
Finding Task-Relevant Features for Few-Shot Learning by Category Traversal

Hongyang Li1,2∗ David Eigen2 Samuel Dodge2 Matthew Zeiler2 Xiaogang Wang1,3

1The Chinese University of Hong Kong 2Clarifai Inc. 3SenseTime Research

{yangli,xgwang}@ee.cuhk.edu.hk {deigen,samuel,zeiler}@clarifai.com

Abstract

Few-shot learning is an important area of research. Con-

ceptually, humans are readily able to understand new con-

cepts given just a few examples, while in more pragmatic

terms, limited-example training situations are common in

practice. Recent effective approaches to few-shot learn-

ing employ a metric-learning framework to learn a feature

similarity comparison between a query (test) example, and

the few support (training) examples. However, these ap-

proaches treat each support class independently from one

another, never looking at the entire task as a whole. Be-

cause of this, they are constrained to use a single set of fea-

tures for all possible test-time tasks, which hinders the abil-

ity to distinguish the most relevant dimensions for the task

at hand. In this work, we introduce a Category Traversal

Module that can be inserted as a plug-and-play module into

most metric-learning based few-shot learners. This compo-

nent traverses across the entire support set at once, identi-

fying task-relevant features based on both intra-class com-

monality and inter-class uniqueness in the feature space.

Incorporating our module improves performance consider-

ably (5%-10% relative) over baseline systems on both mini-

ImageNet and tieredImageNet benchmarks, with overall

performance competitive with recent state-of-the-art sys-

tems.

1. Introduction

The goal of few-shot learning [38, 35, 30, 36, 33, 7, 25,

26] is to classify unseen data instances (query examples)

into a set of new categories, given just a small number of

labeled instances in each class (support examples). Typi-

cally, there are between 1 and 10 labeled examples per class

in the support set; this stands in contrast to the standard

classification problem [19, 16, 20], in which there are of-

ten thousands per class. Also classes for training and test

set are the same in traditional problem whereas in few-shot

learning the two sets are exclusive. A key challenge in few-

∗This paper is the product of work during an internship at Clarifai Inc.

ISOLATED

(a) averaging/
embedding/

…

TRAVERSED
(b)

Category

Traversal

mask

Figure 1. (a) A high-level illustration of the metric-based algo-

rithms for few-shot learning. Both support and query are first fed

into a feature extractor fθ; in previous methods, the query is com-

pared with support based on the feature similarity individually,

without associating the most relevant information across classes.

(b) The proposed Category Traversal Module (CTM) looks at all

categories in the support set to find task-relevant features.

shot learning, therefore, is to make best use of the limited

data available in the support set in order to find the “right”

generalizations as suggested by the task.

A recent effective approach to this problem is to train

a neural network to produce feature embeddings used to

compare the query to each of the support samples. This

is similar to metric learning using Siamese Networks [4, 6],

trained explicitly for the few-shot classification problem by

iteratively sampling a query and support set from a larger la-

beled training set, and optimizing to maximize a similarity

score between the query and same-labeled examples. Op-

timizing for similarity between query and support has been

very effective [35, 38, 31, 14, 21, 2, 13]. Fig. 1 (a) illus-

trates such a mechanism at a high level.

However, while these approaches are able to learn rich

features, the features are generated for each class in the sup-

1

i.

ii.

iii.

iv.
Support Set (k-shot)

Color Shape

i.

ii.

iii.

iv.

v.

Support Set (1-shot)

Query

1

2

1

1

1

distance

(a)

(b)

Figure 2. Toy example illustrating the motivation for task-relevant

features. (a) A task defines five classes (i)..(v) with two feature di-

mensions, color and shape. The distance between query and sup-

port is the same for classes (i, iii, iv, v). However, by taking the

context of all classes into account, we see the relevant feature is

color, so the class of the query image should be that of (iii): green.

(b) In a k-shot (k > 1) case, most instances in one class share

the property of color blue whilst their shape differ among them —

making the color feature more representative.

port set independently. In this paper, we extend the effective

metric-learning based approaches to incorporate the context

of the entire support set, viewed as a whole. By includ-

ing such a view, our model finds the dimensions most rele-

vant to each task. This is particularly important in few-shot

learning: since very little labeled data is available for each

task, it is imperative to make best use of all of the informa-

tion available from the full set of examples, taken together.

As a motivating example, consider Fig.2 (a), which de-

picts a 5-way 1-shot task with two simple feature dimen-

sions, color and shape. The goal of classification is to de-

termine the answer to a question:

To which category in the support set does query belong?

Here, the query is a green circle. We argue that because each

example in the support set has a unique color, but shares its

shape with other support examples, the relevant feature in

this task is color. Therefore, the correct label assignment

to the query should be class (iii): green. However, if fea-

ture similarity to the query is calculated independently for

each class, as is done in [38, 35, 36, 34, 21, 30, 23, 10], it

is impossible to know which dimension (color or shape) is

more relevant, hence categories (i, iii, iv, v) would all have

equal score based on distance1. Only by looking at context

1Note that if the feature extractor were to learn that color is more im-

portant than shape in order to succeed in this particular task, it would fail

on the task where color is shared and shape is unique — it is impossible

for static feature comparison to succeed in both tasks.

of the entire support set can we determine that color is the

discriminating dimension for this task. Such an observa-

tion motivates us to traverse all support classes to find the

inter-class uniqueness along the feature dimension.

