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Abstract

Successful visual recognition networks benefit from ag-

gregating information spanning from a wide range of

scales. Previous research has investigated information fu-

sion of connected layers or multiple branches in a block,

seeking to strengthen the power of multi-scale representa-

tions. Despite their great successes, existing practices often

allocate the neurons for each scale manually, and keep the

same ratio in all aggregation blocks of an entire network,

rendering suboptimal performance. In this paper, we pro-

pose to learn the neuron allocation for aggregating multi-

scale information in different building blocks of a deep net-

work. The most informative output neurons in each block

are preserved while others are discarded, and thus neurons

for multiple scales are competitively and adaptively allo-

cated. Our scale aggregation network (ScaleNet) is con-

structed by repeating a scale aggregation (SA) block that

concatenates feature maps at a wide range of scales. Fea-

ture maps for each scale are generated by a stack of down-

sampling, convolution and upsampling operations. The

data-driven neuron allocation and SA block achieve strong

representational power at the cost of considerably low com-

putational complexity. The proposed ScaleNet, by replacing

all 3×3 convolutions in ResNet with our SA blocks, achieves

better performance than ResNet and its outstanding vari-

ants like ResNeXt and SE-ResNet, in the same computa-

tional complexity. On ImageNet classification, ScaleNets

absolutely reduce the top-1 error rate of ResNets by 1.12

(101 layers) and 1.82 (50 layers). On COCO object detec-

tion, ScaleNets absolutely improve the mAP with backbone

of ResNets by 3.6 and 4.6 on Faster-RCNN, respectively.

Code and models are released on https://github.com/Eli-

YiLi/ScaleNet.

1. Introduction

Deep convolutional neural networks (CNNs) have been

successfully applied to a wide range of computer vision

tasks, such as image classification [18], object detec-

tion [25], and semantic segmentation [22], due to their
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Figure 1: Illustration of the data-driven neuron allocation for the

scale aggregation (SA) block. The proportion of output neurons

(or channels) of different scales in an SA block is learned, and

thus adaptively changes across layers in a network.

powerful end-to-end learnable representations. From bot-

tom to top, the layers of CNNs have larger receptive fields

with coarser scales, and their corresponding representations

become more semantic. Aggregating context information

from multiple scales has been proved to be effective for im-

proving accuracy [32, 9, 13, 20, 6, 3, 16, 28, 4]. Small

scale representations encode local structures such as tex-

tures, corners and edges, and are useful for localization,

while coarse scale representations encode global contexts

such as object categories, object interaction and scene, and

thus clarify local confusion.

There exist many previous attempts to fuse multi-scale

representations by designing network architecture. They

aggregate multi-scale representations of connected layers

with different depths [32, 9, 13, 20, 6, 3, 16, 12, 26] or

multiple branches in a block with different convolutional

kernel sizes [28, 4]. The proportion of multi-scale rep-

resentations for in each aggregation block is manually set

in a trial-and-error process and kept the same in the entire

network. Ideally, the most efficient architecture design of

multi-scale information aggregation is adaptive. The pro-
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Figure 2: Comparison of the ScaleNets and modern architectures’ top-1 error rates (single-crop testing) on the ImageNet validation

dataset (left) and mAP on MS COCO mini-validation set (right) as a function of FLOPs during testing. ScaleNet-50-light indicates a

light ScaleNet which is also constructed from ResNet-50. Architectures are given in the supplementary material.

portion of neurons for each scale is determinate according

to the importance of the scale in gathering context. Such

proportion should also be adaptive to the stage in the net-

work. Bottom layers may prefer fine scales and top layers

may prefer coarse scales.

In this paper, we propose a novel data-driven neuron

allocation method for multi-scale aggregation, which au-

tomatically learns the neuron proportion for each scale in

all aggregation blocks of one network. We model the neu-

ron allocation as one network optimization problem under

FLOPs constraints which is solved by SGD and back pro-

jection. Concretely, we train one seed network with abun-

dant output neurons for all scales using SGD, and then

project the trained network into one feasible network that

meets the constraints by selecting the top most informative

output neurons amongst all scales. In this way, the neuron

allocation for multi-scale representations is learnable and

tailored for the network architecture.

