
LBS Autoencoder: Self-supervised Fitting of Articulated Meshes to Point Clouds

Chun-Liang Li1, Tomas Simon2, Jason Saragih2, Barnabás Póczos1, Yaser Sheikh1,2

1Carnegie Mellon University and 2Facebook Reality Labs

{chunlial, bapoczos}@cs.cmu.edu {firstname.lastname}@fb.com

Abstract

We present LBS-AE; a self-supervised autoencoding al-

gorithm for fitting articulated mesh models to point clouds.

As input, we take a sequence of point clouds to be regis-

tered as well as an artist-rigged mesh, i.e. a template mesh

equipped with a linear-blend skinning (LBS) deformation

space parameterized by a skeleton hierarchy. As output,

we learn an LBS-based autoencoder that produces regis-

tered meshes from the input point clouds. To bridge the gap

between the artist-defined geometry and the captured point

clouds, our autoencoder models pose-dependent deviations

from the template geometry. During training, instead of us-

ing explicit correspondences, such as key points or pose su-

pervision, our method leverages LBS deformations to boot-

strap the learning process. To avoid poor local minima

from erroneous point-to-point correspondences, we utilize a

structured Chamfer distance based on part-segmentations,

which are learned concurrently using self-supervision. We

demonstrate qualitative results on real captured hands, and

report quantitative evaluations on the FAUST benchmark

for body registration. Our method achieves performance

that is superior to other unsupervised approaches and com-

parable to methods using supervised examples.

1. Introduction

The registration of unstructured point-clouds to a com-

mon mesh representation is an important problem in com-

puter vision and has been extensively studied in the past

decades. Works in this area can be coarsely grouped to-

gether based on how much prior knowledge and supervi-

sion is incorporated into the fitting method. On one end

of the spectrum, there are entirely unsupervised and object-

agnostic models, such as FoldingNet [49] or AtlasNet [13].

These methods learn to deform a flat 2D surface to match

the target geometry, while making no assumptions about the

objects being modeled other than that they can be repre-

sented as a 2D surface. Adding slightly more prior knowl-

edge, 3D-CODED [12] uses a template mesh (e.g. hand or

body) with a topology better suited to the object of interest.

Input Segmentation Template Deformed Reconstruction

(a) (b) (c) (d) (e)

Figure 1: Given point clouds sampled from the surface of

an input shape (a), our model infers a coarse segmentation

(b), and learns to deform a given template (c), through a

combination of deformations of the template (d) as well as

pose deformation parameterized by LBS to match the re-

construction (e). We use a structured Chamfer distance that

uses the inferred segmentation of the data (b) as coarse cor-

respondence to measure distance between matching regions

to avoid local optima in the Chamfer distance.

On the other end of the spectrum are highly special-

ized models for specific objects, such as hands and bod-

ies. Works of this kind include SCAPE [2], Dyna [34],

SMPL [28], and MANO [38]. These models are built us-

ing high-resolution 3D scans with correspondence and hu-

man curation. They model correctives for different poses

and modalities (e.g. body types) and can be used as high-

quality generative models of geometry. A number of works

learn to manipulate these models to fit data based on differ-

ent sources of supervision, such as key points [6, 22, 31, 15]

and/or prior distributions of model parameters [18, 17].

In this paper, we present an unsupervised/self-supervised

algorithm, LBS Autoencoder (LBS-AE), to fit such articu-

lated mesh models to point cloud data. The proposed al-

gorithm is a middle ground of the two ends of spectrum

discussed above in two senses.

First, we assume an articulated template model of the ob-

ject class is available, but not the statistics of its articulation

in our dataset nor the specific shape of the object instance.

We argue that this prior information is widely available for

many common objects of interest in the form of “rigged”

11967



or “skinned” mesh models, which are typically created by

artists for use in animation. In addition to a template mesh

describing the geometric shape, these prior models have two

more components: (1) a kinematic hierarchy of transforms

describing the degrees of freedom, and (2) a skinning func-

tion that defines how transforms in the hierarchy influence

each of the mesh vertices. This enables registration to data

by manipulating the transforms in the model. One common

example is Linear Blending Skinning (LBS). Therefore, in-

stead of relying on deep networks to learn the full deforma-

tion process from a single template [12], we leverage LBS

as part of the decoder to model coarse joint deformations.

Different from hand-crafted models such as SMPL [28],

LBS by itself does not model pose-dependent correctives

between the template and data, nor does it model the space

of non-articulated shape variation (e.g. body shape). To

model these, we also allow our network to learn deforma-

tions of the template mesh which, when posed by LBS, re-

sult in a better fit to the data. The encoder therefore learns a

latent representation from which it can infer both joint an-

gles for use by the LBS deformation, as well as corrective

deformations to the template mesh.