Moreover, under the multi-shot setting shown in Fig. 2

(b), it can be even clearer that the color dimension is most

relevant, since most instances have the same color of blue,

while their shape varies. Thus, in addition to inter-class

uniqueness, relevant dimensions can also be found using

the intra-class commonality. Note in this k > 1 case, fea-

ture averaging within each class is an effective way to re-

duce intra-class variations and expose shared feature com-

ponents; this averaging is performed in [35, 36]. While both

inter- and intra-class comparisons are fundamental to clas-

sification, and have long been used in machine learning and

statistics [8], metric based few-shot learning methods have

not yet incorporated any of the context available by looking

between classes.

To incorporate both inter-class as well as intra-class

views of support set, we introduce a category traversal

module (CTM). Such a module selects the most relevant

feature dimensions after traversing both across and within

categories. The output of CTM is bundled onto the fea-

ture embeddings of the support and query set, making met-

ric learning in the subsequent feature space more effective.

CTM consists of a concentrator unit to extract the embed-

dings within a category for commonality, and a projector

unit to consider the output of the concentrator across cate-

gories for uniqueness. The concentrator and projector can

be implemented as convolutional layer(s). Fig. 1 (b) gives

a description of how CTM is applied into existing metric-

based few-shot learning algorithms. It can be viewed as a

plug-and-play module to provide more discriminative and

representative features by considering the global feature

distribution in the support set – making metric learning in

high-dimensional space more effective.

We demonstrate the effectiveness of our category traver-

sal module on the few-shot learning benchmarks. CTM

is on par with or exceeding previous state-of-the-art. In-

corporating CTM into existing algorithms [36, 38, 35], we

witness consistent relative gains of around 5%-10% on both

miniImageNet and tieredImageNet. The code suite is at:

https://github.com/Clarifai/few-shot-ctm.

2. Related Work

Recent years have witnessed a vast amount of work on

the few-shot learning task. They can be roughly catego-

rized into three branches, (i) metric based, (ii) optimization

based, and (iii) large corpus based.

The first branch of works are metric based approaches

[35, 38, 36, 14, 34, 21, 30, 23, 2, 10]. Vinyals et al. [38]

introduced the concept of episode training in few-shot learn-

ing, where the training procedure mimics the test scenario

2

based on support-query metric learning. The idea is intu-

itive and simple: these methods compare feature similar-

ity after embedding both support and query samples into

a shared feature space. The prototypical network [35] is

built upon [38] by comparing the query with class proto-

types in the support set, making use of class centroids to

eliminate the outliers in the support set and find dimensions

common to all class samples. Such a practice is similar in

spirit to our concentrator module, which we design to focus

on intra-class commonality. Our work goes beyond this by

also looking at all classes in the support set together to find

dimensions relevant for each task. In [14], a kernel genera-

tor is introduced to modify feature embeddings, conditioned

on the query image. This is a complementary approach to

ours: while [14] looks to the query to determine what may

be relevant for its classification, we look at the whole of the

support set to enable our network to better determine which

features most pertain to the task. In [34], the feature embed-

ding and classifier weight creation networks are broken up,

to enable zero-shot and few-shot tasks to both be performed

within the same framework.

There are also interesting works that explore the relation-

ship between support and query to enable more complex

comparisons between support and query features. The re-

lation network [36] proposes evaluating the relationship of

each query-support pair using a neural network with con-

catenated feature embeddings. It can be viewed as a fur-

ther extension to [35, 38] with a learned metric defined by

a neural network. Liu et al. [23] propose a transductive

propagation network to propagate labels from known la-

beled instances to unlabeled test instances, by learning a

graph construction module that exploits the manifold struc-

ture in the data. Garcia et al. [10] introduced the concept

of a graph neural network to explicitly learn feature embed-

dings by assimilating message-passing inference algorithms

into neural-network counterparts. Oreshkin et al. [26] also

learns a task-dependent metric, but conditions based on the

mean of class prototypes, which can reduce inter-class vari-

ations available to their task conditioning network, and re-

quires an auxiliary task co-training loss not needed by our

method to realize performance gains. Gao et al. [9] ap-

plied masks to features in a prototypical network applied to

a NLP few-shot sentence classification task, but base their

masks only on examples within each class, not between

classes as our method does.

All the approaches mentioned above base their algo-

rithms on a metric learning framework that compares the

query to each support class, taken separately. However,

none of them incorporate information available across

categories for the task, beyond the final comparison of

individually-created distance scores. This can lead to prob-

lems mentioned in Section 1, where feature dimensions ir-

relevant to the current task can end up dominating the sim-

ilarity comparison. In this work, we extend metric-based

approaches by introducing a category traversal module to

find relevant feature dimensions for the task by looking at

all categories simultaneously.

The second branch of literature are optimization based

solutions [28, 22, 7, 25, 33]. For each task (episode), the

learner samples from a distribution and performs SGD or

unrolled weight updates for a few iterations to adapt a pa-

rameterized model for the particular task at hand. In [28],

a learner model is adapted to a new episodic task by a re-

current meta-learner producing efficient parameter updates.

MAML [7] and its variants [25, 33] have demonstrated im-

pressive results; in these works, the parameters of a learner

model are optimized so that they can be quickly adapted to

a particular task.

At a high-level, these approaches incorporate the idea of

traversing all support classes, by performing a few weight

update iterations for the few-shot task. However, as pointed

out by [33, 21], while these approaches iterate over sam-

ples from all classes in their task updates, they often have

trouble learning effective embeddings. [33] address this by

applying the weight update “inner-loop” only to top layer

weights, which are initialized by sampling from a genera-

tive distribution conditioned on the task samples, and pre-

training visual features using an initial supervised phase.