To effectively extract and utilize multi-scale information,

we present a simple yet effective Scale Aggregation (SA)

block to strengthen the multi-scale representational power

of CNNs. Instead of generating multi-scale representations

with connected layers of different depths or multi-branch

different kernel sizes as done in [28, 9, 32, 9, 13, 20, 6,

3, 16], an SA block explicitly downsamples the input fea-

ture maps with a group of factors to small sizes, and then

independently conducts convolution, resulting in represen-

tations in different scales. Finally the SA block upsam-

ples the multi-scale representations back to the same res-

olution as that of the input feature maps and concatenate

them in channel dimension together. We use SA blocks to

replace all 3×3 convolutions in ResNets to form ScaleNets.

Thanks to downsampling in each SA block, ScaleNets are

very efficient by decreasing the sampling density in the

spatial domain, which is independent yet complementary

to network acceleration approaches in the channel domain.

Thanks to the downsampling operation, the proposed SA

block is more computationally efficient and can capture a

larger scale (or receptive field) range as shown in Figure 6,

compared with previous multi-scale architecture.

We apply the proposed technique of data-driven neuron

allocation to the SA block to form a learnable SA block. To

demonstrate the effectiveness of the learnable SA block, we

use learnable SA blocks to replace all 3× 3 convolutions in

ResNet to form a novel architecture called ScaleNet. The

proposed ScaleNet outperforms ResNet and its outstand-

ing variants such as ResNeXt [31] and SE-ResNet [11], as

well as recent popular architectures such as DenseNet [13],

with impressive margins on image classification and ob-

ject detection while keeping the same computational com-

plexity as shown in Figure 2. Specifically, ScaleNet-50

and ScaleNet-101 absolutely reduces the top-1 error rate of

ResNet-101 and ResNet-50 by 1.12% and 1.82% on Ima-

geNet respectively. Benefiting from the strong multi-scale

representation power of learnable SA blocks, ScaleNets

are considerably effective on object detection. The Faster

RCNN [25] with backbone ScaleNet-101 and ScaleNet-50

absolutely improve the mAP of those with ResNet-101 and

ResNet-50 by 3.6 and 4.6 on MS COCO.

2. Related Work

Multi-scale representation aggregation has been studied

for a long time. It can be categorized into shortcut connec-

tion approaches and multi-branch approaches.

Shortcut connection approaches. Connected layers
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with different depths usually have different receptive fields,

and thus multi-scale representations. Shortcut connections

between layers not only maximize information flow to avoid

vanishing gradient, but also strengthen multi-scale repre-

sentation power of CNNs. ResNet [9], DenseNet [13],

and Highway Network [27] fuse multi-scale information

by identity shortcut connections or gating function based

ones. Deep layer aggregation [32] further extends short-

cut connection with trees that cross stages. In object de-

tection, FPN [20] fuses coarse scale representations to fine

scale ones from top to down in one detector’s header [20].

ASIF [4] merges multi-scale representations from 4 layers

both from top to down and from down to top. HyperNet [16]

and ION [3] concatenate multi-scale features from different

layers to make prediction. All the shortcut connection ap-

proaches focus on reusing fine scale representations from

preceding layers or coarse scale ones from subsequent lay-

ers. Due to limited connection patterns between layers, the

scale (or receptive filed) range is limited. Instead, the pro-

posed approach generates a wide range scale of represen-

tations with a group of downsampling factors itself in each

SA block. Therefore, it is a general and standard module

which can replace any convolutional layer of existing net-

works, and be effectively used in various tasks such as im-

age classification and object detection as validated in our

experiments.

Multi-branch approaches. The most influential multi-

branch network is GoogleNet [28], where each branch is de-

signed with different depths and convolutional kernel sizes.

Its branches have varied receptive fields and multi-scale

representations. Similar multi-branch network is designed

for crowd counting in [4]. Different from previous multi-

branch approaches, the proposed SA block generates multi-

scale representations by downsampling the input feature

maps by different factors to expand the scale of represen-

tations. Again, it can generate representations with wider

scale range than [28, 4]. Downsampling is also used in the

context module of PSPNet [34] and ParseNet [24]. How-

ever, the context module is only used in the network header

while the proposed SA block is used in the whole backbone

and thus more general. Moreover, the neuron proportion

for each scale is manually set and fixed in the context mod-

ule while automatically learned and different from one SA

block to another in one network.

Our data-driven neuron allocation method is also related

to network pruning methods [8, 2, 30, 19] or network archi-

tecture search methods [35, 29]. However, our data-driven

neuron allocation method targets at multi-scale representa-

tion aggregation but not the whole architecture design. It

learns the neuron proportion for scales in each SA block

separately. In this way, the neuron allocation problem is

greatly simplified, and easily optimized.

