
AOGNets: Compositional Grammatical Architectures for Deep Learning

Xilai Li†, Xi Song§ and Tianfu Wu†,‡∗

Department of ECE† and the Visual Narrative Initiative‡, North Carolina State University

{xli47, tianfu wu}@ncsu.edu, xsong.lhi@gmail.com

Abstract

Neural architectures are the foundation for improving

performance of deep neural networks (DNNs). This pa-

per presents deep compositional grammatical architectures

which harness the best of two worlds: grammar models and

DNNs. The proposed architectures integrate composition-

ality and reconfigurability of the former and the capability

of learning rich features of the latter in a principled way.

We utilize AND-OR Grammar (AOG) [52, 71, 70] as net-

work generator in this paper and call the resulting networks

AOGNets. An AOGNet consists of a number of stages each

of which is composed of a number of AOG building blocks.

An AOG building block splits its input feature map into N

groups along feature channels and then treat it as a sen-

tence of N words. It then jointly realizes a phrase structure

grammar and a dependency grammar in bottom-up parsing

the “sentence” for better feature exploration and reuse. It

provides a unified framework for the best practices devel-

oped in state-of-the-art DNNs. In experiments, AOGNet is

tested in the ImageNet-1K classification benchmark and the

MS-COCO object detection and segmentation benchmark.

In ImageNet-1K, AOGNet obtains better performance than

ResNet [21] and most of its variants, ResNeXt [63] and its

attention based variants such as SENet [24], DenseNet [26]

and DualPathNet [6]. AOGNet also obtains the best model

interpretability score using network dissection [3]. AOGNet

further shows better potential in adversarial defense. In

MS-COCO, AOGNet obtains better performance than the

ResNet and ResNeXt backbones in Mask R-CNN [20].

1. Introduction

1.1. Motivation and Objective

Recently, deep neural networks (DNNs) [35, 30] have

improved prediction accuracy significantly in many vision

tasks, and have obtained superhuman performance in im-

age classification tasks [21, 55, 26, 6]. Much of these

∗T. Wu is the corresponding author. §X. Song is an independent re-

searcher. The code and models are available at https://github.

com/iVMCL/AOGNets

Channels

AND-node

OR-node

Terminal-node

AND-OR Grammar (AOG) building block

Input feature map !

Output feature map

Node operation: "(⋅)

!&,(

"(!&,()

Splitting

Terminal-node

Summation

…
)&,(
*)&,(

+

"()&,(
* +⋯+)&,(

+ + !./012/.)

OR-node

!./012/.Concatenation

"()&,&34
5 ,)&3436,(

7 + !./012/.)

)&,&34
5)&3436,(

7

AND-node

!./012/.

Figure 1. Illustration of our AOG building block for grammar-

guided network generator. The resulting networks, AOGNets

obtain 80.18% top-1 accuracy with 40.3M parameters in Ima-

geNet, significantly outperforming ResNet-152 (77.0%, 60.2M),

ResNeXt-101 (79.6%, 83.9M), DenseNet-Cosine-264 (79.6%,

∼73M) and DualPathNet-98 (79.85%, 61.6M). See text for de-

tails. (Best viewed in color)

progress are achieved mainly through engineering network

architectures which jointly address two issues: increasing

representational power by going either deeper or wider,

and maintaining the feasibility of optimization using back-

propagation with stochastic gradient descent (i.e., the van-

ishing and/or exploding gradient problems). The dramatic

success does not necessarily speak to its sufficiency. Hinton

recently pointed out: according to recent neuroscientific re-

search, these artificial networks do not contain enough lev-

els of structure [22, 50]. In this paper, we are interested in

grammar-guided network generators (Fig. 1).

16220

Neural architecture design and search can be posed as

a combinatorial search problem in a product space com-

prising two sub-spaces (Fig. 2 (a)): (i) The structure space

which consists of all directed acyclic graphs (DAGs) with

the start node representing input raw data and the end node

representing task loss functions. DAGs are entailed for fea-

sible computation. (ii) The node operation space which con-

sists of all possible transformation functions for implement-

ing nodes in a DAG, such as Conv+BN [28]+ReLU [30]

with different kernel sizes and feature channels.

The structure space is almost unbounded, and the node

operation space for a given structure is also combinatorial.

Neural architecture design and search is a challenging prob-

lem due to the exponentially large space and the highly non-

convex non-linear objective function to be optimized in the

search. As illustrated in Fig. 2 (b), to mitigate the diffi-

culty, neural architecture design and search have been sim-

plified to design or search a building block structure. Then,

a DNN consists of a predefined number of stages each of

which has a small number of building blocks. This stage-

wise building-block based design is also supported by the

theoretical study in [1] under some assumptions. Fig. 2 (c)

shows examples of some popular building blocks with dif-

ferent structures. Two questions arise naturally:

• Can we unify the best practices used by the popular build-

ing blocks in a simple and elegant framework? More im-

portantly, can we generate building blocks and thus net-

works in a principled way to effectively unfold the space

(Fig. 2 (a)) ? (If doable)

• Will the unified building block/network generator im-

prove performance on accuracy, model interpretabil-

ity and adversarial robustness without increasing model

complexities and computational costs? If yes, the poten-

tial impacts shall be broad and deep for representation

learning in numerous practical applications.

To address the above questions, we first need to under-

stand the underlying wisdom in designing better network

architectures: It usually lies in finding network structures

which can support flexible and diverse information flows for

exploring new features, reusing existing features in previ-

ous layers and back-propagating learning signals (e.g., gra-

dients). Then, what are the key principles that we need to

exploit and formulate such that we can effectively and ef-

ficiently unfold the structure space in Fig. 2 (a) in a way

better than existing networks? Compositionality, recon-

figurability and lateral connectivity are well-known prin-

ciples in cognitive science, neuroscience and pattern the-

ory [12, 44, 17, 13, 31, 13]. They are fundamental for the

remarkable capabilities possessed by humans, of learning

rich knowledge and adapting to different environments, es-

pecially in vision and language. They have not been, how-

ever, fully and explicitly integrated in DNNs.

In this paper, we presents compositional grammati-

Raw Data

(as start node)

A product space of

Structure: Directed Acyclic Graph (DAG)

Node Operations: Stretch and Squash data

Task Loss

(as end node)

ResNetGoogLeNet ResNeXt

(c) Examples of popular building blocks

DenseNet DualPathNet

(a) The space of neural architectures: exponentially large

(b) Building block based design by popular networks

Raw Data

(as start node)

Task Loss

(as end node)

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

B
lo

ck

Stage 1 Stage 2 Stage #

…

Figure 2. Illustration of (a) the space of neural architectures, (b)

the building block based design, and (c) examples of popular

building blocks in GoogLeNet [55], ResNet [21], ResNeXt [63],

DenseNet [26] and DualPathNets [6]. See text for details.

cal architectures that realize compositionality, reconfig-

urability and lateral connectivity for building block de-

sign in a principled way. We utilize AND-OR Grammars

(AOG) [52, 71, 70] and propose AOG building blocks that

unify the best practices developed in existing popular build-

ing blocks. Our method deeply integrates hierarchical and

compositional grammars and DNNs for harnessing the best

of both worlds in deep representation learning.