By contrast, metric learning based methods achieve consid-

erable success in learning good features, but have not made

use of inter-class views to determine the most relevant di-

mensions for each task. We incorporate an all-class view

into a metric learning framework, and obtain competitive

performance. Our proposed method learns both the feature

embeddings and classification dimensions, and is trained in

an entirely from-scratch manner.

The third branch is large-training-corpus based meth-

ods [11, 15, 12, 27, 29]. In these, a base network is trained

with large amount of data, but also must be able to adapt to

a few-shot learning task without forgetting the original base

model concepts. These methods provide stronger feature

representations for base model classes that are still “com-

patible” with novel few-class concept representations, so

that novel classes with few examples can be readily mixed

with classes from the base classifier.

3. Algorithm

3.1. Description on Few­Shot Learning

In a few-shot classification task, we are given a small

support set of N distinct, previously unseen classes, with

K examples each2. Given a query sample, the goal is to

classify it into one of the N support categories.

Training. The model is trained using a large training

corpus Ctrain of labeled examples (of categories different

2Typically, N is between 5 and 20, and K between 1 and 20.

3

Figure 3. Detailed breakdown of components

in CTM. It extracts features common to ele-

ments in each class via a concentrator o, and

allows the metric learner to concentrate on

more discriminative dimensions via a projec-

tor p, constructed by traversing all categories

in the support set.

from any that we will see in the eventual few-shot tasks dur-

ing evaluation). The model is trained using episodes. In

each episode, we construct a support set S and query set Q:

S = {s(1), · · · , s(c), · · · , s(N)} ⊂ C
train, |s(c)| = K,

Q = {q(1), · · · , q(c), · · · , q(N)} ⊂ C
train, |q(c)| = K,

where c is the class index and K is the number of samples

in class s(c); the support set has a total number of NK sam-

ples and corresponds to a N -way K-shot problem. Let sj
be a single sample, where j is the index among all samples

in S . We define the label of sample i to be:

l∗i , l(si) = c, si ∈ s
(c).

Similar notation applies for the query set Q.

As illustrated in Fig. 1, the samples si, qj are first fed

into a feature extractor fθ(·). We use a CNN or ResNet [16]

as the backbone for fθ. These features are used as input

to a comparison module M(·, ·). In practice, M could be a

direct pair-wise feature distance [35, 38] or a further relation

unit [36, 10] consisting additional CNN layers to measure

the relationship between two samples. Denote the output

score from M as Y = {yij}. The loss L for this training

episode is defined to be a cross-entropy classification loss

averaged across all query-support pairs:

yij = M
(

fθ(si), fθ(qj)
)

, (1)

L = −
1

(NK)2

∑

i

∑

j

1[l∗i = l∗j] log yij . (2)

Training proceeds by iteratively sampling episodes, and

performing SGD update using the loss for each episode.

Inference. Generalization performance is measured on

test set episodes, where S,Q are now sampled from a cor-

pus C
test containing classes distinct from those used in

C
train. Labels in the support set are known whereas those

in the query are unknown, and used only for evaluation. The

label prediction for the query is found by taking class with

highest comparison score:

l̂j = argmax
c

ycj , (3)

where ycj = 1
K

∑

i yij and l∗i = c. The mean accuracy is

therefore obtained by comparing l̂j with query labels for a

length of test episodes (usually 600).

3.2. Category Traversal Module (CTM)

Fig. 3 shows the overall design of our model. The cate-

gory traversal module takes support set features fθ(S) as in-

put, and produces a mask p via a concentrator and projector

that make use of intra- and inter-class views, respectively.

The mask p is applied to reduced-dimension features of both

the support and query, producing improved features I with

dimensions relevant for the current task. These improved

feature embeddings are finally fed into a metric learner.

3.2.1 Concentrator: Intra-class Commonality

The first component in CTM is a concentrator to find

universal features shared by all instances for one class.

Denote the output shape from feature extractor fθ as

(NK,m1, d1, d1), where m1, d1 indicate the number of

channel and the spatial size, respectively. We define the

concentrator as follows:

fθ(S) : (NK,m1, d1, d1)
Concentrator
−−−−−−→ o : (N,m2, d2, d2),

(4)

where m2, d2 denote the output number of channel and spa-

tial size. Note that the input is first fed to a CNN module

to perform dimension reduction; then samples within each

class are averaged to have the final output o. In the 1-shot

setting, there is no average operation, as there is only one

example for each class.

In practice the CNN module could be either a simple

CNN layer or a ResNet block [16]. The purpose is to re-

move the difference among instances and extract the com-

monality among instances within one category. This is

achieved by way of an appropriate down-sampling from

m1, d1 to m2, d2. Such a learned component is proved to

be better than the averaging alternative [35], where the lat-

ter could be deemed as a special case of our concentrator

when m1 = m2, d1 = d2 without the learned parameters.