1 x 1 conv

3 x 3 conv

1 x 1 conv

+

+

upsample 

max pool  

upsample 

...

concatenate

3 x 3 conv 3 x 3 conv 3 x 3 conv
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Figure 3: Illustration of the SA block. The left shows the original

residual block, and the right shows the module after replacing the

3× 3 convolution by the SA block.

3. ScaleNets

3.1. Scale Aggregation Block

The proposed scale aggregation block is a standard com-

putational module which is constructed for any given trans-

formation Y = T(X), where X ∈ R
H×W×C , Y ∈

R
H×W×Co with C and Co being the input and output chan-

nel number respectively. T is any operator such as a con-

volution layer or a series of convolution layers. Assume

we have L scales. Each scale l is generated by sequentially

conducting a downsampling Dl, a transformation Tl and an

unsampling operator Ul:

X
′

l = Dl(X), (1)

Y
′

l = Tl(X
′

l), (2)

Yl = Ul(Y
′

l), (3)

where X
′

l ∈ R
Hl×Wl×C , Y

′

l ∈ R
Hl×Wl×Cl , and Yl ∈

R
H×W×Cl . Substitute Equation (1) and (2) into Equa-

tion (3), and concatenate all L scales together, getting

Y
′

= ‖L1Ul(Tl(Dl(X))), (4)

where ‖ indicates concatenating feature maps along the

channel dimension, and Y
′

∈ R
H×W×

∑
L

1
Cl is the final

output feature maps of the scale aggregation block.

In our implementation, the downsampling Dl with factor

s is implemented by a max pool layer with s× s kernel size

and s stride. The upsampling Ul is implemented by resizing

with the nearest neighbor interpolation.

3.2. Data­Driven Neuron Allocation

There exist L scales in each SA block. Different scales

should play different roles in blocks with different depths.

Therefore, simply allocating the output neuron proportion

of scales equally would lead to suboptimal performance.
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Our core idea is to identify the importance of each output

neuron, and then prune the unimportant neurons while pre-

serving the important ones. We employ the scale weights

(γ in the paper) of BatchNorm[15] layers of each chan-

nel to evaluate its importance. Its underlying reason is

that γ restores the original response after normalization, so

the weights are positively correlated with the feature con-

fidence. These neurons with lower weights mean they can

not extract credible features.

Let K, Ok (1 ≤ k ≤ K), and Okl (1 ≤ k ≤ K and

1 ≤ l ≤ L) denote the total SA block index of the target

network, the computational complexity budget of the kth

SA block, and the computational complexity of one output

neuron at scale l in the kth block respectively. We target at

optimally allocating neurons for each scale in the SA block

k with the budget Ok. Formally, we optimize

min
θ

F (θ), s.t. ∀k,
∑

1≤n≤Nk

Okl(θkn) ≤ Ok, (5)

where F (θ) is the loss function of the whole network with

θ being the learnable weights of the network, and θkn be-

ing the weight of nth output neuron in the kth SA block.

l(·) indicates the scale index, and Nk is the total number of

output neurons in the kth SA block.

We optimize the objective function 5 by SGD with pro-

jection. We first optimize F (θ), getting θt, we then project

θt back to the feasible domain defined by constraints for

each SA block k by optimizing

min
θ

∑

n

∣

∣V(θkn)−V(θtkn)
∣

∣

s.t.
∑

1≤n≤Nk

Okl(θkn) ≤ Ok,
(6)

where V(θkn) indicates the importance of the nth neuron

in the SA block k. It is defined to be the scale weight in

BatchNorm layer for the target channel (k, n)’s output as

done in [8]. The more important and of less computational

complexity the neuron is, the more likely it should be pre-

served. Equation (6) is greedily solved by selecting neu-

rons with top biggest V(θkn)/O
b
kl(θkn)

in each SA block

k. Note that b is an exponential balance factor of compu-

tational complexity. b is set to 0 to avoid too much hyper

parameter adjustment.

Algorithm 1 lists the procedure of neuron allocation.

First, we set a seed network by setting C neurons for each

scale (i.e., Nk = CL). Second, we train the seed network

till convergence. Third, we select the top most important

neurons in SA blocks by solving Equation( 6), and get a new

network. Finally, we retrain the new network from scratch.