Second, for fitting models to data during the training, ex-

isting works either rely on explicit supervision (e.g. corre-

spondence [12] and key points [15]) or unsupervised near-

est neighbors search (e.g. Chamfer Distance (CD) [49]) to

find point correspondence between the model and data for

measuring reconstruction loss. Rather than using external

supervision, we introduce a “Structured Chamfer Distance”

(SCD), which improves the blind nearest neighbor search in

CD based on an inferred coarse correspondence. The idea

is to segment the point clouds into corresponding regions

(we use regions defined by the LBS weighting). After in-

ferring the segmentation on the input point cloud and the

template, we then apply nearest neighbor search between

corresponding regions as high-level correspondence. The

challenge is we do not assume external supervision to be

available for the input point clouds. Instead, we utilize the

learned LBS-AE model to generate self-supervision to train

the segmentation network from scratch. As the LBS-AE

fitting is improved during training, the training data from

self-supervision for segmentation also improves, leading to

improved segmentation of the real data. We are then able

to use the improved segmentation to achieve better corre-

spondence and in turn better LBS-AE model fitting. In

this paper, we present a joint training framework to learn

these two components simultaneously. Since LBS-AE does

not require any explicit correspondence nor key points, it

is similar to approaches which are sometimes referred to

as “unsupervised” in the pose estimation literature [42, 9],

but it is different from existing unsupervised learning ap-

proach [49] in that it leverages LBS deformation to generate

self-supervision during training.

In this work, we show that the space of deformations de-

scribed by an artist-defined rig may sometimes already be

sufficiently constrained to allow fitting to real data without

any additional labeling. Such a model-fitting pipeline with-

out additional supervision has the potential to simplify ge-

ometric registration tasks by requiring less human labeling

effort. For example, when fitting an artist-defined hand rig

to point clouds of hands, our method allows for unsuper-

vised hand pose estimation. When fitting a body model to

3D scans of body data, this allows recovering the joint an-

gles of the body as well as registering the mesh vertices.

In the experiments, we present the results on fitting real

hands as well as benchmark body data on the SURREAL

and FAUST datasets.

2. Proposed Method

We propose to learn a function F(·) that takes as input

an unstructured point cloud X={x}ni=1, where each xi is a

3D point and n is a variable number, and produces as out-

put a fixed number m of corresponded vertices V={vi}mi=1,

where V = F (X). The vertices V form a mesh with fixed

topology whose geometry should closely match that of the

input1. Rather than allowing F(·) to be any arbitrary defor-

mation produced by a deep neural network (as in [49, 13]),

we force the output to be produced by Linear Blending

Skinning (LBS) to explicitly encode the motion of joints.

We allow additional non-linear deformations (also given by

a neural network) to model deviations from the LBS ap-

proximation. However, an important difference with respect

to similar models, such as SMPL [28] or MANO [38], is

that we do not pre-learn the space of non-LBS deforma-

tions on a curated set (and then fix them) but rather learn

these simultaneously on the data that is to be aligned, with

no additional supervision.

Linear Blending Skinning We start by briefly introduc-

ing LBS [29], which is the core building component of the

proposed work. LBS models deformation of a mesh from

a rest pose as a weighted sum of the skeleton bone trans-

formations applied to each vertex. We follow the notation

outlined in [28], which is a strong influence on our model.

An LBS model with J joints can be defined as follows

V = M(Θ,U), (1)

with V the vertices of the deformed shape after LBS. The

LBS function M takes two parameters, one is the vertices

U = {ui}mi=1 of a base mesh (template), and the other are

the relative joint rotation angles Θ ∈ R
J×3 for each joint j

with respect to its parents. If Θ = 0, then M(0,U) = U.

Two additional parameters, the skinning weights w and

the joint hierarchy K, are required by LBS. We will con-

sider them fixed by the artist-defined rig. In particular,

1Note that, although we assume the inputs are point clouds, they could

also be the vertices of a mesh without using any topology information.

11968



(a) U (b) M(θ,U) (c) Ud

Figure 2: (a) Template mesh, (b) LBS deformation of the

template using joint angles θ, and (c) a deformed template.

w ∈ R
m×J defines the weights of each vertex contribut-

ing to joint j and
∑

j wi,j = 1 for all i. K is the joint

hierarchy. Each vertex vi ∈ V can then be written as

vi = (I3,0) ·
J
∑

j=1

wi,jTj(Θ,K)

(

ui

1

)

,

where Tj(Θ,K) ∈ SE(3) is a transformation matrix for

each joint j, which encodes the transformation from the rest

pose to the posed mesh in world coordinate, constructed by

traversing the hierarchy K from the root to j. Since each vi
is constructed by a sequence of linear operations, the LBS

M(Θ,U) is differentiable respect to Θ and U. A simple ex-

ample constructed from the LBS component in SMPL [28]

is shown in Figure 2a and 2b.