3.2.2 Projector: Inter-class Uniqueness

The second component is a projector to mask out irrelevant

features and select the ones most discriminative for the cur-

rent few-shot task by looking at concentrator features from

4

Model
5-way model size training time 20-way

1-shot 5-shot (Mb) (sec. / episode) 1-shot 5-shot

(i) sample-wise style baseline 37.20% 53.35% 0.47 0.0545 17.96% 28.47%

(ii) sample-wise, I1 41.62% 58.77% 0.55 0.0688 21.75% 32.26%

(iii) baseline same size 37.82% 53.46% 0.54 0.0561 18.11% 28.54%

(iv) cluster-wise style baseline 34.81% 50.93% 0.47 0.0531 16.95% 27.37%

(v) cluster-wise, I2 39.55% 56.95% 0.55 0.0632 19.96% 30.17%

Table 1. Design choice of I(S) in

the category traversal module (CTM)

and comparison with baselines. We

see a substantial improvement using

CTM over the same-capacity baseline

(ii, iii). The sample wise choice (ii)

performs better, with marginal extra

computation cost compared with (v).

all support categories simultaneously:

ô : (1, Nm2, d2, d2)
Projector
−−−−→ p : (1,m3, d3, d3). (5)

where ô is just a reshaped version of o; m3, d3 follow sim-

ilar meaning as in the concentrator. We achieve the goal of

traversing across classes by concatenating the class proto-

types in the first dimension (N) to the channel dimension

(m2), applying a small CNN to the concatenated features to

produce a map of size (1,m3, d3, d3), and finally applying a

softmax over the channel dimension m3 (applied separately

for each of the d3 × d3 spatial dimensions) to produce a

mask p. This is used to mask the relevant feature dimen-

sions for the task in the query and support set.

3.2.3 Reshaper

In order to make the projector output p influence the fea-

ture embeddings fθ(·), we need to match the shape between

these modules in the network. This is achieved using a re-

shaper network, applied separately to each of NK samples:

fθ(·)
Reshaper
−−−−−→ r(·) : (NK,m3, d3, d3).

It is designed in light-weight manner with one CNN layer.

3.2.4 Design choice in CTM

Armed by the components stated above we can generate a

mask output by traversing all categories: fθ(S) → p. The

effect of CTM is achieved by bundling the projector output

onto the feature embeddings of both support and query, de-

noted as I(·). The improved feature representations are thus

promised to be more discriminative to be distinguished.

For the query, the choice of I is simple since we do

not have labels of query; the combination is an element-

wise multiplication of embeddings and the projector out-

put: I(Q) = r(Q) ⊙ p, where ⊙ stands for broadcasting

the value of p along the sample dimension (NK) in Q.

For the support, however, since we know the query la-

bels, we can choose to mask p directly onto the embeddings

(sample-wise), or if we keep (m2, d2, d2) = (m3, d3, d3),
we can use it to mask the concentrator output o (cluster-

wise). Mathematically, these two options are:

option 1: I1(S) = r(S)⊙ p : (NK,m3, d3, d3),

option 2: I2(S) = o⊙ p : (N,m3, d3, d3).

We found that option 1 results in better performance, for a

marginal increase in execution time due to its larger number

of comparisons; details are provided in Sec. 4.2.1.

3.3. CTM in Action

The proposed category traversal module is a simple plug-

and-play module and can be embedded into any metric-

based few-shot learning approach. In this paper, we con-

sider three metric-based methods and apply CTM to them,

namely the matching network [38], the prototypical net-

work [35] and the relation network [36]. As discussed in

Sec. 1, all these three methods are limited by not consid-

ering the entire support set simultaneously. Since features

are created independently for each class, embeddings irrel-

evant to the current task can end up dominating the metric

comparison. These existing methods define their similarity

metric following Eqn. (1); we modify them to use our CTM

as follows:

Y = M
(

r(S)⊙ p, r(Q)⊙ p
)

, Y = {yij}. (6)

As we show later (see Sec. 4.3.1), after integrating the pro-

posed CTM unit, these methods get improved by a large

margin (2%-4%) under different settings.

4. Evaluation

The experiments are designed to answer the following

key questions: (1) Is CTM competitive to other state-of-the-

art on large-scale few-shot learning benchmarks? (2) Can

CTM be utilized as a simple plug-and-play and bring in gain

to existing methods? What are the essential components and

factors to make CTM work? (3) How does CTM modify

the feature space to make features more discriminative and

representative?

4.1. Datasets and Setup

Datasets. The miniImageNet dataset [38] is a subset of

100 classes selected from the ILSVRC-12 dataset [32] with

600 images in each class. It is divided into training, valida-

tion, and test meta-sets, with 64, 16, and 20 classes respec-

tively. The tieredImageNet dataset [30] is a larger subset

of ILSVRC-12 with 608 classes (779,165 images) grouped

into 34 higher-level nodes based on WordNet hierarchy [5].

This set of nodes is partitioned into 20, 6, and 8 disjoint

5

sets of training, validation, and testing nodes, and the cor-

responding classes consist of the respective meta-sets. As

argued in [30], the split in tieredImageNet is more challeng-

ing, with realistic regime of test classes that are less similar

to training ones. Note that the validation set is only used for

tuning model parameters.

Evaluation metric. We report the mean accuracy (%) of

600 randomly generated episodes as well as the 95% confi-

dence intervals on test set. In every episode during test, each

class has 15 queries, following most methods [35, 36, 33].

Implementation details. For training, the 5-way prob-

lem has 15 query images while the 20-way problem has 8

query images. The reason for a fewer number of query sam-

ples in the 20-way setting is mainly due to the GPU memory

considerations. The input image is resized to 84× 84.

We use Adam [18] optimizer with an initial learning rate

of 0.001. The total training episodes on miniImageNet and

tieredImageNet are 600,000 and 1,000,000 respectively.