3.3. Instantiations

The proposed SA block can be integrated into stan-

dard architectures by replacing its existing convolutional

Algorithm 1 Data-driven neuron allocation

Initialize a seed network by setting Nk = LC
Train the seed network till convergence

for k = 1 : K do

for n = 1 : Nk do

Compute pkn = V(θkn)/O
b
kl(θkn)

end

Select neurons with top biggest pkn under the constraint

of Equation( 6)

end

Retrain the new network till convergence.

layers or modules. To illustrate this point, we develop

ScaleNets by incorporating SA blocks into the recent popu-

lar ResNets [9].

In ResNets [9], 3 × 3 convolutions account for most of

the whole network computational complexity. Therefore,

we replace all 3 × 3 layers with SA blocks as shown in

Figure 3. We replace the stride in 3 × 3 convolution by

extra max pool layer as done in DenseNets [13]. In this way,

all 3 × 3 layers can be replaced by SA blocks consistently.

As shown in Table 1, using ResNet-50, ResNet-101, and

ResNet-152 as the start points, we obtain the corresponding

ScaleNets1 by setting the computational complexity budget

of each SA block to that of its corresponding 3× 3 conv in

the residual block during the neuron allocation procedure.

3.4. Computational Complexity

The proposed SA block is of practical use. It makes

ScaleNets efficient, because the feature maps are smaller.

Theoretically, if we set the output channel number of one

SA block to C (i.e.,
∑L

1 Cl = C), the saved FLOPs is

9C(
∑L

1 HlWlCl)−9C(HWC), Take ScaleNet-50-light as

an example, it reduces FLOPs of its start point ResNet-50

by 29% while absolutely improving the single-crop top-1

accuracy by 0.98 on ImageNet and performs better than the

state-of-art pruning methods shown in Table 2.

We evaluate the running time with Tensorflow on a

GTX1060 GPU and i7 CPU. The image is resize to 224 ×
224 and batch size is 16. The inference time of ScaleNet-50,

ResNet-50, SE-ResNet-50, ResNeXt-50 are 93ms, 95ms,

98ms, 147ms respectively, which demonstrate the superior-

ity of our proposed architecture.

3.5. Implementation

Our implementation for ImageNet follows the practice

in [9, 11, 28]. We perform standard data augmentation with

random cropping, random horizontal flipping and photo-

metric distortions [28] during training. All input images are

1Note that the number indicates the layer number of their start points

but not ScaleNets.
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output size ScaleNet-50 ScaleNet-101 ScaleNet-152

112×112 7× 7 conv, stride 2

56×56 3× 3 max pool, stride 2

56×56













1× 1 conv, 64
D[1,2,4,7]

3× 3 conv[Cl,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 256













×3













1× 1 conv, 64
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 256













×3













1× 1 conv, 64
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 256













×3

28×28 2× 2 max pool, stride 2

28×28













1× 1 conv, 128
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 512













×4













1× 1 conv, 128
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 512













×4













1× 1 conv, 128
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 512













×8

14×14 2× 2 max pool, stride 2

14×14













1× 1 conv, 256
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 1024













×6













1× 1 conv, 256
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 1024













×23













1× 1 conv, 256
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 1024













×36

7× 7 2× 2 max pool, stride 2

7× 7













1× 1 conv, 512
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 2048













×3













1× 1 conv, 512
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 2048













×3













1× 1 conv, 512
D[1,2,4,7]

3× 3 conv[C1,C2,C3,C4]

U[1,2,4,7]

1× 1 conv, 2048













×3

1× 1 avg pool, 1000-d fc, softmax

Table 1: Architectures of ScaleNets. D[1,2,4,7] indicates 1× 1, 2× 2, 4× 4, and 7× 7 downsampling layers. U[1,2,4,7] indicates 1× 1,

2× 2, 4× 4, and 7× 7 upsampling layers. We select 7× 7 (but not 8×8) downsampling and upsampling layers since the spatial resolution

of last stage of networks is 7 × 7. 3× 3 conv[C1,C2,C3,C4] indicates 3 × 3 convolution layers with output channels of C1, C2, C3, and

C4. Note that C1, C2, C3, and C4 are different from one SA block to another, and are detailed in the supplementary material.