In this work, both the joint angles and the template mesh

used in the LBS function are produced by deep networks

from the input point cloud data,

V = M(f(X), d(X,U)), (2)

where we identify a joint angle estimation network f , and a

template deformation network d which we describe below.

Joint Angle (Pose) Estimation Given an LBS model de-

fined in (1), the goal is to regress joint angles based on input

X via a function f : X → Θ such that M(f(X),U) ≈ X.

We use a deep neural network, which takes set data (e.g.

point cloud) as input [35, 50] to f , but we must also specify

how to compare X and V from M(·). Losses that assume

uniformly sampled surfaces (such as distribution match-

ing [26] or optimal transport) are less suitable, because re-

constructed point clouds typically exhibit some amount of

missing data and non-uniform sampling.

Instead, we adopt a Chamfer distance (CD) [49] defined

as Lc(X,V) =

1

n

n
∑

i=1

‖xi −NV(xi)‖2 +
1

m

m
∑

j=1

‖vj −NX(vj)‖2, (3)

where NV(xi) = argminvj∈V ‖xi − vj‖ is the nearest

neighbor of xi in V. This is also called Iterative Clos-

est Point (ICP) in the registration literature [5]. After

Figure 3: LBS-AE. Given a point cloud X of a input shape,

we encode X into a latent code φ(X) and the inferred joint

angles f(X). The decoder contains a deformation network

d to deform the template U into U
d, then uses a LBS to

pose U
d into V

d as the reconstruction.

finding nearest neighbors, we learn f by back-propagating

this point-wise loss through the differentiable LBS V =
M(f(X),U). Also note that we only sample a subset of

points for estimating (3) under SGD training schemes.

In practice, we observe that it takes many iterations for

PointNet [35] or DeepSet [50] architectures to improve if

the target loss is CD instead of corresponded supervision.

Similar behaviors were observed in [49, 26], where the al-

gorithms may take millions of iterations to converge. To al-

leviate this problem, we utilize LBS to generate data based

on a given Θ′ for self-supervision by optimizing

min
f

LΘ = ‖f(M(Θ′,U))−Θ′‖2.

It is similar to the loop-back loss [9] that ensures f can cor-

rectly reinterpret the model’s own output from M . Differ-

ent from [9, 17], we do not assume a prior pose distribution

is available. Our Θ′ comes from two sources of random-

ness. One is uniform distributions within the given joint

angle ranges (specified by the artist-defined rig) and the sec-

ond is we uniformly perturb the inferred angles from input

samples with a small uniform noise on the fly, which can

gradually adapt to the training data distribution when the es-

timation is improved as training progresses (see Section 2.1

and Figure 6).

Template Deformation Although LBS can represent

large pose deformations, due to limitations of LBS as well

as differences between the artist modeled mesh and the real

data, there will be a large residual in the fitting. We refer

to this residual as a modality gap between the model and

reality, and alleviate this difference by using a neural net-

work d to produce the template mesh to be posed by LBS.

The deformation network d(φ(X), ui) takes two sources as

input, where ui is each vertex in the template mesh U, and

φ(X) are features from an intermediate layer in f , which

contains information about the state of X. This yields a de-

formed template U
d = {d(φ(X), ui)}mi=1. One example is

shown in Figure 2c. After LBS, we denote the deformed

and posed mesh as V
d = M(f(X),Ud), and denote by

11969



(a) Input (b) Estimate (c)

Figure 4: When we try to move the middle finger of the cur-

rent estimate (b) toward the target (a), the Chamfer distance

increases before decreasing, showing a local optimum that

is difficult to overcome.

V = M(f(X),U) the posed original template.

If d is high-capacity, f(X) can learn to generate all-

zero joint angles for the LBS component (ignoring the in-

put X), and explain all deformations instead with d. That

is, M(f(X),Ud) = M(0,Ud) = U
d ≈ X, which re-

duces to the unsupervised version of [12]. Instead of using

explicit regularization to constrain d (e.g. ‖d(φ(X),UB)‖),

we propose a composition of two Chamfer distances as

Lc2,λ = Lc

(

X,Vd
)

+ λLc (X,V) . (4)

The second term in (4) enforces f(X) to learn correct joint

angles even without template deformation.

Lastly, we follow [18, 12] and apply Laplacian regular-

ization Llap = ‖LVd‖ to encourage smoothness of the de-

formed template, where L is the discrete Laplace-Beltrami

operator constructed from mesh U and its faces.

LBS-based Autoencoder The proposed algorithm can be

interpreted as an encoder-decoder scheme. The joint an-

gle regressor is the encoder, which compresses X into style

codes φ(X) and interpretable joint angles f(X). The de-

coder, different from standard autoencoders, is constructed

by combining a human designed LBS function and a style

deformation network d on the base template. We call the

proposed algorithm LBS-AE as shown in Figure 3.