The learning rate is dropped by 10% every 200,000 episodes

or when loss enters a plateau. The weight decay is set to be

0.0005. Gradient clipping is also applied.

4.2. Ablation Study

4.2.1 Shallow Network Verification

We first validate the effectiveness of category traversal by

comparing against same-capacity baselines using a sim-

ple backbone network. Specifically, a 4-layer neural net-

work is adopted as backbone; we directly compute fea-

ture similarity between I(S) and I(Q). The mean accu-

racy on miniImageNet is reported. After feature embed-

ding, m1 = 64, d1 = 21; the concentrator is a CNN layer

with stride of 2, i.e., m2 = 32, d2 = 10. To compare be-

tween choices (I1 or I2), the projector leaves dimensions

unchanged, i.e., m3 = m2, d3 = d2.

Baseline comparison. Results are reported in Tab. 1.

Model size and training time are measured under the 5-way

5-shot setting. The “baseline” in row (i) and (iv) evaluate a

model with reshaper network and metric comparisons only,

omitting CTM concentrator and projector. Row (ii) shows a

model that includes our CTM. Since adding CTM increases

the model capacity compared to the baseline (i), we also

include a same-size model baseline for comparison, shown

as “baseline same size” (iii), by adding additional layers to

the backbone such that its model size is similar to (ii). Note

that the only difference between (i) and (iv) is that the latter

case takes average of samples within each category.

We can see on average there is a 10% relative improve-

ment using CTM in both 5-way and 20-way settings, com-

pared to the baselines. Notably, the larger-capacity baseline

improves only marginally over the original baseline, while

the improvements using CTM are substantial. This shows

that the performance increase obtained by CTM is indeed

due to its ability to find relevant features for each task.

Table 2. Ablation study on category traversal module.

Factor
miniImageNet accuracy

1-shot 5-shot

CTM with shallow (4 layer) backbone 41.62 58.77

CTM with ResNet-18 backbone 59.34 77.95

(i) w/o concentrator network o 55.41 73.29

(ii) w/o projector p 57.18 74.25

(iii) softmax all in p 57.77 75.03

relation net baseline without CTM 58.21 74.29

relation net M, CTM, MSE loss 61.37 78.54

relation net M, CTM, cross entropy loss 62.05 78.63

Which option for I(S) is better? Table 1 (ii, v) shows

the comparison between I1 and I2. In general, the sample-

wise choice I1 is 2% better than I2. Note the model size

between these two are exactly the same; the only difference

is how p is multiplied. However, a trivial drawback of I1

is the slightly slower time (0.0688 vs 0.0632) since it needs

to broadcast p across all samples. Despite the efficiency, we

choose the first option as our preference to generate I(S) =
I1 nonetheless.

4.2.2 CTM with Deeper Network

Table 2 reports the ablation analysis on different compo-

nents of CTM. Using a deeper backbone for the feature ex-

tractor increases performance by a large margin. Experi-

ments in the second block investigate the effect of the con-

centrator and projector, respectively. Removing each com-

ponent alone results in a performance decrease (cases i, ii,

iii)3. The accuracy is inferior (-3.93%, 1-shot case) if we re-

move the network part of the concentrator, implying that its

dimension reduction and spatial downsampling is important

to the final comparisons. Removing the projector p also re-

sults in a significant drop (-2.16%, 1-shot), confirming that

this step is necessary to find task-specific discriminate di-

mensions. An interesting result is that if we perform the

softmax operation across all the locations (m3, d3, d3) in

p, the accuracy (57.77%) is inferior to performing softmax

along the channel dimension (m3) for each location sepa-

rately (59.34%); this is consistent with the data, where ab-

solute position in the image is only modestly relevant to any

class difference.

Moreover, we incorporate the relation module [36] as the

metric learner for the last module M. It consists of two

CNN blocks with two subsequent fc layers generating the

relationship score for one query-support pair. The baseline

relation net model without CTM has an accuracy of 58.21%.

After including our proposed module, the performance in-

3Implementation details: case (i) without concentrator, support samples

are still averaged to generate an output of (N,m, d, d) for the projector;

case (ii) without projector, the improved feature representation for support

and query are o(S), r(Q), respectively.

6

Method
5-way 20-way 5-way 20-way

1-shot 5-shot 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

Matching Net [38], paper 43.56 55.31 - - - - - -

Matching Net [38], our implementation 48.89 66.35 23.18 36.73 54.02 70.11 23.46 41.65

Matching Net [38], CTM 52.43 70.09 25.84 40.98 57.01 73.45 25.69 45.07

+3.54 +3.74 +2.66 +4.25 +2.99 +3.34 +2.23 +3.42

Prototypical Net [35], paper 49.42 68.20 - - 53.31 72.69 - -

Prototypical Net [35], our implementation 56.11 74.16 28.53 42.36 60.27 75.80 28.56 49.34

Prototypical Net [35], CTM 59.34 77.95 32.08 47.11 63.77 79.24 31.02 51.44

+3.23 +3.79 +3.55 +4.75 +3.50 +3.44 +2.46 +2.10

Relation Net [36], paper 50.44 65.32 - - 54.48 71.32 - -

Relation Net [36], our implementation 58.21 74.29 31.35 45.19 61.11 77.39 26.77 47.82

Relation Net [36], CTM 62.05 78.63 35.11 48.72 64.78 81.05 31.53 52.18

+3.84 +4.34 +3.76 +3.53 +3.67 +3.66 +4.76 +4.36

Table 3. Improvement after incorporating CTM into existing methods on miniImageNet (left) and tieredImageNet (right).

creases by 3.84%, to 62.05%. Note that the original paper

[36] uses mean squared error (MSE); we find cross-entropy

is slightly better (0.68% and 0.09% for 1-shot and 5-shot,

respectively), as defined in Eqn. (2).

