparsity Learning

Before we introduce the specifics of our approach, let us

first summarize the fundamental concepts of Dropout Spar-

sity Learning (DSL).

Let hl be the output of the l-th hidden layer of a CNN

computed by fl(hl−1), a transformation of the previous

layer, typically a convolution followed by a batch norm and

a non-linearity. As mentioned before, one way of reducing

the size of a network is by shutting down neurons with an

element-wise product ⊙ between the output of layer hl−1

and a binary tensor zl−1:

hl = fl(hl−1 ⊙ zl−1). (1)

To enforce structured pruning and shutdown feature

maps (not just individual neurons), one can redefine zl−1

as a vector of size dl−1 where dl−1 is the number of feature
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maps in hl−1. Then, zl−1 is applied over the spatial dimen-

sions by performing an element-wise product with hl−1.

As one might notice, Eq. (1) is the same as that of

dropout [25] for which zl−1 is a tensor of independent ran-

dom variables i.i.d. of a Bernoulli distribution q(z). To

prune a network, DSL redefines zl−1 as random variables

sampled from a distribution q(z|Φ) whose parameters Φ can

be learned while training the model. In this way, the net-

work can learn which feature maps to drop and which ones

to keep.

Since the operation of sampling zl−1 from a distribution

is not differentiable, it is common practice to redefine it with

the reparametrization trick [17]:

hl = fl(hl−1 ⊙ g(Φl−1, ǫ)) (2)

where g is a continuous function differentiable with respect

to Φ and stochastic with respect to ǫ, a random variable typ-

ically sampled from N (0, 1) or U(0, 1).
In order to enforce network pruning, one usually incor-

porates a two-term loss :

L(W,Φ) = LD(W,Φ) + λLS(Φ) (3)

where λ is the prior’s weight, W are the parameters of

the network, LD(W,Φ) is a data loss that measures how

well the model fits the training data (e.g. the cross-entropy

loss) and LS is a sparsity loss that measures how sparse the

model is. While LS varies from one method to another, the

KL divergence between q(z|Φ) and some prior distribution

is typically used by variational approaches [17, 24]. Note

that during inference, one can make the network determin-

istic by replacing the random variable ǫ by its mean.

3.2. Soft and hard pruning

As mentioned before, g(Φl−1, ǫ) is a continuous func-

tion differentiable with respect to Φl−1. Thus, instead of

being binary, the pruning of Eq. (2) becomes continuous

(soft pruning), so there is always a non-zero probability that

a feature map will be activated during training. However, to

achieve practical speedups, one eventually needs to “hard-

prune” filters. To do so, once training is over, the values

of Φ are thresholded to select which filters to remove com-

pletely. Then, the network may be fine-tuned for several

epochs with the LD loss only, to let the network adapt to

hard-pruning. We call this the “fine-tuning phase”, and the

earlier epochs constitute the “training phase”.

3.3. BudgetAware Regularization (BAR)

In our implementation, a budget is the maximum number

of neurons a “hard-pruned” network is allowed to have. To

compute this metric, one may replace z ∼ q(z|Φ) by its

mean so feature maps with E[z|Φ] = 0 have no effect and

can be removed, while the others are kept. The network size

Algorithm 1: BAR Training

Data: W : network weights; Φ: r.v. parametrization;

TeacherLogits: the class-wise scores for all samples of the

dataset; λ: all the hyperparameters of the method

(including the budget); Prog ∈ [0, 1]: progress of the

training process; g(·): function introduced in Eq. (2) of the

paper; ŷ: predicted class-wise logits.

Result: PrunedNet: the pruned neural network object including

its weights.

1 W ′ ⇐ TrainUnprunedNetwork()

2 TeacherLogits⇐ PredictWholeDataset(W ′)

3 for b ∈ Minibatches do

4 (x,y)⇐ b
5 z⇐ g(Φ, ǫ), ǫ ∼ U(0, 1)
6 ŷ⇐ ForwardPass(x,W, z)

7 l⇐ BARLoss(y, ŷ, z,λ,TeacherLogits,Prog)

8 (∇W,∇Φ)⇐ BackwardPass(l)
9 (W,Φ)⇐ OptimizationStep(∇W,∇Φ)

10 PruningMasks⇐ g(Φ,E[ǫ])
11 PrunedNet⇐ ConvertNet(W , PruningMasks)

is thus the total activation volume of the structurally “hard-

pruned” network :

V =
∑

l

∑

i

1(E[zl,i|Φ] > 0)×Al (4)

where Al is the area of the output feature maps of layer l and

1 is the indicator function. Our training process is described

in Algorithm 1.