2.1. Structured Chamfer Distance

To train an autoencoder, we have to define proper recon-

struction errors for different data. In LBS-AE, the objective

that provides information about input point clouds is only

CD (3). However, it is known that CD has many undesirable

local optima, which hinders the algorithm from improving.

A local optimum example of CD is shown in Figure 4. To

move the middle finger from the current estimate towards

the index finger to fit the input, the Chamfer distance must

increase before decreasing. This local optimum is caused by

incorrect correspondences found by nearest neighbor search

(the nearest neighbor of the middle finger of the current es-

timate is the ring finger of the input).

High-Level Correspondence Given a pair of sets

(V,X), for each v ∈ V, we want to find its correspondence

CX(v) in X. In CD, we use the nearest neighbor NX(v) to

approximate CX(v), which can be wrong, as shown in Fig-

ure 4. Instead of searching for nearest neighbors NX(v)
over the entire set X , we propose to search within a sub-

set X ′ ⊂ X , where CX(v) ∈ X ′, by eliminating irrele-

vant points in X. Following this idea, we partition X into

k subsets, X1 . . .Xk, where we use s(x;X) ∈ {1, . . . , k}
to denote which subset x belongs to. A desirable partition

should ensure s(v;V) = s(CX(v);X); then, to find the

nearest neighbor of v, we need only consider Xs(v) ⊂ X.

We then define the Structured Chamfer Distance (SCD) as

Ls(X,V) =

1

n

n
∑

i=1

‖xi −NVs(x)(xi)‖2 +
1

m

m
∑

j=1

‖vj −NXs(v)(vj)‖2,

(5)

where we ease the notation of s(x,X) and s(v,V) to be

s(x) and s(v). Compared with CD, which finds nearest

neighbors from all to all, SCD uses region to region based

on the high-level correspondence by leveraging the struc-

ture of data. Similar to (4), we define

Ls2,λ = Ls

(

X,Vd
)

+ λLs (X,V) . (6)

Figure 5: Joint Partitions.

In this paper, we partition

the vertices based on the LBS

skinning weights at a chosen

granularity. Examples of hand

and body data are shown in Fig-

ure 5, which use the structure

and our prior knowledge of the

human body. These satisfy the property that the true corre-

spondence is within the same partition. With the proposed

SCD, we can improve the local optimum in Figure 4.

Segmentation Inference For the deformed mesh V, we

can easily infer the partition s(v;V), because the mapping

between vertices and joints is defined by the LBS skinning

weights w. We directly use argmaxj wi,j as labels. With-

out additional labeling or keypoint information, the diffi-

culty is to infer s(x;X) for x ∈ X, which is a point cloud

segmentation task [35]. However, without labels for X, we

are not able to train a segmentation model on X directly.

Instead, similar to the self-supervision technique used for

training the joint angle regressor, we propose to train a seg-

mentation network s with the data (Vd,Y) generated by

LBS, where Y are the labels for w defined in LBS and

V = M(Θ,Ud). Note that Θ follows the same distribution

as before, which contains uniform sampling for exploration

and perturbation of the inferred angles f(X), as shown in

Figure 6. Instead of using the base template U only, we use

the inferred deformed template U
d to adapt to the real data

modality, which improves performance (see Section 4.1).

The final objective for training the shape deformation

11970



Θ

P (Θ)

ft(X1) ft(X2) ft(X3) (1) (2)

Figure 6: The mixture distribution of self-supervision data

from the LBS at iteration t. We sample from (1) the per-

turbed distribution centered at the ft(Xi) and (2) a uniform

distribution.

Algorithm 1 LBS-AE with SCD

Inputs: • Point Clouds: {X}
• LBS: M(;w,K,U) and angle ranges (Rl, Ru)

Pretrain s on uniformly sampled poses from LBS

while f and d have not converged:

1. Sample minibatch {Xi}Bi=1, {X′

i}Bi=1

2. Θ′ = {f(Xi) + ǫi}Bi=1 ∪Θr ∼ Unif(Rl, Ru)
3. Generate (Vd,Y) based on Θ′ to update s

4. Infer segmentation labels {s(X′

i)}Bi=1

5. Update f and d based on (1)-(3) (Eq. (7))

pipeline including f(·) and d(·) is2

L = Lc2,0.5 + λsLs2,0.5 + λlapLlap + λθLΘ, (7)

and we use standard cross-entropy for training s. In prac-

tice, since s is noisy during the first iterations, we pretrain

it for 50K iterations with poses from uniform distributions

over joint angles. Note that, for pretraining, we can only

use the base template U to synthesize data. After that, we

then learn everything jointly by updating each network al-

ternatively. The final algorithm, LBS-AE with SCD as re-

construction loss, is shown in Algorithm 1.