4.3. Comparison with State­of­the­Art

4.3.1 Adapting CTM into Existing Frameworks

To verify the effectiveness of our proposed category traver-

sal module, we embed it into three metric-based algorithms

that are closely related to ours. It is worth noticing that the

comparison should be conducted in a fair setting; however,

different sources report different results4. Here we describe

the implementation we use.

Matching Net [38] and Prototypical Net [35]. In these

cases, the metric module M is the pair-wise feature dis-

tance. Note that a main source of improvement between

[38] and [35] is that the query is compared to the average

feature for each class; this has the effect of including intra-

class commonality, which we make use of in our concentra-

tor module. As for the improvement from original paper to

our baseline, we use the ResNet-18 model with a Euclidean

distance for the similarity comparison, instead of a shallow

CNN network with cosine distance originally.

Relation Net [36]. As for the improvement from origi-

nal paper to our baseline, the backbone structure is switched

from 4-conv to ResNet-18 model; the relation unit M
adopts the ResNet blocks instead of CNN layers; the su-

pervision loss is changed to the cross entropy.

Table 3 shows the gains obtained by including CTM into

each method. We observe that on average, there is an ap-

proximately 3% increase after adopting CTM. This shows

the ability of our module to plug-and-play into multiple

metric based systems. Moreover, the gains remain consis-

tent for each method, regardless of the starting performance

4For example, the relation network has a 65.32% accuracy for 5-way

5-shot setting on miniImageNet. [39] gives a 61.1%; [2] has 66.6%; [21]

obtains 71.07% with a larger network

Model
miniImageNet test accuracy

1-shot 5-shot

Meta-learner LSTM [28] 43.44 ± 0.77 60.60 ± 0.71

MAML [7] 48.70 ± 1.84 63.11 ± 0.92

REPTILE [25] 49.97 ± 0.32 65.99 ± 0.58

Meta-SGD [22] 54.24 ± 0.03 70.86 ± 0.04

SNAIL [24] 55.71 ± 0.99 68.88 ± 0.92

CAML [17] 59.23 ± 0.99 72.35 ± 0.18

LEO [33] 61.76 ± 0.08 77.59 ± 0.12

Incremental [29] 55.72 ± 0.41 70.50 ± 0.36

Dynamic [12] 56.20 ± 0.86 73.00 ± 0.64

Predict Params [27] 59.60 ± 0.41 73.74 ± 0.19

Matching Net [38] 43.56 ± 0.84 55.31 ± 0.73

BANDE [1] 48.90 ± 0.70 68.30 ± 0.60

Prototypical Net [35] 49.42 ±0.78 68.20 ± 0.66

Relation Net [36] 50.44 ± 0.82 65.32 ± 0.70

Projective Subspace [34] ——– 68.12 ± 0.67

Individual Feature [13] 56.89 ——– 70.51 ——–

IDeMe-Net [3] 57.71 ——– 74.34 ——–

TADAM [26] 58.50 ± 0.30 76.70 ± 0.30

CTM (ours) 62.05 ± 0.55 78.63 ± 0.06

CTM (ours), data augment 64.12 ± 0.82 80.51 ± 0.13

Model
tieredImageNet test accuracy

1-shot 5-shot

MAML [7] 51.67 ± 1.81 70.30 ± 0.08

Meta-SGD [22], reported by [33] 62.95 ± 0.03 79.34 ± 0.06

LEO [33] 66.33 ± 0.05 81.44 ± 0.09

Dynamic [12], reported by [29] 50.90 ± 0.46 66.69 ± 0.36

Incremental [29] 51.12 ± 0.45 66.40 ± 0.36

Soft k-means [30] 52.39 ± 0.44 69.88 ± 0.20

Prototypical Net [35] 53.31 ± 0.89 72.69 ± 0.74

Projective Subspace [34] ——– 71.15 ± 0.67

Relation Net [36] 54.48 ± 0.93 71.32 ± 0.78

Transductive Prop. [23] 59.91 ——– 73.30 ——–

CTM (ours) 64.78 ± 0.11 81.05 ± 0.52

CTM (ours), data augment 68.41 ± 0.39 84.28 ± 1.73

Table 4. Test accuracies for 5-way tasks, both 1-shot and 5-shot.

We provide two versions of our model. See Sec. 4.3.2 for details.

level. This supports the hypothesis that our method is able

to incorporate signals previously unavailable to any of these

approaches, i.e., the inter-class relations in each task.

7

(a) Relation net, 47.82% accuracy (b) Relation Net with CTM, 52.18% accuracy

Figure 4. The t-SNE visualization [37]

of the improved feature embeddings I(·)
learned by our CTM approach. (a) cor-

responds to the 20-way 5-shot setting of

the relation network without CTM in Ta-

ble 3 and (b) corresponds to the improved

version with CTM. Only 10 classes are

shown for better view. We can see that af-

ter traversing across categories, the effect

of projector p onto the features are obvi-

ous - making clusters more compact and

discriminative from each other.