Why grammars? Grammar models are well known in

both natural language processing and computer vision. Im-

age grammar [71, 9, 70, 12] was one of the dominant meth-

ods in computer vision before the recent resurgence in pop-

ularity of deep neural networks. With the recent resurgence,

one fundamental puzzle arises that grammar models with

more explicitly compositional structures and better analytic

and theoretical potential, often perform worse than their

neural network counterparts. As David Mumford pointed

out, “Grammar in language is merely a recent extension of

much older grammars that are built into the brains of all in-

telligent animals to analyze sensory input, to structure their

actions and even formulate their thoughts.” [43]. Our pro-

posed AOG building block is highly expressive for analyz-

ing sensory input and bridges the performance gap between

grammars and DNNs. It also enables flexible and diverse

network structures to address Hinton’s quest on improving

structural sufficiency in DNNs [22].

1.2. Method Overview

We first summarize the best practices in existing build-

ing blocks, and then briefly overview our proposed AOG

building block (Fig. 1) and how it unifies the existing ones.

Existing building blocks usually do not fully implement

the three principles (compositionality, reconfigurability and

lateral connections).

• InceptionNets or GoogLeNets [55] embodies a split-

transform-aggregate heuristic in a shallow feed-forward

6221

S
tem

M
ean

 P
o

o
lin

g

S
o

ftm
ax

“Laptop”

Figure 3. Illustration of a 3-stage AOGNet with 1 AOG building bock in the 1st and 3rd stage, and 2 AOG building blocks in the 2nd stage.

Note that different stages can use different AOG building blocks. We show the same one for simplicity. The stem can be either a vanilla

convolution or convolution+MaxPooling. (Best viewed in color)

way for feature exploration, which is inspired by the

network-in-network design [39] and the theoretical study

on stage-wise design [1]. However, the filter numbers and

sizes are tailored for each individual transformation, and

the modules are customized stage-by-stage. Interleaved

group convolutions [67] share the similar spirit, but use

simpler scheme.

• ResNets [21] provide a simple yet effective solution, in-

spired by the Highway network [53], that enables net-

works to enjoy going either deeper or wider without sac-

rificing the feasibility of optimization. From the perspec-

tive of representation learning, skip-connections within a

ResNet [21] contributes to effective feature reuse. They

do not, however, realize the split component as done in

GoogLeNets.

• ResNeXts [63] add the spit component in ResNets and

address the drawbacks of the Inception modules using

group convolutions in the transformation.

• Deep Pyramid ResNets [18] gradually increase feature

channels between building blocks, instead of increasing

feature channels sharply at each residual unit with down-

sampling in vanilla ResNets.

• DenseNets [26] explicitly differentiate between informa-

tion that is added to the network and information that

is preserved. Dense connections with feature maps be-

ing concatenated together are used, which are effective

for feature exploration, but lack the capability of feature

reuse as done in ResNets.

• Dual Path Networks (DPN) [6] utilize ResNet blocks and

DenseNet blocks in parallel to balance feature reuse and

feature exploration.

• Deep Layer Aggregation networks (DLA) [65] iteratively

and hierarchically aggregate the feature hierarchy when

stacking the building blocks such as the ResNet ones.

Our AOG building block is hierarchical, compositional

and reconfigurable with lateral connections by design. As

Fig. 1 shows, an AOG building block splits its input feature

map into N groups along feature channels, and treat it as a

sentence of N words. It then jointly realizes a phrase struc-

ture grammar (vertical composition) [11, 12, 10, 71, 70, 52]

and a dependency grammar (horizontal connections in pink

in Fig. 1) [19, 71, 13] in bottom-up parsing the “sentence”

for better feature exploration and reuse: (i) Phrase struc-

ture grammar is a 1-D special case of the method presented

in [52, 62]. It can also be understood as a modified version

of the well-known Cocke-Younger-Kasami (CYK) parsing

algorithm in natural language processing according to a bi-

nary composition rule. (ii) Dependency grammar is inte-

grated to capture lateral connections and improve the repre-

sentational flexibility and power.

In an AOG building block, each node applies some basic

operation T (·) (e.g., Conv-BN-ReLU) to its input, and there

are three types of nodes:

• A Terminal-node takes as input a channel-wise slice of

the input feature map (i.e., a k-gram).

• An AND-node implements composition, whose input is

computed by concatenating features of its syntactic child

nodes, and adding the lateral connection if present.

• An OR-node represents alternative compositions, whose

input is the element-wise sum of features of its syntactic

child nodes and the lateral connection if present.

Our AOG building block unifies the best practices devel-

oped in popular building blocks in that,

• Terminal-nodes implement the split-transform heuristic

(or group convolutions) as done in GoogLeNets [55]

and ResNeXts [63], but at multiple levels (including

overlapped group convolutions). They also implement

the skip-connection at multiple levels. Unlike the

cascade-based stacking scheme in ResNets, DenseNets

and DPNs, Termninal-nodes can be computed in paral-

lel to improve efficiency. Non-terminal nodes implement

aggregation.

• AND-nodes implement DenseNet-like aggregation (i.e.,

concatenation) [26] for feature exploration.

• OR-nodes implement ResNet-like aggregation (i.e., sum-

mation) [21] for feature reuse.

• The hierarchy facilitates gradual increase of feature chan-

nels as in Deep Pyramid ResNets [18], and also leads to

good balance between depth and width of networks.

• The compositional structure provides much more flexible

information flows than DPN [6] and the DLA [65].

• The lateral connections induce feature diversity and in-

crease the effective depth of nodes along the path without

introducing extra parameters.

6222

We stack AOG building blocks to form a deep AOG net-

work, called AOGNet. Fig. 3 illustrates a 3-stage AOGNet.

Our AOGNet utilizes two nice properties of grammars: (i)

The flexibility and simplicity of constructing different net-

work structures based on a dictionary of primitives and a

set of production rules in a principled way; and (ii) The

highly expressive power and the parsimonious compactness

of their explicitly hierarchical and compositional structures.

2. Related Work and Our Contributions

Network architectures are the foundation for improving

performance of DNNs. We focus on hand-crafted architec-

tures in this section. Related work on neural architecture

search is referred to the survey papers [8, 64].

Hand-crafted network architectures. After more than

20 years since the seminal work 5-layer LeNet5 [35] was

proposed, the recent resurgence in popularity of neural

networks was triggered by the 8-layer AlexNet [30] with

breakthrough performance on ImageNet [49] in 2012. Since

then, a lot of efforts were devoted to learn deeper AlexNet-

like networks with the intuition that deeper is better. The

VGG Net [4] proposed a 19-layer network with insights

on using multiple successive layers of small filters (e.g.,

3 × 3) A special case, 1 × 1 convolution, was proposed

in the network-in-network [39] for reducing or expand-

ing feature dimensionality between consecutive layers, and

have been widely used in many networks. The 22-layer

GoogLeNet [56] introduced the first inception module and

a bottleneck scheme implemented with 1 × 1 convolution

for reducing computational cost. The main obstacle of go-

ing deeper lies in the gradient vanishing issue in optimiza-

tion, which is addressed with a new structural design, short-

path or skip-connection, proposed in the Highway net-

work [53] and popularized by the ResNets [21], especially

when combined with the batch normalization (BN) [28].