3. Related Works

LBS Extensions Various extensions have been proposed

to fix some of the shortcomings of LBS [24, 41, 45, 20,

37, 16, 19, 23, 51, 28, 4], where we only name afew

here. The proposed template deformation follows the idea

of [21, 37, 51, 28] to model the modalities and corrections

of LBS on the base template rest pose. [51, 28] use PCA-

like algorithms to model modalities via a weighted sum of

learned shape basis. Instead, our approach is similar to [4]

by learning modalities via a deformation network. The main

difference between LBS-AE and [51, 28, 4] is we do not

rely on correspondence information to learn the template

deformation d a priori. We simultaneously learn d and infer

2We use λ = 0.5, λlap = 0.005, λθ = 0.5 in all experiments.

pose parameters without external labeling.

Deep Learning for 3D Data Many deep learning tech-

niques have been developed for different types of 3D in-

formation, such as 3D voxels [10, 48, 47], geometry im-

ages [39, 40], meshes [8], depth maps [44] and point

clouds [35, 36, 50]. Autoencoders for point clouds are ex-

plored by [49, 13, 26, 1].

Model Fitting with Different Knowledge Different

works have studied to registration via fitting a mesh model

by leveraging different levels of information about the data.

[17] use SMPL [28] to reconstruct meshes from images by

using key points and prior knowledge of distributions of

pose parameters. [18] explore using a template instead of a

controllable model to reconstruct the mesh with key points.

[6, 15] also adopt pretrained key point detectors from other

sources of data as supervision. Simultaneous training to im-

prove model fitting and key point detection are explored

by [22, 31]. The main difference from the proposed joint

training in LBS-AE is we do not rely on an additional source

of real-world data to pretrain networks, as needed to train

these key point detectors. [46] share a similar idea of using

segmentation for nearest neighbor search, but they trained

the segmentation from labeled examples. [9] propose to

control morphable models instead of rig models for model-

ing faces. They also utilize prior knowledge of the 3DMM

parameter distributions for real faces. We note that most of

the works discussed above aim to recover 3D models from

images. [12] is the most related work to the proposed LBS-

AE, but doesn’t use LBS-based deformation. They use a

base template and learn the full deformation process with a

neural network trained by correspondences provided a

priori or from nearest neighbor search. More comparison

between [12] and LBS-AE will be studied in Section 4.

Lastly, learning body segmentation via SMPL is studied

by [43], but with a focus on learning a segmentation us-

ing SMPL with parameters inferred from real-world data to

synthesize training examples.

Loss Function with Auxiliary Neural Networks Using

auxiliary neural networks to define objectives for training

targeted models is also broadly studied in GAN literature

(e.g. [11, 30, 33, 3, 25, 32, 14]). [26] use a GAN loss for

matching input and reconstructed point clouds. By lever-

aging prior knowledge, the auxiliary network adopted by

LBS-AE is an interpretable segmentation network which

can be trained without adversarial training.

4. Experiment

Datasets We consider hand and body data. For body data,

we test on FAUST benchmark [7], which captures real hu-

man body with correspondence labeling. For hand data, we

use a multi-view capture system to captured 1, 524 poses

from three people, which have missing area and different

11971



Figure 7: Examples of the captured hands.

densities of points across areas. The examples of recon-

structed meshes are shown in Figure 7. For numerical eval-

uation, in addition to FAUST, we also consider synthetic

data since we do not have labeling information on the hand

data (e.g. key points, poses, correspondence). To generate

synthetic hands, we first estimate pose parameters of the

captured data under LBS. To model the modality gap, we

prepare different base templates with various thickness and

length of palms and fingers. We then generate data with

LBS based on those templates and the inferred pose pa-

rameters. We also generate synthetic human body shapes

using SMPL [6]. We sample 20, 000 parameter configura-

tions estimated by SURREAL [43] and 3, 000 samples of

bent shapes from [12]. For both synthetic hand and body

data, the scale of each shape is in [−1, 1]3 and we generate

2300 and 300 examples as holdout testing sets.

Architectures The architecture of f follows [26] to use

DeepSet [50], which shows competitive performance with

PointNet [35] with half the number of parameters. The out-

put is set to be J × 3 dimensions, where J is the number of

joints. We use the previous layer’s activations as φ(X) for

d. We use a three layer MLP to model d, where the input

is the concatenation of v, f(X) and φ(X), and the hidden

layer sizes are 256 and 128. For segmentation network s,

we use [35] because of better performance. For hand data,

we use an artist-created LBS, while we use the LBS part

from SMPL [28] for body data.