A budget constraint imposes on V to be smaller than the

allowed budget b. If embedded in a sparsity loss, that con-

straint makes the loss go to infinity when V > b, and zero

otherwise. This is a typical inequality constrained mini-

mization problem whose binary (and yet non-differentiable)

behavior is not suited to gradient descent optimization.

One typical solution to such problem is the log-barrier

method [2]. The idea of this barrier method is to approx-

imate the zero-to-infinity constraint by a differentiable log-

arithmic function : −(1/t) log(b− V ) where t > 0 is a pa-

rameter that adjusts the accuracy of the approximation and

whose value increases at each optimization iteration (c.f.

Algo 11.1 in [2]).

Unfortunately, the log-barrier method requires beginning

optimization with a feasible solution (i.e. V < b), and this

brings two major problems. First, we need to compute Φ
such that V < b, which is no trivial task. Second, this

induces a setting similar to training an ensemble of pruned

networks, as the probability that a feature map is “turned

on” is very low. This means that filters will receive little

gradient and will train very slowly. To avoid this, we need

to start training with a V larger than the budget.

We thus implemented a modified version of the barrier

algorithm. First, as will be shown in the rest of this section,
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(a) Logarithmic barrier function (b) Our barrier function

Figure 1: Comparing barrier functions. (a) Common bar-

rier function −(1/t) log(b− V ) with b = 1. (b) Our barrier

function f(V, a, b) with a = 1.

we propose a barrier function f(V, a, b) as a replacement

for the log barrier function (c.f. Fig. 1). Second, instead of

having a fixed budget b and a parameter t that grows at each

iteration as required by the barrier method, we eliminate

the hardness parameter t and instead decrease the budget

constraint at each iteration. This budget updating schedule

is discussed in Section 3.4.

Our barrier function f(V, a, b) is designed such that:
• it has an infinite value when the volume used by a net-

work exceeds the budget, i.e. V > b;

• it has a value of zero when the budget is comfortably

respected, i.e. V < a;

• it has C1 continuity.

Instead of having a jump from zero to infinity at the point

where V > b, we define a range where a smooth transition

occurs. To do so, we first perform a linear mapping of V :

c =
V − a

b− a

such that V = a ⇒ c = 0 (the budget is comfortably re-

spected), and V = b ⇒ c = 1 (our constraint V < b is

violated). Then, we use the following function:

g(c) =
c2

1− c

which has three useful properties: (i) g(0) = 0 and g(0)′ =
0, (ii) limc→1− g(c) = ∞ and (iii) it has a C1 continuity.

Those properties correspond to the ones mentioned before.

To obtain the desired function, we substitute c in g(c) and

simplify:

f(V, a, b) =











0 V ≤ a
(V−a)2

(b−V )(b−a) a < V < b

∞ V ≥ b.

(5)

As shown in Fig. 1, like for log barrier, V = b is an

asymptote, as we require V < b. However, a < V < b cor-

responds to a respected budget and for V ≤ a, the budget is

respected with a comfortable margin, and this corresponds

to a penalty of zero.

Our proposed prior loss is as follows:

LBAR(Φ, V, a, b) = LS(Φ)f(V, a, b) (6)

where (a, b) are the lower and upper budget margins, V
is the current “hard-pruned” volume as computed by Eq.