More than 100 layers are popular design in the recent litera-

ture [21, 55], as well as even more than 1000 layers trained

on large scale datasets such as ImageNet [27, 68]. The

Fractal Net [34] and deeply fused networks [60] provided

an alternative way of implementing short path for training

ultra-deep networks without residuals. Complementary to

going deeper, width matters in ResNets and inception based

networks too [66, 63, 67]. Going beyond the first-order

skip-connections in ResNets, DenseNets [26] proposed a

densely connected network architecture with concatenation

scheme for feature reuse and exploration, and DPNs [6] pro-

posed to combine residuals and densely connections in an

alternating way for more effective feature exploration and

reuse. DLA networks [65] further develop iterative and hi-

erarchical aggregation schema with very good performance

obtained. Most work focused on boosting spatial encoding

and utilizing spatial dimensionality reduction. The squeeze-

and-excitation module [24] is a recently proposed simple

yet effective method focusing on channel-wise encoding.

The Hourglass network [45] proposed a hourglass module

consisting of both subsampling and upsampling to enjoy re-

peated bottom-up/top-down feature exploration.

Our AOGNet is created by intuitively simple yet prin-

cipled grammars. It shares some spirit with the inception

module [55], the deeply fused nets [60] and the DLA [65].

Grammars. A general framework of image grammar

was proposed in [71]. Object detection grammar was the

dominant approaches for object detection [9, 70, 52, 38, 36,

37], and has recently been integrated with DNNs [57, 58, 5].

Probabilistic program induction [54, 32, 33] has been used

successfully in many settings, but has not shown good per-

formance in difficult visual understanding tasks such as

large-scale image classification and object detection. More

recently, recursive cortical networks [13] have been pro-

posed with better data efficiency in learning which adopts

the AND-OR grammar framework [71], showing great po-

tential of grammars in developing general AI systems.

Our contributions. This paper makes two main contri-

butions in the field of deep representation learning:

• It proposes compositional grammatical architectures for

deep learning and presents deep AND-OR Grammar net-

works (AOGNets). AOGNets facilitate both feature ex-

ploration and feature reuse in a hierarchical and com-

positional way. AOGNets unify the best practices de-

veloped by state-of-the-art DNNs such as GoogLeNets,

ResNets, ResNeXts, DenseNets, DPN, and DLA. To our

best knowledge, it is the first work of designing grammar-

guided network generators.

• It obtains better performance than many state-of-the-

art networks in the ImageNet-1K classification bench-

mark and MS-COCO object detection and segmentation

benchmark. It also obtains better model interpretability

and shows greater potential for adversarial defense.

3. AOGNets

In this section, we first present details of constructing

the structure of our AOGNets. Then, we define node opera-

tion functions for nodes in an AOGNet. We also propose a

method of simplifying the full structure of an AOG building

block which prunes syntactically symmetric nodes.

3.1. The Structure of an AOGNet

An AOGNet (Fig. 3) consists of a predefined number of

stages each of which comprises one or more than one AOG

building blocks. As Fig. 1 illustrates, an AOG building

block maps an input feature map Fin with the dimensions

Din × Hin × Win (representing the number of channels,

height and width respectively) to an output feature map Fout

with the dimensions Dout×Hout×Wout. We split the input

feature map into N groups along feature channels, and then

treat it as a “sentence of N words”. Each “word” represents

6223

a slice of the input feature map with Din

N
×Hin×Win. Our

AOG building block is constructed by a simple algorithm

(Algorthm 1) which integrates two grammars.

The phrase structure grammar [11, 12, 10, 71, 70, 52].

Let Si,j be a non-terminal symbol representing the sub-

sentence starting at the i-th word (i ∈ [0, N − 1]) and end-

ing at the j-th word (j ∈ [0, N − 1], j ≥ i) with the length

k = j − i + 1. We consider the following three rules in

parsing a sentence:

Si,j → ti,j , (1)

Si,j(m) → [Li,i+m ·Ri+m+1,j], 0 ≤ m < k, (2)

Si,j → Si,j(0)|Si,j(1)| · · · |Si,j(j − i). (3)

where we have,

• The first rule is a termination rule which grounds the non-

terminal symbol Si,j directly to the corresponding sub-

sentence ti,j , i.e., a k-gram terminal symbol, which is

represented by a Terminal-node.

• The second rule is a binary decomposition rule, denoted

by [L · R], which decomposes a non-terminal symbol

Si,j into two child non-terminal symbols representing a

left sub-sentence and a right sub-sentence, Li,i+m and

Ri+m+1,j respectively. It is represented by an AND-

node, and entails the concatenation scheme in forward

computation to match feature channels.

• The third rule represents alternative ways of decom-

posing a non-terminal symbol Si,j , denoted by A|B|C,

which is represented by an OR-node, and can utilize

summation scheme in forward computation to “integrate

out” the decomposition structures.

The dependency grammar [19, 13, 71]. We introduce

dependency grammar to model lateral connections between

non-terminal nodes of the same type (AND-node or OR-

node) with the same length k. As illustrated by the arrows

in pink in Fig. 1, we add lateral connections in a straightfor-

ward way: (i) For the set of OR-nodes with k ∈ [1, N − 1],
we first sort them based on the starting index i; and (ii) For

the set of AND-nodes with k ∈ [2, N], we first sort them

based on the lexical orders of the pairs of starting indexes

of the two child nodes. Then, we add sequential lateral con-

nections for nodes in the sorted set either from left to right,

or vice versa. We use opposite lateral connection directions

for AND-nodes and OR-nodes iteratively to have globally

consistent lateral flow from bottom to top in an AOG build-

ing block.

3.2. Node Operations in an AOGNet

In an AOG building bock, all nodes use the same type

of transformation function T (·) (see Fig. 1). For a node v,

denote by fin(v) its input feature map, and then its output

feature map is computed by fout(v) = T (fin(v)). For a

Terminal-node t, it is straightforward to apply the transfor-

mation using fin(t) = Fin(t) where Fin(t) is the k-gram

Input: The total length (or primitive size) N .

Output: The AND-OR Graph G =< V,E >
Initialization: Create an OR-node O0,N−1 for the entire

sentence, V = {O0,N−1}, E = ∅, BFS queue

Q = {O0,N−1};

while Q is not empty do

Pop a node vi,j from the Q and let k = j − i+ 1;

if vi,j is an OR-node then
i) Add a terminal-node ti,j , and update

V = V ∪ {ti,j}, E = E ∪ {< vi,j , ti,j >};

ii) Create AND-nodes Ai,j(m) for all valid splits

0 ≤ m < k;

E = E ∪ {< vi,j , Ai,j(m) >};

if Ai,j(m) /∈ V then

V = V ∪ {Ai,j(m)};

Push Ai,j(m) to the back of Q;

end

else if vi,j is an AND-node with split index m then
Create two OR-nodes Oi,i+m and Oi+m+1,j for

the two sub-sentence respectively;

E = E ∪ {< vi,j(m), Oi,i+m >,<
vi,j(m), Oi+m+1,j >};

if Oi,i+m /∈ V then

V = V ∪ {Oi,i+m};

Push Oi,i+m to the back of Q;

end

if Oi+m+1,j /∈ V then

V = V ∪ {Oi+m+1,j};

Push Oi+m+1,j to the back of Q;

end

end

end

Add lateral connections (see text for detail).