top-1 acc.↑ FLOPs(109)↓
CP-ResNet-50 [1, 10] -3.68 1.5

SSS-ResNet-50 [14] -1.94 1.3

NISP-ResNet-50 [33] -0.21 1.1

LCP-ResNet-50 [7] +0.09 1.0

ScaleNet-50-light +0.98 1.2

Table 2: Comparison with state-of-the-art pruning methods on

ImageNet. ResNet-50 and ScaleNet-50-light are trained in same

settings, and others are reported in their papers or websites.

resized to 224×224 before feeding them into networks. Op-

timization is performed using synchronous SGD with mo-

mentum 0.9, weight decay 0.0001 and batch size 256 on

servers with 8 GPUs. The initial learning rate is set to 0.1

and decreased by a factor of 10 every 30 epoches. All mod-

els are trained for 100 epoches from scratch.

On CIFAR-100, we train models with a batch size of 64

for 300 epoches. The initial learning rate is set to 0.1, and

is reduced by 10 times in 150 and 225. The data augmen-

tation only includes random horizontal flipping and random

cropping with 4 pixels padding.

On MS COCO, we train all detection models using the

publicly available implementation2 of Faster RCNN. Mod-

els are trained on servers with 8 GPUs. The batch size and

epoch number are set to 16 and 10 respectively. The initial

learning rate is set to 0.01 and reduced by a factor of 10 at

epoch 4 and epoch 8.

4. Experiments

4.1. ImageNet Classification

We evaluate our method on the ImageNet 2012 classifi-

cation dataset [18] that consists of 1000 classes. The models

are trained on the 1.28 million training images, and evalu-

ated on the 50k validation images with both top-1 and top-5

error rate. When evaluating the models we apply centre-

cropping so that 224×224 pixels are cropped from each im-

age after its shorter edge is first resized to 256.

2https://github.com/jwyang/faster-rcnn.pytorch
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method original re-implementation ScaleNet

top-1 err. top-5 err. top-1 err. top-5 err. GFLOPs top-1 err. top-5 err. GFLOPs

ResNet-50 24.7 7.8 24.02 7.13 4.1 22.20(−1.82) 6.04(−1.09) 3.8

ResNet-101 23.6 7.1 22.09 6.03 7.8 20.97(−1.12) 5.58(−0.45) 7.5

ResNet-152 23.0 6.7 21.58 5.75 11.5 20.62(−0.96) 5.34(−0.41) 11.2

Table 3: Comparisons between ScaleNets and their baseline ResNets with single-crop error rates (%) on ImageNet validation set. The

original column refers to the reported results in the original paper. For fair comparison, we retrain the baselines using the same strategy of

training ScaleNet and report the results in the reimplementation column.

method top-1 err. top-5 err. GFLOPs

ResNeXt-50 22.2 - 4.2

ResNeXt-101 21.2 5.6 8.0

SE-ResNet-50 23.29 6.62 4.1

SE-ResNet-101 22.38 6.07 7.8

SE-ResNet-152 21.57 5.73 11.5

DenseNet-121 25.02 7.71 2.9

DenseNet-169 23.8 6.85 3.4

DenseNet-201 22.58 6.34 4.3

ScaleNet-50 22.2 6.04 3.8

ScaleNet-101 20.97 5.58 7.5

ScaleNet-152 20.62 5.34 11.2

Table 4: Comparison with state-of-the-art architectures with

single-crop top-1 and top-5 error rates (%) on ImageNet valida-

tion set.

Comparisons with baselines. We begin evaluations by

comparing the proposed ScaleNets with their correspond-

ing baseline networks in Table 3. It has been shown that

ScaleNets with different depths consistently improve their

baselines with impressive margins while using comparable

(or even a little less) computational complexity. Specifi-

cally, Compared with baselines, ScaleNet-50, 101, and 152

absolutely reduce the top-1 error rate by 1.82, 1.12 and 0.96,

the top-5 error rate by 1.09, 0.45, and 0.41 on ImageNet

respectively. ScaleNet-101 even outperforms ResNet-152,

although it has only 66% FLOPs (7.5 vs. 11.5). It suggests

that explicitly and effectively aggregating multi-scale repre-

sentations of ScaleNets can achieve considerably much per-

formance gain on image classification although deep CNNs

are robust against scale variance to some extent.