4.3.2 Comparison beyond Metric-based Approaches

We compare our proposed CTM approach with other state-

of-the-art methods in Table 4. For each dataset, the first

block of methods are optimization-based, the second are

base-class-corpus algorithms, and the third are metric-based

approaches. We use a ResNet-18 backbone for the feature

extractor to compare with other approaches. The model is

trained from scratch with standard initialization, and no ad-

ditional training data (e.g., distractors [30, 23]) are utilized.

We believe such a design aligns with most of the compared

algorithms in a fair spirit.

It is observed that our CTM method compares favor-

ably against most methods by a large margin, not limited

to the metric-based methods but also compared with the

optimization-based methods. For example, under the 5-

way 1-shot setting, the performance is 62.05% vs 59.60%

[27], and 64.78% vs 59.91% [23] on the two benchmarks

miniImageNet and tieredImageNet, respectively.

LEO [33] is slightly better than ours (without data

augmentation) on tieredImageNet. It uses wide resid-

ual networks [40] with 28 layers; they also pretrain the

model using a supervised task on the entire training set

and finetune the network based on these pre-trained fea-

tures. For practical interest, we also train a version of our

model with supervised pretraining (using only the mini- or

tieredImageNet training sets), basic data augmentation (in-

cluding random crop, color jittering and horizontal flip), and

a higher weight decay (0.005). The result is shown in the

last case for each dataset. Note that the network structure is

still ResNet-18, considering LEO’s wideResNet-28.

4.4. Feature Visualization Learned by CTM

Fig. 4 visualizes the feature distribution using t-SNE

[37]. The features computed in a 20-way 5-shot setting, but

only 10 classes are displayed for easier comparison. Model

(a) achieves an accuracy of 47.32% without CTM and the

improved version, Model (b), equipped with CTM has a bet-

ter performance of 52.18%. When sampling features for

t-SNE for our model, we use I(S), i.e. after the mask p

is applied. Since this depends on the support sample, fea-

tures will be vastly different depending on the chosen task.

Therefore, when sampling tasks to create these visualiza-

tion features, we first chose 20 classes, and kept these fixed

while drawing different random support samples from this

class set. We draw a total of 50 episodes on the test set.

As can be clearly observed, CTM model has more com-

pact and separable clusters, indicating that features are more

discriminative for the task. This descends from the design

of the category traversal module. Without CTM, some clus-

ters overlap with each other (e.g., light green with orange),

making the metric learning difficult to compare.

5. Conclusion

In this paper, we propose a category traversal module

(CTM) to extract feature dimensions most relevant to each

task, by looking the context of the entire support set. By

doing so, it is able to make use of both inter-class unique-

ness and intra-class commonality properties, both of which

are fundamental to classification. By looking at all support

classes together, our method is able to identify discrimina-

tive feature dimensions for each task, while still learning

effective comparison features entirely from scratch. We de-

vise a concentrator to first extract the feature commonal-

ity among instances within the class by effectively down-

sampling the input features and averaging. A projector is

introduced to traverse feature dimensions across all cate-

gories in the support set. The projector inter-class relations

to focus on the on relevant feature dimensions for the task at

hand. The output of CTM is then combined onto the feature

embeddings for both support and query; the enhanced fea-

ture representations are more unique and discriminative for

the task. We have demonstrated that it improves upon previ-

ous methods by a large margin, and has highly competitive

performance compared with state-of-the-art.

Acknowledgment

We thank Nand Dalal, Michael Gormish, Yanan Jian and

reviewers for helpful discussions and comments. H. Li is

supported by Hong Kong Ph.D. Fellowship Scheme.

8

References

[1] Kelsey R Allen, Hanul Shin, Evan Shelhamer, and

Josh B. Tenenbaum. Variadic learning by bayesian

nonparametric deep embedding. In OpenReview,

2019.

[2] Wei-Yu Chen, Yen-Cheng Liu, Zsolt Kira, Yu-

Chiang Frank Wang, and Jia-Bin Huang. A closer look

at few-shot classification. In ICLR, 2019.

[3] Zitian Chen, Yanwei Fu, Yu-Xiong Wang, Lin Ma,

Wei Liu, and Martial Hebert. Image deformation

meta-networks for one-shot learning. In OpenReview,

2019.

[4] Sumit Chopra, Raia Hadsell, and Yann Lecun. Learn-

ing a similarity metric discriminatively, with applica-

tion to face verification. In CVPR, 2005.

[5] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L.

Fei-Fei. ImageNet: A Large-Scale Hierarchical Image

Database. In CVPR, 2009.

[6] Nir Ailon Elad Hoffer. Deep Metric Learning using

Triplet Network. In ICLR, 2015.

[7] Chelsea Finn, Pieter Abbeel, and Sergey Levine.

Model-agnostic meta-learning for fast adaptation of

deep networks. In arXiv preprint:1703.03400, 2017.

[8] Ronald A Fisher. The use of multiple measurements

in taxonomic problems. Annals of eugenics, 7(2):179–

188, 1936.

[9] Tianyu Gao, Xu Han, Zhiyuan Liu, and Maosong

Sun. Hybrid Attention-Based Prototypical Networks

for Noisy Few-Shot Relation Classification . In AAAI,

2019.

[10] Victor Garcia and Joan Bruna. Few-shot Learning

with Graph Neural Networks. In ICLR, 2018.

[11] Mohammad Ghasemzadeh, Fang Lin, Bita Darvish

Rouhani, Farinaz Koushanfar, and Ke Huang. Ag-

ilenet: Lightweight dictionary-based few-shot learn-

ing. In arXiv preprint:1805.08311, 2018.