Algorithm 1: Constructing an AOG building block

slice from the input feature map of the AOG building block.

For AND-nodes and OR-nodes, we have,

• For an AND-node A with two child nodes L and R, its

input fin(A) is first computed by the concatenation of

the outputs of the two child nodes, fin(A) = [fout(L) ·
λL, fout(R) · λR]. If it has a lateral node whose output

is denoted by fout(Alateral), we add it and get fin(A) =
[fout(L) · λL, fout(R) · λR] + fout(Alateral) · λlateral.

• For an OR-node O, its input is the summation of the

outputs of its child nodes (including the lateral node if

present), fin(O) =
∑

u∈ch(O) fout(u) · λu, where ch(·)
represents the set of child nodes.

Where λL, λR, λlateral and λu’s are weights (see details

in Section 4.1). Node inputs are computed following the

syntactical structure of AOG building block to ensure that

feature dimensions and spatial sizes match in the concatena-

tion and summation. In learning and inference, we follow

the depth-first search (DFS) order to compute nodes in an

AOG building block, which ensures that all the child nodes

have been computed when we compute a node v.

6224

Figure 4. Illustration of simplifying the AOG building blocks

by pruning syntactically symmetric child nodes of OR-nodes.

Left: An AOG building block with full structure consisting of 10
Terminal-nodes, 10 AND-nodes and 10 OR-nodes. Nodes and

edges to be pruned are plotted in yellow. Right: The simpli-

fied AOG building block consisting of 8 Terminal-nodes, 5 AND-

nodes and 8 OR-nodes. (Best viewed in color)

3.3. Simplifying AOG Building Blocks

The phrase structure grammar is syntactically redundant

since it unfolds all possible configurations w.r.t. the binary

composition rule. In representation learning, we also want

to increase the feature dimensions of different stages in a

network for better representational power, but try not to in-

crease the total number of parameters significantly. To bal-

ance the structural complexity and the feature dimen-

sions of our AOG building block, we propose to simplify

the structure of an AOG building block by pruning some

syntactically redundant nodes. As illustrated in Fig. 4, the

pruning algorithm is simple: Given a full structure AOG

building block, we start with an empty simplified block.

We first add the root OR-node into the simplified block.

Then, we follow the BFS order of nodes in the full struc-

ture block. For each encountered OR-node we only keep

the child nodes which do not have left-right syntactically

symmetric counterparts in the current set of child nodes

in the simplified block. For encountered AND-nodes and

Terminal-nodes, we add them to the simplified block. The

pruning algorithm can be integrated into Algorithm 1. For

example, consider the four child nodes of the root OR-node

in the left of Fig. 4, the fourth child node is removed since

it is symmetric to the second one.

4. Experiments

Our AOGNet is tested in the ImageNet-1K classification

benchmark [49] and the MS-COCO object detection and

segmentation benchmark [40]. 1

4.1. Implementation Settings and Details

We use simplified AOG building blocks. For the node

operation T (), we use the bottleneck variant of Conv-BN-

ReLU proposed in ResNets [21], which adds one 1 × 1
convolution before and after the operation to first reduce

feature dimension and then expand it back. More specif-

1Due to space limit, we will present results for CIFAR-10 and CIFAR-

100 [29] and other datasets in our code GitHub repository.

ically, we have T (x) = ReLU(x + T (x)) for an input

feature map x where T () represents a sequence of prim-

itive operations, Conv1x1-BN-ReLU, Conv3x3-BN-ReLU

and Conv1x1-BN. If Dropout [30] is used with drop rate

p ∈ (0, 1), we add it after the last BN, i.e., T (x) =
ReLU(x+Dropout(T (x), p))

Handling double-counting due to the compositional

DAG structure and lateral connections. First, in our AOG

building block, some nodes will have multiple paths to

reach the root OR-node due to the compositional DAG

structure. Since we use the skip connection in the node

operation T (), the feature maps of those nodes with multi-

ple paths will be double-counted at the root OR-node. Sec-

ond, if a node v and its lateral node vlateral share a par-

ent node, we also need to handle double-counting in the

skip connection. Denote by n(v) the number of paths be-

tween v and the root OR-node, which can be counted dur-

ing the building block construction (Algorithm 1). Con-

sider an AND-node A with two syntactic child node L

and R and the lateral node Alateral, we compute two dif-

ferent inputs, one for the skip connection, f
skip
in (A) =

[fout(L) · n(A)
n(L) , fout(R) · n(A)

n(R)] if A and Alateral share

a parent node and f
skip
in (A) = [fout(L) ·

n(A)
n(L) , fout(R) ·

n(A)
n(R)] + fout(Alateral) ·

n(A)
n(Alateral)

otherwise, and the other

for T (), fT
in(A) = [fout(L), fout(R)] + fout(Alateral).

The transformation for node A is then implemented by

T (A) = ReLU(fskip(A)+T (fT
in(A))). Similarly, we can

set λu’s in the OR-node operation. We note that we can also

treat λ’s as unknown parameters to be learned end-to-end.

4.2. Image Classification in ImageNet­1K

The ILSVRC 2012 classification dataset [49] consists

of about 1.2 million images for training, and 50, 000 for

validation, from 1, 000 classes. We adopt the same data

augmentation scheme (random crop and horizontal flip) for

training images as done in [21, 26], and apply a single-crop

with size 224 × 224 at test time. Following the common

protocol, we evaluate the top-1 and top-5 classification er-

ror rates on the validation set.

Model specifications. We test three AOGNets with

different model complexities. In comparison, we use the

model size as the name tag for AOGNets (e.g., AOGNet-

12M means the AOGNet has 12 million parameters or so).

The stem (see Fig. 3) uses three Conv3x3-BN layers (with

stride 2 for the first layer), followed by a 2 × 2 max pool-

ing layer with stride 2. All the three AOGNets use four

stages. Within a stage, we use the same AOG building

block, while different stages may use different blocks. A

stage is then specified by Nn where N is primitive size (Al-

gorithm 1) and n the number of blocks. The filter channels

are defined by a 5-tuple for specifying the input and out-

put dimensions for the 4 stages. The detailed specifications

6225

Method #Params FLOPS top-1 top-5

ResNet-101 [21] 44.5M 8G 23.6 7.1

ResNet-152 [21] 60.2M 11G 23.0 6.7

ResNeXt-50 [63] 25.03M 4.2G 22.2 5.6

ResNeXt-101 (32×4d) [63] 44M 8.0G 21.2 5.6

ResNeXt-101 (64×4d) [63] 83.9M 16.0G 20.4 5.3

ResNeXt-101 + BAM [46] 44.6M 8.05G 20.67 -

ResNeXt-101 + CBAM [61] 49.2M 8.0G 20.60 -

ResNeXt-50+SE [24] 27.7M 4.3G 21.1 5.49

ResNeXt-101+SE [24] 48.9M 8.46G 20.58 5.01

DensetNet-161 [26] 27.9M 7.7G 22.2 -

DensetNet-169 [26] ∼ 13.5M ∼ 4G 23.8 6.85

DensetNet-264 [26] ∼ 33.4M - 22.2 6.1

DensetNet-cosine-264 [47] ∼ 73M ∼ 26G 20.4 -

DPN-68 [6] 12.8M 2.5G 23.57 6.93

DPN-92 [6] 38.0M 6.5G 20.73 5.37

DPN-98 [6] 61.6M 11.7G 20.15 5.15

AOGNet-12M 11.9M 2.36G 22.28 6.14

AOGNet-40M 40.3M 8.86G 19.82 4.88

AOGNet-60M 60.7M 14.36G 19.34 4.78

Table 1. The top-1 and top-5 error rates (%) on the ImageNet-1K

validation set using single model and single-crop testing.