Comparisons with state-of-the-art architectures. We

next compare ScaleNets with ResNets, ResNeXts, SE-

ResNets, and DenseNets in Table 4. It has been shown

that ScaleNets consistently outperform them. Remarkably,

ScaleNet-50, 101 and 152 absolutely reduce the top-1 er-

ror rate by 1.09 , 1.41 and 0.95 compared with their coun-

terparts SE-ResNet-50, 101 and 152 respectively. Surpris-

edly, our ScaleNets-101 performs better than ResNeXt-101

by 0.23 and runs much faster without group convolution.

These observations verify the effectiveness and efficiency

of the proposed ScaleNets.

# layer ResNets ScaleNets

38 layers 26.88 24.60(−2.28)

56 layers 26.19 23.83(−2.36)

101 layers 24.54 22.77(−1.77)

Table 5: Comparisons of the top-1 error rate on CIFAR-100 be-

tween ScaleNets and their baseline ResNets. All the results are

the best of 5 runs.

4.2. CIFAR Classification

We also conduct experiments on CIFAR-100 dataset[17].

To make full use of the same SA block architecture, Our

baseline ResNets on CIFAR-100 also employ residual bot-

tleneck blocks (i.e., a subsequent layers of 1×1 conv, 3×3
conv and 1 × 1 conv) instead of basic residual blocks (two

3 × 3 conv layers) in [9]. The network inputs are 32 × 32
images. The first layer is 3 convolutions with 16 channels.

Then we use a stack of n residual bottleneck blocks on each

of these three stages with the feature maps of sizes 32×32,

16×16 and 8×8 respectively. The numbers of channels for

1 × 1 conv , 3 × 3 conv, and 1 × 1 conv in each residual

block are set to 16, 16 and 64 on the first stage, 32, 32 and

128 on the second stage, 64, 64 and 256 on the third stage.

The subsampling is performed by convolutions with a stride

of 2 at beginning of each stage. The network ends with a

global average pool layer, a 100-way fully-connected layer,

and softmax layer. There are totally 9n+2 stacked weighted

layers. When n = 4, 6, and 10, we get baselines ResNet-

38, ResNet-56 and ResNet-101 respectively for tiny images.

Their corresponding ScaleNets with comparable computa-

tional complexity are denoted by ScaleNet-38, ScaleNet-56,

and ScaleNet-101.

We compare the performances between ScaleNets and

their baselines on CIFAR-100 in Table 5. Again, the pro-

posed ScaleNets outperforms ResNets with big margins. It

has been validated that ScaleNets can effectively enhance

and improve its strong baseline ResNets across multiple

datasets from ImageNet to CIFAR-100, and multi-scale ag-

gregation is also important for tiny image classification.

4.3. Data­Driven Neuron Allocation

The proposed ScaleNets can automatically learn the neu-

ron proportion for each scale in each SA block. The neuron
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Figure 4: Comparisons between even neuron allocation and data-

driven neuron allocation.(Left)CIFAR-100, (Right)) ImageNet.

allocation depends on the training data distribution and net-

work architectures.

Even allocation vs. data-driven allocation. Figure 4

compares even neuron allocation for scales in each SA

block and data-driven neuron allocation. We conduct exper-

iments on both CIFAR-100 and ImageNet with scale num-

ber L from 2 to 5. Data-driven neuron allocation outper-

forms even allocation with impressive margins in all set-

ting except that on CIFAR-100 with L = 2. We also ob-

serve that data-driven allocation performs best on CIFAR-

100 with L = 3 and ImageNet with L = 4. This is reason-

able since ImageNet has bigger resolution and needs repre-

sentation with wider scale range than CIFAR-100. We set

L to 3 on CIFAR-100 and L to 4 on ImageNet in all our

experiments except otherwise noted. Based on even allo-

cation (gains from SA block), ScaleNet-50 achieves top-1

error rate of 22.76%. With data-driven allocation, the top-1

error rate can be further reduced to 22.20%.

Visualization of neuron allocation. Figure 5 shows

learned neuron proportion in each SA block of ScaleNets.

We observe that neuron proportions for scales are different

from one SA block to another in one network. Specifically,

scale 2 accounts for more and more proportion from bottom

to top on both CIFAR-100 and ImageNet. Scale 4 mainly

exists in the first two stages of ScaleNet-50 on ImageNet.
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Figure 5: Neuron proportion for scales in each SA block of

ScaleNets on CIFAR-100 and ImageNet.