4.1. Study on Segmentation Learning

One goal of the proposed LBS-AE is to leverage ge-

ometry structures of the shape, by learning segmenta-

tion jointly to improve correspondence finding via nearest

neighbor searching when measuring the difference between

two shapes. Different from previous works (e.g. [46]), we

do not rely on any human labels. We study how the seg-

mentation learning with self-supervision interacts with the

model fitting to data. We train different variants of LBS-AE

to fit the captured hands data. The first is learning LBS-AE

with CD only (LBS-AECD). The objective is (7) without

Ls2,0.5. We then train the segmentation network s for SCD

with hand poses sampled from uniform distributions based

on U instead of Ud. Note that there is no interaction be-

tween learning s and the other networks f and d. The seg-

mentation and reconstructed results are shown in Figure 8a.

We observe that the segmentation network trained on ran-

domly sampled poses from a uniform distribution can only

segment easy poses correctly and fail on challenging cases,

(a) LBS-AECD (b) Modality Gap (c) LBS-AE

Figure 8: Ablation study of the proposed LBS-AE. For each

block, the left column is the inferred segmentations of input

shapes while the right column is the reconstruction.

such as feast poses, because of the difference between true

pose distributions and the uniform distribution used as well

as the modality gaps between real hands and synthetic hands

from LBS. On the other hand, LBS-AECD is stuck at differ-

ent local optimums. For example, it recovers to stretch the

ring finger instead of the little finger for the third pose.

Secondly, we study the importance of adapting to dif-

ferent modalities. In Figure 8b, we train segmentation and

LBS fitting jointly with SCD. However, when we augment

the data for training segmentation, we only adapt to pose

distributions via f(X), instead of using the deformed U
d.

Therefore, the training data for s for this case has a modality

gap between it and the true data. Compared with Figure 8a,

the joint training benefits the performance, for example, on

the feast pose. It suggests how good segmentation learn-

ing benefits reconstruction. Nevertheless, it still fails on

the third pose. By training LBS-AE and the segmentation

jointly with inferred modalities and poses, we could fit the

poses better as shown in Figure 8c. This difference demon-

strates the importance of training segmentation adapting to

the pose distributions and different modalities.

Numerical Results We also quantitatively investigate the

learned segmentation when ground truth is available. We

train s with (1) randomly sampled shapes from uniform dis-

tributions over joint angle ranges (Random) and (2) the pro-

posed joint training (Joint). We use pretraining as initial-

ization as describing in Section 2.1. We then train these two

algorithms on the synthetic hand and body data and evalu-

ate segmentation accuracy on the testing sets. The results

are shown in Figure 9. Random is exactly the same as pre-

training. After pretraining, Random is almost converged.

On the other hand, Joint improves the segmentation ac-

curacy in both cases by gradually adapting to the true pose

distribution when the joint angle regressorf is improved.

It justifies the effectiveness of the proposed joint training

where we can infer the segmentation in a self-supervised

manner. For hand data, as we show in Figure 8, there are

many touching-skin poses where fingers are touched to each

other. For those poses, there are strong correlations between

11972



0 50000 100000
Iterations

0.75

0.80

0.85

0.90

Se
g.

 A
cc Joint

Random

(a) Synthetic Hands

0 25000 50000 75000
Iterations

0.945

0.950

0.955

0.960

Se
g.

 A
cc

(b) SMPL

Figure 9: Segmentation accuracy on holdout testing sets.

joints in each pose, which are hard to be sampled by a sim-

ple uniform distribution and results in a performance gap

in Figure 9a. For body data, many poses from SURREAL

are with separate limbs, which Random can generalize sur-

prisingly well. Although it seems Joint only leads to in-

cremental improvement over Random, we argue this gap is

substantial, especially for resolving challenging touching-

skin cases as we will show in Section 4.3.

4.2. Qualitative Study

We compare the proposed algorithm with the unsuper-

vised learning variant of [12], which learns the deformation

by entirely relying on neural networks. Their objective is

similar to (7), but using CD and Laplacian regularization

only. For fair comparison, we also generate synthetic data

on the fly with randomly sampled poses and correspondence

for [12], which boosts its performance. We also compare

with the simplified version of the proposed algorithm by

using CD instead of SCD, which is denoted as LBS-AECD

as above.

We fit and reconstruct the hand and body data as shown

in Figure 10. For the thumb-up pose, due to wrong cor-

respondences from nearest neighbor search, both [12] and

LBS-AECD reconstruct wrong poses. The wrong correspon-

dence causes problems to [12]. Since the deformation from

templates to targeted shapes fully relies on a deep neural

network, when the correspondence is wrong and the net-

work is powerful, it learns distorted deformation even with

a Laplacian regularization. On the other hand, since LBS-

AECD still utilizes LBS, the deformation network d is easier

to regularize, which results in better finger reconstructions.