(4), and LS(Φ) is a differentiable approximation of V . Note

that since V is not differentiable w.r.t to Φ, we cannot solely

optimize f(V, a, b).
The content of LS(Φ) is bound to q(z|Φ). In our case,

we use the Hard-Concrete distribution (which is a smoothed

version of the Bernoulli distribution), as well as its corre-

sponding prior loss, both introduced in [22]. This prior loss

measures the expectation of the number of feature maps cur-

rently unpruned. To account for the spatial dimensions of

the output tensors of convolutions, we use:

LS(Φ) =
∑

l

LS(Φl) =
∑

l

LHC(Φl)×Al

where LHC is the hard-concrete prior loss [22] and Al is

the area of the output feature maps of layer l. Thus, LS(Φ)
measures the expectation of the activation volume of all

convolution operations in the network.

Note that V could also be replaced by another metric,

such as the total FLOPs used by the network. In this case,

LS(Φl) should also include the expectation of the number

of feature maps of the preceding layer.

3.4. Setting the budget margins (a, b)

As mentioned earlier, initializing the network with a vol-

ume that respects the budget (as required by the barrier

method) leads to severe optimization issues. Instead, we

iteratively shift the pruning target b during training. Specif-

ically, we shift it from b = VF at the beginning, to b = B
at the end (where VF is the unpruned network’s volume and

B the maximum allowed budget).

As shown in Fig. 1b, doing so induces a lateral shift to

the “barrier”. This is unlike the barrier method in which the

hardness parameter t evolves in time (c.f. Fig. 1a). Mathe-

matically, the budget b evolves as follows:

b = (1− T (i)) VF + T (i) B,

i =
iteration index

num. training iterations

(7)

while a = B − 10−4 VF is fixed. Here T (i) is a tran-

sition function which goes from zero at the first iteration

all the way to one at the last iteration. While T (i) could

be a linear transition schedule, experimental results reveal

that when b approaches B, some gradients suffers from ex-

treme spikes due to the nature of f(V, a, b). This leads to

erratic behavior towards the end of the training phase that

can hurt performance. One may also implement an expo-

nential transition schedule. This could compensate for the

9111



Figure 2: Sigmoidal transition function.

shape of f(V, a, b) by having b change quickly during the

first epochs and slowly towards the end of training. While

this gives good results for severe pruning (up to 16×), the

increased stress at the beginning yields sub-optimal perfor-

mance for low pruning factors.

For our method, we propose a sigmoidal schedule, where

b changes slowly at the beginning and at the end of the

training phase, but quickly in the middle. This puts most

of the “pruning stress” in the middle of the training phase,

which accounts for the difficulty of pruning (1) during the

first epochs, where the filters’ relevance is still unknown,

and (2) during the last epochs, where more compromises

might have to be made. The sigmoidal transition function is

illustrated in Fig. 2 (c.f. Supp. materials for details).

3.5. Knowledge Distillation

Knowledge Distillation (KD) [14] is a method for facil-

itating the training of a small neural network (the student)

by having it reproduce the output of a larger network (the

teacher). The loss proposed by Hinton et al [14] is :

LD(W ) = (1− α)LCE(Ps, Ygt) + αT 2LCE(Ps, Pt)

where LCE is a cross-entropy, Ygt is the groundtruth, Ps

and Pt are the output logits of the student and teacher net-

works, α ∈ [0, 1], and T ≥ 1 is a temperature parameter

used to smooth the softmax output : pi =
exp(zi/T )∑
j
exp(zj/T ) .

In our case, the unpruned network is the teacher and the

pruned network is the student. As such, our final loss is:

(1−α)LCE(Ps, Ygt)+αT 2LCE(Ps, Pt)+λLBAR(Φ, V, a, b).

where λ, α and T are fixed parameters.

4. Pruning Residual Networks

While our method can prune any CNN, pruning a CNN

without residual connections does not affect the connectiv-

ity patterns of the architecture, and simply selects the width

at each layer [9]. In this paper, we are interested in allowing

any feature map of a residual network to be pruned. This

pruning regime can reduce the depth of the network, and

generally results in architectures with atypical connectivity

that require special care in their implementation to obtain

maximum efficiency.

Figure 3: Typical ResBlock vs. pooling block. (a) A typ-

ical ResBlock. The “B” arrow is the sequence of convo-

lutions done inside the block. (b) A pooling block at the

beginning of a ResNet Layer, that deals with the change in

spatial dimensions and number of feature maps. Notice that

it breaks the continuity of the residual signal. The arrow

labeled “1 × 1” is a 1 × 1 convolution with stride 2; the

first convolution of “B” also has stride 2. If all convolutions

(arrows) are removed, no signal can pass.