Figure 5. Plots of top-1 error rates and training losses of the three

AOGNets in ImageNet. (Best viewed in color and magnification)

AO
G
N
et

-6
0M

AO
G
N
et

-4
0M

R
es

N
et

-1
01

R
es

N
et

-1
52

AO
G
N
et

-1
2M

R
es

N
et

-5
0

D
en

se
N
et

-1
61

R
es

N
et

-1
8

G
oo

gL
eN

et
VG

G

Ale
xN

et

0

50

100

150

200

250

300

350

N
u
m

b
e
r

o
f
u
n
iq

u
e
 d

e
te

c
to

rs

object

part

scene

material

texture

color

AO
G
N
et

-6
0M

AO
G
N
et

-4
0M

R
es

N
et

-1
01

R
es

N
et

-1
52

AO
G
N
et

-1
2M

R
es

N
et

-5
0

D
en

se
N
et

-1
61

R
es

N
et

-1
8

G
oo

gL
eN

et
VG

G

Ale
xN

et

0

500

1000

1500

2000

2500

N
u
m

b
e
r

o
f
d
e
te

c
to

rs

object

part

scene

material

texture

color

Figure 6. Comparisons of model interpretability using the network

dissection method [3] on ImageNet pretrained networks.

of the three AOGNets are: AOGNet-12M uses stages of

(22, 41, 43, 21) with filter channels (32, 128, 256, 512, 936),
AOGNet-40M uses stages of (22, 41, 44, 21) with fil-

ter channels (60, 240, 448, 968, 1440), and AOGNet-

60M uses stages of (22, 42, 45, 21) withe filter channels

(64, 256, 512, 1160, 1400).

Training settings. We adopt random parameter initial-

ization for filter weights. For Batch Normalization (BN)

layers, we use 0 to initialize all offset parameters. We use

1 to initialize all scale parameters except for the last BN

layer in each T () where we initialize the scale parameter

by 0 as done in [16]. We use Dropout [30] with drop rate

Method #Params ǫ = 0.1 ǫ = 0.3 clean

ResNet-101 44.5M 12.3 0.40 77.37

ResNet-152 60.2M 16.3 0.85 78.31

DenseNet-161 28.7M 13.0 2.1 77.65

AOGNet-12M 12.0M 18.1 1.4 77.72

AOGNet-40M 40.3M 28.3 2.2 80.18

AOGNet-60M 60.1M 30.2 2.6 80.66

Table 2. Top-1 accuracy comparisons under white-box adversarial

attack using 1-step FGSM [15] with the Foolbox toolkit [48].

0.1 in the last two stages. We use 8 GPUs (NVIDIA V100)

in training. The batch size is 128 per GPU (1024 in total).

The initial learning rate is 0.4, and the cosine learning rate

scheduler [41] is used with weight decay 1× 10−4 and mo-

mentum 0.9. We train AOGNet with SGD for 120 epochs

which include 5 epochs for linear warm-up following [16].

Results and Analyses: AOGNets obtain the best ac-

curacy and model interpretability. Table 1 shows the re-

sults, and Fig. 5 shows plots for the top-1 error rates and

training losses. Our AOGNets are the best among the mod-

els with comparable model sizes in comparison in terms of

top-1 and top-5 accuracy. Our small AOGNet-12M out-

performs ResNets [21] (44.5M and 60.2M) by 1.32% and

0.72% respectively. We note that our AOGNets use the

same bottleneck operation function as ResNets, so the im-

provement must be contributed by the AOG building block

structure. Our AOGNet-40M obtains better performance

than all other methods in comparison, including ResNeXt-

101 [63]+SE [24] (48.9M) which represents the most pow-

erful and widely used combination in practice. AOGNet-

40M also obtains better performance than the runner-up,

DPN-98 [6] (61.6M), which indicates that the hierarchi-

cal and compositional integration of the DenseNet- and

ResNet-aggregation in our AOG building block is more ef-

fective than the cascade-based integration in the DPN [6].

Our AOGNet-60M achieves the best results. The FLOPs of

our AOGNet-60M are slightly higher than DPN-98 partially

because DPN uses ResNeXt operation (i.e., group conv.).

Model Interpretability has been recognized as a critical

concern in developing deep learning based AI systems [7].

We use the network dissection metric [3] which compares

the number of unique “detectors” (i.e., filter kernels) in the

last convolution layer. Our AOGNet obtains the best score

in comparison (Fig. 6), which indicates the AOG building

block has great potential to induce model interpretabilty by

design, while achieving the best accuracy performance.

Adversarial robustness is another crucial issue faced by

many DNNs [2]. We conduct a simple experiment to com-

pare the out-of-the-box adversarial robustness of different

DNNs. Table 2 shows the results. Under the vanilla set-

tings, our AOGNets show better potential in adversarial de-

fense, especially when the perturbation energy is controlled

relatively low (i.e. ǫ = 0.1). We will investigate this with

different attacks and adversarial training in future work.

Mobile settings. We train an AOGNet-4M under the typ-

ical mobile settings [23]. Table 3 shows the comparison

6226

Method #Params FLOPS top-1 top-5

MobileNetV1 [23] 4.2M 575M 29.4 10.5

SqueezeNext [14] 4.4M - 30.92 10.6

ShuffleNet (1.5) [69] 3.4M 292M 28.5 -

ShuffleNet (x2) [69] 5.4M 524M 26.3 -

CondenseNet (G=C=4) [25] 4.8M 529M 26.2 8.3

MobileNetV2 [51] 3.4M 300M 28.0 9.0

MobileNetV2 (1.4) [51] 6.9M 585M 25.3 7.5

NASNet-C (N=3) [72] 4.9M 558M 27.5 9.0

AOGNet-4M 4.2M 557M 26.2 8.24

Table 3. The top-1 and top-5 error rates (%) on the ImageNet-1K

validation set under mobile settings.

results. We obtain performance on par to the popular net-

works specifically designed for mobile platforms such as

the MobileNets [23, 51] and ShuffleNets [69]. Our AOGNet

also outperforms the auto-searched network, NASNet [72]

(which used around 800 GPUs in search). We note that we

use the same AOGNet structure, thus showing promising

device-agnostic capability of our AOGNets. This is poten-

tially important and useful for deploying DNNs to different

platforms in practice since no extra efforts of hand-crafting

or searching neural architectures are entailed.