[12] Spyros Gidaris and Nikos Komodakis. Dynamic Few-

Shot Visual Learning without Forgetting. In CVPR,

2018.

[13] Jonathan Gordon, John Bronskill, Matthias Bauer, Se-

bastian Nowozin, and Richard Turner. Meta-learning

probabilistic inference for prediction. In ICLR, 2019.

[14] Chunrui Han, Shiguang Shan, Meina Kan, Shuzhe

Wu, and Xilin Chen. Meta-learning with individual-

ized feature space for few-shot classification. 2019.

[15] Bharath Hariharan and Ross Girshick. Low-shot Vi-

sual Recognition by Shrinking and Hallucinating Fea-

tures. In ICCV, 2017.

[16] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian

Sun. Deep residual learning for image recognition. In

CVPR, 2016.

[17] Xiang Jiang, Mohammad Havaei, Farshid Varno,

Gabriel Chartrand, Nicolas Chapados, and Stan

Matwin. Learning to learn with conditional class de-

pendencies. In ICLR, 2019.

[18] Diederik P. Kingma and Jimmy Ba. Adam: A method

for stochastic optimization. In ICLR, 2015.

[19] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-

ton. Imagenet classification with deep convolutional

neural networks. In NIPS, 2012.

[20] Hongyang Li, Xiaoyang Guo, Bo Dai, Wanli Ouyang,

and Xiaogang Wang. Neural network encapsulation.

In ECCV, 2018.

[21] Kai Li, Martin Renqiang Min, Bing Bai, Yun Fu, and

Hans Peter Graf. Network reparameterization for un-

seen class categorization. In OpenReview, 2019.

[22] Zhenguo Li, Fengwei Zhou, Fei Chen, and Hang Li.

Meta-SGD: Learning to Learn Quickly for Few-Shot

Learning. In arXiv preprint:1707.09835, 2017.

[23] Yanbin Liu, Juho Lee, Minseop Park, Saehoon Kim,

and Yi Yang. Transductive Propagation Network for

Few-shot Learning. In arXiv preprint:1805.10002,

2018.

[24] Nikhil Mishra, Mostafa Rohaninejad, Xi Chen, and

Pieter Abbeel. A Simple Neural Attentive Meta-

Learner. In ICLR, 2018.

[25] Alex Nichol, Joshua Achiam, and John Schulman.

On First-Order Meta-Learning Algorithms. In arXiv

preprint:1803.02999, 2018.

[26] Boris N. Oreshkin, Pau Rodriguez, and Alexandre La-

coste. TADAM: Task dependent adaptive metric for

improved few-shot learning. In NIPS, 2018.

[27] Siyuan Qiao, Chenxi Liu, Wei Shen, and Alan Yuille.

Few-Shot Image Recognition by Predicting Parame-

ters from Activations. In CVPR, 2018.

[28] Sachin Ravi and Hugo Larochelle. Optimization as a

model for few-shot learning. In ICLR, 2017.

[29] Mengye Ren, Renjie Liao, Ethan Fetaya, and

Richard S. Zemel. Incremental few-shot learn-

ing with attention attractor networks. In arXiv

preprint:1810.07218, 2018.

[30] Mengye Ren, Eleni Triantafillou, Sachin Ravi, Jake

Snell, Kevin Swersky, Joshua B. Tenenbaum, Hugo

Larochelle, and Richard S. Zemel. Meta-Learning for

Semi-supervised Few-Shot Classification. In ICLR,

2018.

9

[31] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian

Sun. Faster R-CNN: Towards Real-Time Object De-

tection with Region Proposal Networks. In NIPS,

2015.

[32] Olga Russakovsky, Jia Deng, Hao Su, Jonathan

Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,

Andrej Karpathy, Aditya Khosla, Michael Bernstein,

Alexander C. Berg, and Li Fei-Fei. ImageNet Large

Scale Visual Recognition Challenge. International

Journal of Computer Vision (IJCV), 115(3):211–252,

2015.

[33] Andrei A. Rusu, Dushyant Rao, Jakub Sygnowski,

Oriol Vinyals, Razvan Pascanu, Simon Osindero, and

Raia Hadsell. Meta-learning with latent embedding

optimization. In ICLR, 2019.

[34] Christian Simon, Piotr Koniusz, and Mehrtash Ha-

randi. Projective subspace networks for few-shot

learning. In OpenReview, 2019.

[35] Jake Snell, Kevin Swersky, and Richard S. Zemel.

Prototypical Networks for Few-shot Learning. In

NIPS, 2017.

[36] Flood Sung, Yongxin Yang, Li Zhang, Tao Xiang,

Philip H.S. Torr, and Timothy M. Hospedales. Learn-

ing to compare: Relation network for few-shot learn-

ing. In CVPR, 2018.

[37] Laurens van der Maaten and Geoffrey Hinton. Visual-

izing data using t-SNE. Journal of Machine Learning

Research, 9:2579–2605, 2008.

[38] Oriol Vinyals, Charles Blundell, Timothy Lillicrap,

Koray Kavukcuoglu, and Daan Wierstra. Matching

Networks for One Shot Learning. In NIPS, 2016.

[39] Zhirong Wu, Alexei A. Efros, , and Stella X. Yu.

Improving Generalization via Scalable Neighborhood

Component Analysis. In ECCV, 2018.

[40] Sergey Zagoruyko and Nikos Komodakis. Wide resid-

ual networks. In BMVC, 2016.

10