4.1. Automatic Depth Determination

We found, as in [9], that filter-wise pruning can suc-

cessfully prune entire ResBlocks and change the network

depth. This effect was named Automatic Depth Determi-

nation in [26]. Since a ResBlock computes a delta that

is aggregated with the main (residual) signal by addition

(c.f. Fig. 3a), such block can generally be removed with-

out preventing the flow of signal through the network. This

is because the main signal’s identity connections cannot be

pruned as they lack prunable filters.

However, some ResBlocks, which we call “pooling

blocks”, change the spatial dimensions and feature dimen-

sionality of the signal. This type of block breaks the conti-

nuity of the residual signal (c.f. Fig. 3b). As such, the con-

volutions inside this block cannot be completely pruned, as

this would prevent any signal from flowing through it (a sit-

uation we call “fatal pruning”). As a solution, we clamp the

highest value of Φ to ensure that at least one feature map is

kept in the 1× 1 conv operation.

4.2. Atypical connectivity of pruned ResNets

Our method allows any feature map in the output of a

convolution to be pruned (except for the 1 × 1 conv of the

pooling block). This produces three types of atypical resid-

ual connectivity that requires special care (see Fig. 4). For

example, there could be a feature from the residual sig-

nal that would pass through without another signal being

added to it (Fig. 4b). New feature maps can also be created

and concatenated (Fig. 4c). Furthermore, new feature maps

could be created while others could pass through (Fig. 4d).

To leverage the speedup incurred by a pruned feature

map, the three cases in Fig. 4 must be taken into account

through a mixed-connectivity block which allows these un-
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Figure 4: Connectivity allowed by our approach. (a) A

3-feature ResBlock with typical connectivity. Arrows rep-

resent one or more convolutions. (b) With one feature map

pruned, only two features are computed and added to the

residual signal; one feature from the residual signal is left

unchanged. (c) a new feature is created and concatenated

to the residual signal. (d) a combination of (b) and (c) as a

new feature is concatenated to the residual signal, one fea-

ture from the residual is left unchanged, and a third feature

has typical connectivity (best viewed in color).

orthodox configurations. Without this special implementa-

tion, some zeroed-out feature maps would still be computed

because the summations of residual and refinement signals

must have the same number of feature maps. In fact, a naive

implementation does not allow refining only a subset of the

features of the main signal (as in Fig. 4b), nor does it allow

having a varying number of features in the main signal (as

in Fig. 4c).

Fig. 5 shows the benefit of a mixed-connectivity block.

In (a) is a ResNet Layer pruned by our method. Using a

regular ResBlock implementation, all feature maps in pairs

of tensors that are summed together need to have match-

ing width. This means that, in Fig. 5, all feature maps

of the first, third and fourth rows (features) are computed,

even if they are dotted. Only the second row can be fully

removed.On the other hand, by using mixed-connectivity,

only unpruned feature maps are computed, yielding archi-

tectures such as in Fig. 5b, that saves substantial compute

(c.f. Section 5).

Technical details on our mixed-connectivity block are

provided in the Supplementary materials.

5. Experiments

5.1. Experimental Setup

We tested our pruning framework on two residual ar-

chitectures and report results on four datasets. We pruned

Wide-ResNet [34] on CIFAR-10, CIFAR-100 and TinyIm-

ageNet (with a width multiplier of 12 as per [34]), and

ResNet50 [13] on Mio-TCD [23], a larger and more com-

plex dataset devoted to traffic analysis. TinyImageNet and

Mio-TCD samples are resized to 64 × 64 and 128 × 128,

respectively. Since this ResNet50 has a larger input and is

deeper than its CIFAR counterpart, we do not opt for the

“wide” version and thus save significant training time. Both

network architectures have approximately the same volume.

For all experiments, we use the Adam optimizer with an

initial learning rate of 10−3 and a weight decay of 5×10−4.

For CIFAR and TinyImageNet, we use a batch size of 64.