4.3. Object Detection and Segmentation in COCO

MS-COCO is one the widely used benchmarks for object

detection and segmentation [40]. It consists of 80 object

categories. We train AOGNet in the COCO train2017

set and evaluate in the COCO val2017 set. We report the

standard COCO metrics of Average Precision (AP), AP50,

and AP75, for bounding box detection (APbb) and instance

segmentation, i.e. mask prediction (APm). We experiment

on the Mask-RCNN system [20] using the state-of-the-art

implementation, maskrcnn-benchmark [42]. We use

AOGNets pretrained on ImageNet-1K as the backbones. In

fine-tuning for object detection and segmentation, we freeze

all the BN parameters as done for the ResNet [21] and

ResNeXt [63] backbones. We keep all remaining aspects

unchanged. We test both the C4 and FPN settings.

Results. Table 4 shows the comparison results. Our

AOGNets obtain better results than the ResNet [21] and

ResNeXt [63] backbones with smaller model sizes and sim-

ilar or slightly better inference time. The results show the

effectiveness of our AOGNets learning better features in ob-

ject detection and segmentation tasks.

4.4. Ablation Study

We conduct an ablation study which investigates the ef-

fects of (i) RS: Removing Symmetric child nodes of OR-

nodes in the pruned AOG building blocks, and of (ii) LC:

adding Lateral Connections. As Table 5 shows, the two

components, RS and LC, improve performance. The results

are consistent with our design intuition and principles. The

RS component facilitates higher feature dimensions due to

the reduced structural complexity, and the LC component

increases the effective depth of nodes on the lateral flows.

Method #Params t (s/img) APbb APbb
50 APbb

75 APm APm
50 APm

75

ResNet-50-C4 35.9M 0.130 35.6 56.1 38.3 31.5 52.7 33.4

ResNet-101-C4 54.9M 0.180 39.2 59.3 42.2 33.8 55.6 36.0

AOGNet-12M-C4 14.6M 0.092 36.8 56.3 39.8 32.0 52.9 33.7

AOGNet-40M-C4 48.1M 0.184 41.4 61.4 45.2 35.5 57.8 37.7

ResNet-50-FPN 44.3M 0.125 37.8 59.2 41.1 34.2 56.0 36.3

ResNet-101-FPN 63.3M 0.145 40.1 61.7 44.0 36.1 58.1 38.3

ResNeXt-101-FPN 107.4M 0.202 42.2 63.9 46.1 37.8 60.5 40.2

AOGNet-12M-FPN 31.2M 0.122 38.0 59.8 41.3 34.6 56.6 36.4

AOGNet-40M-FPN 59.4M 0.147 41.8 63.9 45.7 37.6 60.3 40.1

AOGNet-60M-FPN 78.9M 0.171 42.5 64.4 46.7 37.9 60.9 40.3

Table 4. Mask-RCNN results on coco val2017 using the 1x train-

ing schedule. Results of ResNets and ResNeXts are reported by

the maskrcnn-benchmark.

Method #Params FLOPS CIFAR10 CIFAR100

AOGNet 4.24M 0.65G 3.75 19.20

AOGNet+LC 4.24M 0.65G 3.70 19.09

AOGNet+RS 4.23M 0.70G 3.57 18.64

AOGNet+RS+LC 4.23M 0.70G 3.52 17.99

Table 5. An ablation study of our AOGNets using the mean error

rate across 5 runs. In the first two rows, the AOGNets use full

structure, and the pruned structure in the last two rows. The feature

dimensions of node operations are accordingly specified to keep

model sizes comparable.

5. Conclusions and Discussions

This paper proposes grammar-guided network genera-

tors which construct compositional grammatical architec-

tures for deep learning in an effective way. It presents deep

AND-OR Grammar networks (AOGNets). The AOG com-

prises a phrase structure grammar and a dependency gram-

mar. An AOGNet consists of a number of stages each of

which comprises a number of AOG building blocks. Our

AOG building block harnesses the best of grammar models

and DNNs for deep learning. AOGNet obtains state-of-the-

art performance. In ImageNet-1K [49], AOGNet obtains

better performance than all state-of-the-art networks under

fair comparisons. AOGNet also obtains the best model in-

terpretability score using network dissection [3]. AOGNet

further shows better potential in adversarial defense. In MS-

COCO [40], AOGNet obtains better performance than the

ResNet and ResNeXt backbones in Mask R-CNN [20].

Discussions. We hope this paper encourages further ex-

ploration in learning grammar-guided network generators.

The AOG can be easily extended to adopt k-branch split-

ting rules with k > 2. Other types of edges can also be eas-

ily introduced in the AOG such as dense lateral connections

and top-down connections. Node operations can also be

extended to exploit grammar-guided transformation. And,

better parameter initialization methods need to be studied

for the AOG structure.

Ackowledgement

This work is supported by ARO grant W911NF1810295

and DoD DURIP grant W911NF1810209. Some early ex-

periments used the XSEDE [59] at the SDSC Comet GPU

Nodes through allocation IRI180024 (XSEDE is supported

by NSF grant ACI-1548562).

6227

References

[1] Sanjeev Arora, Aditya Bhaskara, Rong Ge, and Tengyu Ma.

Provable bounds for learning some deep representations. In

Proceedings of the 31th International Conference on Ma-

chine Learning, ICML, pages 584–592, 2014. 2, 3

[2] Anish Athalye and Ilya Sutskever. Synthesizing robust ad-

versarial examples. CoRR, abs/1707.07397, 2017. 7

[3] David Bau, Bolei Zhou, Aditya Khosla, Aude Oliva, and

Antonio Torralba. Network dissection: Quantifying inter-

pretability of deep visual representations. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, 2017. 1, 7, 8

[4] Ken Chatfield, Karen Simonyan, Andrea Vedaldi, and An-

drew Zisserman. Return of the devil in the details: Delving

deep into convolutional nets. In British Machine Vision Con-

ference, BMVC, 2014. 4

[5] Tianshui Chen, Riquan Chen, Lin Nie, Xiaonan Luo, Xi-

aobai Liu, and Liang Lin. Neural task planning with

AND-OR graph representations. IEEE Trans. Multimedia,

21(4):1022–1034, 2019. 4

[6] Yunpeng Chen, Jianan Li, Huaxin Xiao, Xiaojie Jin,

Shuicheng Yan, and Jiashi Feng. Dual path networks. arXiv

preprint arXiv:1707.01629, 2017. 1, 2, 3, 4, 7

[7] DARPA. Explainable artificial intelligence

(xai) program, http://www.darpa.mil/program/

explainable-artificial-intelligence, full solicitation at

http://www.darpa.mil/attachments/ darpa-baa-16-53.pdf. 7

[8] Thomas Elsken, Jan Hendrik Metzen, and Frank Hut-

ter. Neural architecture search: A survey. CoRR,

abs/1808.05377, 2018. 4

[9] Pedro F. Felzenszwalb. Object detection grammars. In IEEE

International Conference on Computer Vision Workshops,

ICCV, page 691, 2011. 2, 4

[10] Pedro F. Felzenszwalb, Ross B. Girshick, David McAllester,

and Deva Ramanan. Object detection with discriminatively

trained part-based models. IEEE Trans. Pattern Anal. Mach.