4.4. Object Detection on MS COCO

To further evaluate the generalization on other recog-

nition tasks, we conduct object detection experiments on

MS COCO [21] consisting of 80k training images and 40k

validation images, which are further split into 35k minius-

mini and 5k mini-validation set. Following the common

setting [9], we combine the training images and miniusmini

images and thus obtain 115k images for training, and the 5k

mini-validation set for evaluation. We employ the Faster

RCNN framework [25]. We test models by resizing the

shorter edge of image to 800 (or 600) pixels, and restrict

the max size of the longer edge to 1200 (or 1000).

Comparisons with baselines. Table 6 compares the de-

tection results of ScaleNets and their baseline ResNets on

MS COCO. With multi-scale aggregation, Faster RCNN

achieves impressive gains with range from 3.2 to 4.9. Espe-

cially, ScaleNet-101 reaches an mAP of 39.5.

ScaleNets are effective for object detection. Table 7

compares the effectiveness of backbones for object de-

tection. It has been shown that ScaleNet-101 achieves

the best detection performance with the minimal compu-

tational complexity amongst ResNets, ResNeXts [31], SE-

ResNets [11], and Xception [5].
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600/1000 800/1200

mmAP APs APm APl mAP APs APm APl

ResNet-50 31.7 12.6 35.9 48.3 32.6 15.9 36.7 46

ScaleNet-50 36.2 17.1 40.7 53.8 37.2 19.4 41.3 52.6

ResNet-101 34.1 13.8 38.6 51 35.9 17.7 39.9 51.6

ScaleNet-101 37.3 16.6 42.4 55.1 39.5 21.3 44 55.2

Table 6: Comparisons of mAP on MS COCO. mAP indicates the results of mAP@IoU=[0.50:0.95]. Results of ResNets and ScaleNets are

obtained by keeping all settings the same except backbone for fair comparison.

ImageNet COCO

top-1 err. FLOPs mAP (600/1000)

ResNet-152 21.58 11.5 34.3
Xception 21.11 9.0 27.7

SE ResNet-152 21.07 11.5 37.1
ResNeXt-101 21.01 8.0 36.7
ScaleNet-101 20.97 7.5 37.3

Table 7: Comparisons of effectiveness of backbone for object de-

tection on MS COCO. All models are trained with the same strat-

egy for fair comparison.

method top1 err.

stride 2 of 3× 3 conv 26.19

stride 2 of 3× 3 conv, dilated 2 25.42

2× 2 average pool 24.58

2× 2 max pool 24.48

Table 8: Top-1 error rate on CIFAR-100 with different downsam-

pling methods. All the methods are of same FLOPs and record

the best result in 5 runs.

4.5. Analysis

The role of max pool. Downsampling can be imple-

mented in several ways: (i) a 3× 3 conv with stride s; (ii) a

dilated 3 × 3 conv with stride s [23]; (iii) a s × s avg pool

with stride s; (iv) a s × s max pool with stride s. We eval-

uate all the above settings with ScaleNet-56 on CIFAR-100

by setting scale number L to 2 and s to 2 for simplicity. As

shown in Table 8, (iv) performs best. It suggests that max

pool is the key factor of performance boosting. It is reason-

able since max pool preserves and enhances the maximum

activation from previous layers so that the high response of

small foreground regions would not be drowned by back-

ground features as information flows from bottom to top.

Wide range of receptive field. Figure 6 compares the

receptive field range of each block. It has been shown that

the proposed ScaleNets have much wider range of receptive

field than others. Particularly, ScaleNet-50 reaches the res-

olution for classification and detection only in second and

third block. On the one hand, ScaleNets potentially aggre-

gate rich representations with large range of scales. On the

other hand, they can extract global context information at

very early stage (e.g., block 3) in one network. Together

with data-driven neuron allocation, ScaleNets perform ef-

fectively and efficiently on various visual recognition tasks.

5. Conclusion

In this paper, we proposed a scale aggregation block with

data-driven neuron allocation. The SA block can replace

3×3 conv in ResNets to get ScaleNets. The data-driven neu-

ron allocation can effectively allocate the neurons to suit-

able scale in each SA block. The proposed ScaleNets have

wide range of receptive fields, and perform effectively and

efficiently on image classification and object detection.
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Figure 6: Comparisons of receptive field of multi-branch net-

works as a function of block index. The shortcut branch and resid-

ual branch in each residual block of ResNets have the minimal and

maximal receptive field respectively. The 1× 1 conv branch, and

5×5 conv branch in each Inception block of GoogleNet have the

minimal and maximal receptive field respectively.
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