For our objective function, we use α = 0.9, T = 4,

and λ = 10−5. We use PyTorch and its standard im-

age preprocessing. For experiments on Mio-TCD, we start

training/pruning with the weights of the unpruned network

whereas we initialize with random values for CIFAR and

TinyImageNet. Please refer to the Supplementary materials

for the number of epochs used in each training phase.

We compare our approach to the following methods:

• Random. This approach randomly selects feature

maps to be removed.

• Weight Magnitude (WM) [10]. This method uses the

absolute sum of the weights in a filter as a surrogate of

its importance. Lower magnitude filters are removed.

• Vector Quantization (VQ) [8] This approach vector-

izes the filters and quantizes them into N clusters,

where N is the target width for the layer. The clus-

ters’ center are used as the new filters.

• Interpolative Decomposition (ID). This method is

based on low-rank approximation for network com-

pression [6, 16]. This algorithm factorizes each filters

W into UV , where U has a specific number of rows

corresponding to the budget. U replaces W , and V is

multiplied at the next layer (i.e. Wl+1 ← VlWl+1) to

approximate the original sequence of transformations.

• L0 regularization (LZR) [22]. This DSL method is

the closest to our method. However, it incorporates no

budget, penalizes layer width instead of activation ten-

sor volume, and does not use Knowledge Distillation.

• Information Bottleneck (IB) [1]. This DSL method

uses a factorized Gaussian distribution (with parame-

ters µ, σ) to mask the feature maps as well as the fol-

lowing prior loss : LS = log(1− µ2/σ2).

• MorphNet [9]. This approach uses the γ scaling pa-

rameter of Batch Norm modules as a learnable mask

over features. The said γ parameters are driven to zero

by a L1 objective that considers the resources used by

a filter (e.g. FLOPs). This method computes a new

width for each layer by counting the non-zero γ pa-

rameters. We set the sparsity trade-off parameter λ af-

ter an hyperparameter search, with 16× as the target

pruning factor for CIFAR-10.
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a) b)

Figure 5: (a) A 4-feature chunk of a ResNet Layer pruned by our method. Dotted feature maps are zeroed-out by their

associated mask. An arrow labeled B represents a Block operation, which consist of a sequence of convolutions. Inner

convolutions of the Block can be pruned, but only the output of the last convolution is shown (for clarity). (b) The same

pruned subgraph, illustrated without the pruned feature maps. The resulting subgraph is shallower and narrower than its

“full” counterpart (best viewed in color).

For every method, we set a budget of tensor activa-

tion volume corresponding to 1/2, 1/4, 1/8, 1/16 of the un-

pruned volume VF . Since LZR and IB do not allow setting

a budget, we went through trial-and-error to find the hyper-

parameter value that yield the desired resource usage. For

Random, WM, VQ, and ID we scale the width of all lay-

ers uniformly to satisfy the budget and implement a pruning

scheme which revealed to be the most effective (c.f. Supple-

mentary materials). We also apply our mixed-connectivity

block to the output of every method for a fair comparison.

5.2. Results

Results for every method executed on all three datasets

are shown in Fig. 6. The first row shows test accuracies

w.r.t. the network volume reduction factor for CIFAR-10,

CIFAR-100, TinyImageNet and Mio-TCD. As one can see,

our method is above the others (or competitive) for CIFAR-

10 and CIFAR-100. It is also above every other method on

TinyImageNet and Mio-TCD except for MorphNet which is

better for pruning factors of 2 and 4. However, MorphNet

gets a severe drop of accuracy at 16x, a phenomena we ob-

served as well on CIFAR-10 and CIFAR-100. Our method

is also always better than IB and LZR, the other two DSL

methods. Overall, our method is resilient to severe (16x)

pruning ratios.

Furthermore, for every dataset, networks pruned with

our method (as well as some others) get better results than

the initial unpruned network. This illustrates the fact that

Wide-ResNet and ResNet-50 are overparameterized for cer-

tain tasks and that decreasing their number of feature maps

reduces overfitting and thus improves test accuracy.

We then took every pruned network and computed their

FLOP reduction factor (we considered operations from con-

volutions only). This is illustrated in the second row of

Fig. 6. There again, our method outperforms (or is com-

petitive with) the others for CIFAR-10 and CIFAR-100.