Intell. (PAMI), 32(9):1627–1645, Sept. 2010. 3, 5

[11] King Sun Fu and J. E. Albus, editors. Syntactic pattern

recognition : applications. Communication and cybernetics.

Springer-Verlag, Berlin, New York, 1977. 3, 5

[12] Stuart Geman, Daniel Potter, and Zhi Yi Chi. Composition

systems. Quarterly of Applied Mathematics, 60(4):707–736,

2002. 2, 3, 5

[13] D. George, W. Lehrach, K. Kansky, M. Lázaro-Gredilla,

C. Laan, B. Marthi, X. Lou, Z. Meng, Y. Liu, H. Wang,

A. Lavin, and D. S. Phoenix. A generative vision model

that trains with high data efficiency and breaks text-based

captchas. Science, 2017. 2, 3, 4, 5

[14] Amir Gholami, Kiseok Kwon, Bichen Wu, Zizheng Tai,

Xiangyu Yue, Peter Jin, Sicheng Zhao, and Kurt Keutzer.

Squeezenext: Hardware-aware neural network design. arXiv

preprint arXiv:1803.10615, 2018. 8

[15] Ian Goodfellow, Jonathon Shlens, and Christian Szegedy.

Explaining and harnessing adversarial examples. In ICLR,

2015. 7

[16] Priya Goyal, Piotr Dollár, Ross B. Girshick, Pieter Noord-

huis, Lukasz Wesolowski, Aapo Kyrola, Andrew Tulloch,

Yangqing Jia, and Kaiming He. Accurate, large minibatch

SGD: training imagenet in 1 hour. CoRR, abs/1706.02677,

2017. 7

[17] Ulf Grenander and Michael Miller. Pattern Theory: From

Representation to Inference. Oxford University Press. 2

[18] Dongyoon Han, Jiwhan Kim, and Junmo Kim. Deep pyra-

midal residual networks. IEEE CVPR, 2017. 3

[19] David G. Hays. Dependency theory: A formalism and some

observations. Language, 40(4):511–525, 1964. 3, 5

[20] Kaiming He, Georgia Gkioxari, Piotr Dollár, and Ross B.

Girshick. Mask R-CNN. In IEEE International Conference

on Computer Vision, ICCV 2017, Venice, Italy, October 22-

29, 2017, pages 2980–2988, 2017. 1, 8

[21] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In IEEE

Conference on Computer Vision and Pattern Recognition

(CVPR), 2016. 1, 2, 3, 4, 6, 7, 8

[22] Geoffrey Hinton. What is wrong with convolutional neural

nets? the 2017 - 2018 Machine Learning Advances and Ap-

plications Seminar presented by the Vector Institute at U of

Toronto, https://www.youtube.com/watch?v=Mqt8fs6ZbHk,

August 17, 2017. 1, 2

[23] Andrew G Howard, Menglong Zhu, Bo Chen, Dmitry

Kalenichenko, Weijun Wang, Tobias Weyand, Marco An-

dreetto, and Hartwig Adam. Mobilenets: Efficient convolu-

tional neural networks for mobile vision applications. arXiv

preprint arXiv:1704.04861, 2017. 7, 8

[24] Jie Hu, Li Shen, and Gang Sun. Squeeze-and-excitation net-

works. CoRR, abs/1709.01507, 2017. 1, 4, 7

[25] Gao Huang, Shichen Liu, Laurens van der Maaten, and Kil-

ian Q Weinberger. Condensenet: An efficient densenet using

learned group convolutions. group, 3(12):11, 2017. 8

[26] Gao Huang, Zhuang Liu, Laurens van der Maaten, and Kil-

ian Q Weinberger. Densely connected convolutional net-

works. In Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition, 2017. 1, 2, 3, 4, 6, 7

[27] Gao Huang, Yu Sun, Zhuang Liu, Daniel Sedra, and Kil-

ian Q. Weinberger. Deep networks with stochastic depth.

In Computer Vision - ECCV 2016 - 14th European Confer-

ence, Amsterdam, The Netherlands, October 11-14, 2016,

Proceedings, Part IV, pages 646–661, 2016. 4

[28] Sergey Ioffe and Christian Szegedy. Batch normalization:

Accelerating deep network training by reducing internal co-

variate shift. In David Blei and Francis Bach, editors, Pro-

ceedings of the 32nd International Conference on Machine

Learning (ICML-15), pages 448–456. JMLR Workshop and

Conference Proceedings, 2015. 2, 4

[29] A. Krizhevsky and G. Hinton. Learning multiple layers of

features from tiny images. Master’s thesis, Department of

Computer Science, University of Toronto, 2009. 6

[30] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton.

Imagenet classification with deep convolutional neural net-

works. In Neural Information Processing Systems (NIPS),

pages 1106–1114, 2012. 1, 2, 4, 6, 7

[31] Brenden M. Lake, Ruslan Salakhutdinov, and Joshua B.

Tenenbaum. Human-level concept learning through proba-

bilistic program induction. Science, 350(6266):1332–1338,

2015. 2

6228

[32] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum. Human-

level concept learning through probabilistic program induc-

tion. Science, 2015. 4

[33] Brenden M. Lake, Tomer D. Ullman, Joshua B. Tenenbaum,

and Samuel J. Gershman. Building machines that learn and

think like people. CoRR, abs/1604.00289, 2016. 4

[34] Gustav Larsson, Michael Maire, and Gregory

Shakhnarovich. Fractalnet: Ultra-deep neural networks

without residuals. CoRR, abs/1605.07648, 2016. 4

[35] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

1, 4

[36] Xiaodan Liang, Liang Lin, and Liangliang Cao. Learning la-

tent spatio-temporal compositional model for human action

recognition. CoRR, abs/1502.00258, 2015. 4

[37] Liang Lin, Xiaolong Wang, Wei Yang, and Jian-Huang

Lai. Discriminatively trained and-or graph models for object

shape detection. IEEE Trans. Pattern Anal. Mach. Intell.,

37(5):959–972, 2015. 4

[38] Liang Lin, Tianfu Wu, Jake Porway, and Zijian Xu. A

stochastic graph grammar for compositional object repre-

sentation and recognition. Pattern Recognition, 42(7):1297–

1307, 2009. 4

[39] Min Lin, Qiang Chen, and Shuicheng Yan. Network in net-

work. CoRR, abs/1312.4400, 2013. 3, 4

[40] Tsung-Yi Lin, Michael Maire, Serge J. Belongie, Lubomir D.