We note that [12] learns proper deformation if the corre-

spondence can be found correctly, such as the third row in

Figure 10. In both cases, the proposed LBS-AE can learn

segmentation well and recover the poses better.

Lastly, we consider fitting FAUST, with only 200 sam-

ples, as shown in Figure 11. With limited and diverse

poses, we have less hint of how the poses deform [46], a

nearest neighbor search is easily trapped in bad local opti-

mums as we mentioned in Figure 4. The proposed LBS-AE

still results in reasonable reconstructions and segmentation,

though the right arm in the second row suffers from the local

optimum issues within the segmentation. A fix is to learn

more fine-grained segmentation, but it brings the trade-off

(a) Input (b) Segment (c) [12] (d) CD (e) LBS-AE

Figure 10: Qualitative comparisons on captures hands and

SURREAL (SMPL). Given point clouds sampled from the

surfaces of input shapes (a), (c-e) are the reconstructions

from different algorithms. (b) is the inferred segmentation

of LBS-AE on the input shape.

(a) Input (b) Segment (c) [12] (d) CD (e) LBS-AE

Figure 11: Qualitative Comparison on FAUST.

between task difficulty and model capacity, which we leave

for future work.

11973



SMPL Syn. Hand

Algorithm Recon Pose Corre. Recon Pose Corre.

Unsup. [12] 0.076 0.082 0.136 0.099 0.035 0.176

Unsup.+Aug [12] 0.081 0.081 0.132 0.069 0.049 0.140

Sup. [12] 0.073 0.071 0.104 0.062 0.047 0.135

LBS-AECD 0.051 0.152 0.147 0.082 0.069 0.168

LBS-AERAND 0.041 0.058 0.100 0.069 0.050 0.137

LBS-AE 0.037 0.048 0.091 0.053 0.035 0.111

Table 1: Quantitative results on synthetic data.

4.3. Quantitative Study

We conduct quantitative analysis on reconstruction, pose

estimation, and correspondence on synthetic hand and body

data. We use
√

CD as the proxy to reconstructions. Pose

estimation compares the average ℓ2 distance between true

joint positions and inferred ones while correspondence also

measures the average ℓ2 between found and true correspon-

dences. We randomly generate 4000 testing pairs from the

testing data for correspondence comparison. Given two

shapes, we fit the shapes via the trained models. Since we

know the correspondence of the reconstructions, we project

the data onto the reconstructions to find the correspondence.

For more details, we refer readers to [12].

We compare three variants of [12], including the super-

vised version with full correspondence, and the unsuper-

vised version with and without synthetic data augmentation

aforementioned. For LBS-AE, we also consider three vari-

ants, including a simple CD baseline (LBS-AECD), a seg-

mentation network s trained on poses from uniform distri-

butions LBS-AERAND and joint training version (LBS-AE).

The results are shown in Table 1.

For LBS-AE variants, the jointly trained LBS-AE is bet-

ter than LBS-AECD and LBS-AERAND. It supports the hy-

pothesis in Section 4.1, that joint training facilitates improv-

ing model fitting and segmentation. Also, as shown in Sec-

tion 4.1, the pretrained segmentation network still has rea-

sonable testing accuracy and brings an improvement over

using CD loss only. On the other hand, the supervised ver-

sion of [12] trained with full correspondence is worse than

the proposed unsupervised LBS-AE due to generalization

ability. For correspondence on the SMPL training set, su-

pervised [12] achieves 0.065 while LBS-AE achieve 0.069.

If we increase the training data size three times, super-

vised [12] improves its correspondence result to be 0.095.

For hand data, supervised [12] generalizes even worse with

only 1500 training examples. It suggests that leveraging

LBS models into the model can not only use smaller net-

works but also generalize better than relying on an uncon-

strained deformation from a deep network.

Deformation Network We also investigate the ability of

the deformation in LBS-AE. For data generated via SMPL,

we know the ground truth of deformed templates U
gt of

Algorithm Inter. error (cm) Intra. err (cm)

FMNet [27] 4.826 2.44

Unsup. [12] (230K) 4.88 -

Sup. [12] (10K) 4.70 -

Sup. [12] (230K) 3.26 1.985

LBS-AE (23K) 4.08 2.161

Table 2: Correspondence results on FAUST testing set.

(a) (b) (c)

Figure 12: Inferred correspondence of FAUST testing data.

each shape. The average ℓ2 distance between corresponding

points from U
gt and U

d is 0.02, while the average distance

between U
gt and U is 0.03.

Real-World Benchmark. One representative real-world

benchmark is FAUST [7]. We follow the protocol used

in [12] for comparison, where they train on SMPL with

SURREAL parameters and then fine-tune on FAUST.