Our method reduces FLOPs by up to a factor of ∼ 64x on

CIFAR-10, ∼60x on CIFAR-100 and ∼200x on Mio-TCD

without decreasing test accuracy. We get similar results

Table 1: Test Accuracy for different configurations of

our method (using WideResNet-CIFAR-10). The test ac-

curacy of the unpruned network is 90.90%.

Configuration
Pruning factor

2x 16x

Our method 92.70% 91.62%

w/o Knowledge Distillation -1.37% -0.40%

w/o Sigmoid pruning schedule -0.87% -0.92%

Table 2: Reduction of the effective pruned volume when

removing the mixed-connectivity block.

Dataset 2x 4x 8x 16x

CIFAR-10 12% 43% 53% 58%

CIFAR-100 14% 49% 55% 57%

MIO-TCD 32% 37% 40% 52%

as LZR for pruning ratios around 60x on CIFAR-10 and

CIFAR-100 and 200x on Mio-TCD. MorphNet gets better

accuracy for pruning ratios of 4x and 16x on Mio-TCD, but

then drops significantly around 256x. Results are similar

for TinyImageNet.

In Table 1, we report results of an ablation study on

WideResNet-CIFAR-10 with two pruning factors. We re-

placed the Knowledge Distillation data loss (c.f. Section

3.5) by a cross-entropy loss, and changed the Sigmoid prun-

ing schedule (c.f. Section 3.4) by a linear one. As can be

seen, removing either of those reduces accuracy, thus show-

ing their efficiency. We also studied the impact of not using

the mixed-connectivity block introduced in Section 4.2. As

shown in Table 2, when replacing our mixed-connectivity

blocks by regular ResBlocks, we get a drop of the effective

pruned volume of more than 50% for 16x (even up to 58%

for CIFAR-10).

We illustrate in Fig. 7 results of our pruning method for

CIFAR-10 (for the other datasets, see supplementary mate-

rials). The figure shows the number of neurons per residual
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Figure 6: Pruning results. Plots showing test accuracy w.r.t. volume and FLOP reduction factor (best viewed in color).

Figure 7: Result of pruning with our method on

WideResNet-CIFAR-10. Total number of active neurons in

the full networks and with four different pruning rates. Sec-

tions without an orange (8x) or red (16x) bar are those for

which a res-Block has been eliminated.

block for the full network, and for the networks pruned with

varying pruning factors. These plots show that our method

has the capability of eliminating entire residual blocks (es-

pecially around 1.3 and 1.4). Also, the pruning configu-

rations follow no obvious trend thus showing the inherent

plasticity of a DSL method such as ours.

As mentioned in Section 3.3, instead of the volume met-

ric (Eq. (4)) the budget could be set w.r.t a FLOP metric

by accounting for the expectation of the number of feature

maps in the preceding layer. We compare in Fig. 8 the re-

sults given by these two budget metrics for WideResnet-

CIFAR-10. As one might expect, pruning a network with

a volume metric (V-Trained) yields significantly better per-

formances w.r.t. the volume pruning factor whereas pruning

Figure 8: Comparison of objective metrics. Test accuracy

versus the volume pruning factor and the FLOP reduction

factor for our method with a Volume metric (V-trained) and

a FLOP metric (F-trained).

a network with a FLOP metric (F-Trained) yields better per-

formances w.r.t. to the FLOP reduction factor, although by

a slight margin. In light of these results, we conclude that

the volume metric (Eq. (4)) is overall a better choice.

6. Conclusion

We presented a structured budgeted pruning method

based on a dropout sparsity learning framework. We pro-

posed a knowledge distillation loss function combined with

a budget-constrained sparsity loss whose formulation is that

of a barrier function. Since the log-barrier solution is ill-

suited for pruning a CNN, we proposed a novel barrier func-

tion as well as a novel optimization schedule. We provided

concrete insights on how to prune residual networks and

used a novel mixed-connectivity block. Results obtained on

two ResNets architecture and three datasets reveal that our

method overall outperforms 7 other pruning methods.
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