Bourdev, Ross B. Girshick, James Hays, Pietro Perona, Deva

Ramanan, Piotr Dollár, and C. Lawrence Zitnick. Microsoft

COCO: common objects in context. CoRR, abs/1405.0312,

2014. 6, 8

[41] Ilya Loshchilov and Frank Hutter. SGDR: stochastic gradient

descent with restarts. CoRR, abs/1608.03983, 2016. 7

[42] Francisco Massa and Ross Girshick. maskrcnn-benchmark:

Fast, modular reference implementation of Instance Seg-

mentation and Object Detection algorithms in PyTorch.

https://github.com/facebookresearch/

maskrcnn-benchmark, 2018. Accessed: [Insert date

here]. 8

[43] David Mumford. Grammar isn’t merely part of lan-

guage. http://www.dam.brown.edu/people/

mumford/blog/2016/grammar.html. 2

[44] D. Mumford and A. Desolneux. Pattern Theory, the Stochas-

tic Analysis of Real World Signals. AKPeters/CRC Press. 2

[45] Alejandro Newell, Kaiyu Yang, and Jia Deng. Stacked

hourglass networks for human pose estimation. CoRR,

abs/1603.06937, 2016. 4

[46] Jongchan Park, Sanghyun Woo, Joon-Young Lee, and In So

Kweon. Bam: bottleneck attention module. arXiv preprint

arXiv:1807.06514, 2018. 7

[47] Geoff Pleiss, Danlu Chen, Gao Huang, Tongcheng Li,

Laurens van der Maaten, and Kilian Q. Weinberger.

Memory-efficient implementation of densenets. CoRR,

abs/1707.06990, 2017. 7

[48] Jonas Rauber, Wieland Brendel, and Matthias Bethge. Fool-

box: A python toolbox to benchmark the robustness of ma-

chine learning models. arXiv preprint arXiv:1707.04131,

2017. 7

[49] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and

Li Fei-Fei. ImageNet Large Scale Visual Recognition Chal-

lenge. Int. J. Comput. Vision (IJCV), 115(3):211–252, 2015.

4, 6, 8

[50] S. Sabour, N. Frosst, and G. E Hinton. Dynamic Routing

Between Capsules. ArXiv e-prints, Oct. 2017. 1

[51] Mark Sandler, Andrew Howard, Menglong Zhu, Andrey Zh-

moginov, and Liang-Chieh Chen. Mobilenetv2: Inverted

residuals and linear bottlenecks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition,

pages 4510–4520, 2018. 8

[52] Xi Song, Tianfu Wu, Yunde Jia, and Song-Chun Zhu. Dis-

criminatively trained and-or tree models for object detec-

tion. In Proceedings of 2013 IEEE Conference on Computer

Vision and Pattern Recognition (CVPR), pages 3278–3285,

2013. 1, 2, 3, 4, 5

[53] Rupesh Kumar Srivastava, Klaus Greff, and Jürgen Schmid-

huber. Highway networks. CoRR, abs/1505.00387, 2015. 3,

4

[54] Phillip D. Summers. A methodology for LISP program con-

struction from examples. J. ACM, 24(1):161–175, 1977. 4

[55] Christian Szegedy, Sergey Ioffe, and Vincent Vanhoucke.

Inception-v4, inception-resnet and the impact of residual

connections on learning. CoRR, abs/1602.07261, 2016. 1,

2, 3, 4

[56] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott E. Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In IEEE Conference on Computer Vision and

Pattern Recognition, CVPR 2015, Boston, MA, USA, June

7-12, 2015, pages 1–9, 2015. 4

[57] Wei Tang, Pei Yu, and Ying Wu. Deeply learned compo-

sitional models for human pose estimation. In ECCV (3),

volume 11207 of Lecture Notes in Computer Science, pages

197–214. Springer, 2018. 4

[58] Wei Tang, Pei Yu, Jiahuan Zhou, and Ying Wu. Towards a

unified compositional model for visual pattern modeling. In

ICCV, pages 2803–2812. IEEE Computer Society, 2017. 4

[59] John Towns, Timothy Cockerill, Maytal Dahan, Ian T. Fos-

ter, Kelly P. Gaither, Andrew S. Grimshaw, Victor Hazle-

wood, Scott Lathrop, David Lifka, Gregory D. Peterson,

Ralph Roskies, J. Ray Scott, and Nancy Wilkins-Diehr.

XSEDE: accelerating scientific discovery. Computing in Sci-

ence and Engineering, 16(5):62–74, 2014. 8

[60] Jingdong Wang, Zhen Wei, Ting Zhang, and Wenjun Zeng.

Deeply-fused nets. CoRR, abs/1605.07716, 2016. 4

[61] Sanghyun Woo, Jongchan Park, Joon-Young Lee, and In

So Kweon. Cbam: Convolutional block attention module.

In Proceedings of the European Conference on Computer Vi-

sion (ECCV), pages 3–19, 2018. 7

[62] Tianfu Wu, Yang Lu, and Song-Chun Zhu. Online ob-

ject tracking, learning and parsing with and-or graphs.

IEEE Trans. Pattern Anal. Mach. Intell. (PAMI), DOI:

10.1109/TPAMI.2016.2644963, 2016. 3

[63] Saining Xie, Ross B. Girshick, Piotr Dollár, Zhuowen Tu,

and Kaiming He. Aggregated residual transformations for

6229

deep neural networks. CoRR, abs/1611.05431, 2016. 1, 2, 3,

4, 7, 8

[64] Quanming Yao, Mengshuo Wang, Hugo Jair Escalante, Is-

abelle Guyon, Yi-Qi Hu, Yu-Feng Li, Wei-Wei Tu, Qiang

Yang, and Yang Yu. Taking human out of learning appli-

cations: A survey on automated machine learning. CoRR,

abs/1810.13306, 2018. 4

[65] Fisher Yu, Dequan Wang, and Trevor Darrell. Deep layer

aggregation. In CVPR, 2018. 3, 4

[66] Sergey Zagoruyko and Nikos Komodakis. Wide residual net-

works. In Proceedings of the British Machine Vision Confer-

ence 2016, BMVC 2016, York, UK, September 19-22, 2016,

2016. 4

[67] Ting Zhang, Guo-Jun Qi, Bin Xiao, and Jingdong Wang. In-

terleaved group convolutions. In IEEE International Confer-

ence on Computer Vision, ICCV 2017, Venice, Italy, October

22-29, 2017, pages 4383–4392, 2017. 3, 4

[68] Xingcheng Zhang, Zhizhong Li, Chen Change Loy, and

Dahua Lin. Polynet: A pursuit of structural diversity in very

deep networks. CoRR, abs/1611.05725, 2016. 4

[69] Xiangyu Zhang, Xinyu Zhou, Mengxiao Lin, and Jian Sun.

Shufflenet: An extremely efficient convolutional neural net-

work for mobile devices. arXiv preprint arXiv:1707.01083,

2017. 8

[70] Long Zhu, Yuanhao Chen, Yifei Lu, Chenxi Lin, and Alan L.

Yuille. Max margin AND/OR graph learning for parsing the

human body. In 2008 IEEE Computer Society Conference on

Computer Vision and Pattern Recognition (CVPR), 2008. 1,

2, 3, 4, 5

[71] Song Chun Zhu and David Mumford. A stochastic grammar

of images. Foundations and Trends in Computer Graphics

and Vision, 2(4):259–362, 2006. 1, 2, 3, 4, 5

[72] Barret Zoph, Vijay Vasudevan, Jonathon Shlens, and Quoc V

Le. Learning transferable architectures for scalable image

recognition. arXiv preprint arXiv:1707.07012, 2(6), 2017. 8

6230