In [12], they use a different number of data from SMPL with

SURREAL parameters, while we only use 23K. The numer-

ical results are shown in Table 2. With only 23K SMPL data

and self-supervision, we are better than unsupervised [12]

with 50K data, supervised [12] with 10K data, and the su-

pervised learning algorithm FMNet [27]. We show some

visualization of the inferred correspondence in Figure 12.

5. Conclusion

We propose a self-supervised autoencoding algorithm,

LBS-AE, to align articulated mesh models to point clouds.

The decoder leverages an artist-defined mesh rig, and us-

ing LBS. We constrain the encoder to infer interpretable

joint angles. We also propose the structured Chamfer dis-

tance for training LBS-AE, defined by inferring a mean-

ingful segmentation of the target data to improve the corre-

spondence finding via nearest neighbor search in the origi-

nal Chamfer distance. By combining LBS-AE and the seg-

mentation inference, we demonstrate we can train these two

components simultaneously without supervision (labeling)

from data. As training progress, the proposed model can

start adapting to the data distribution and improve with self-

supervision. In addition to opening a new route to model

fitting without supervision, the proposed algorithm also pro-

vides a successful example showing how to encode existing

prior knowledge in a geometric deep learning model.

11974



References

[1] P. Achlioptas, O. Diamanti, I. Mitliagkas, and L. Guibas.

Learning representations and generative models for 3d point

clouds. In ICML, 2018.

[2] D. Anguelov, P. Srinivasan, D. Koller, S. Thrun, J. Rodgers,

and J. Davis. Scape: Shape completion and animation of

people. TOG, 2005.

[3] M. Arjovsky, S. Chintala, and L. Bottou. Wasserstein gan.

ICML, 2017.

[4] S. W. Bailey, D. Otte, P. Dilorenzo, and J. F. O’Brien. Fast

and deep deformation approximations. TOG, 2018.

[5] P. J. Besl and N. D. McKay. A method for registration of 3-d

shapes. In TPAMI, 1992.

[6] F. Bogo, A. Kanazawa, C. Lassner, P. Gehler, J. Romero,

and M. J. Black. Keep it smpl: Automatic estimation of 3d

human pose and shape from a single image. In ECCV, 2016.

[7] F. Bogo, J. Romero, M. Loper, and M. J. Black. Faust:

Dataset and evaluation for 3d mesh registration. In CVPR,

2014.

[8] M. M. Bronstein, J. Bruna, Y. LeCun, A. Szlam, and P. Van-

dergheynst. Geometric deep learning: going beyond eu-

clidean data. IEEE Signal Processing Magazine, 2017.

[9] K. Genova, F. Cole, A. Maschinot, A. Sarna, D. Vlasic, and

W. T. Freeman. Unsupervised training for 3d morphable

model regression. In CVPR, 2018.

[10] R. Girdhar, D. F. Fouhey, M. Rodriguez, and A. Gupta.

Learning a predictable and generative vector representation

for objects. In ECCV, 2016.

[11] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu,

D. Warde-Farley, S. Ozair, A. Courville, and Y. Bengio. Gen-

erative adversarial nets. In NIPS, 2014.

[12] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and

M. Aubry. 3d-coded: 3d correspondences by deep defor-

mation. In ECCV, 2018.

[13] T. Groueix, M. Fisher, V. G. Kim, B. C. Russell, and

M. Aubry. Atlasnet: A papier-m\ˆ ach\’e approach to learn-

ing 3d surface generation. In CVPR, 2018.

[14] I. Gulrajani, F. Ahmed, M. Arjovsky, V. Dumoulin, and

A. Courville. Improved training of wasserstein gans. In

NIPS, 2017.

[15] H. Joo, T. Simon, and Y. Sheikh. Total capture: A 3d de-

formation model for tracking faces, hands, and bodies. In

CVPR, 2018.

[16] P. Joshi, M. Meyer, T. DeRose, B. Green, and T. Sanocki.

Harmonic coordinates for character articulation. In TOG,

2007.

[17] A. Kanazawa, M. J. Black, D. W. Jacobs, and J. Malik. End-

to-end recovery of human shape and pose. In CVPR, 2018.

[18] A. Kanazawa, S. Tulsiani, A. A. Efros, and J. Malik. Learn-

ing category-specific mesh reconstruction from image col-

lections. In ECCV, 2018.

[19] L. Kavan, S. Collins, J. Žára, and C. O’Sullivan. Geometric

skinning with approximate dual quaternion blending. TOG,

2008.

[20] L. Kavan and J. Žára. Spherical blend skinning: a real-time

deformation of articulated models. In SI3D, 2005.

[21] T. Kurihara and N. Miyata. Modeling deformable human

hands from medical images. In SCA, 2004.

[22] C. Lassner, J. Romero, M. Kiefel, F. Bogo, M. J. Black, and

P. V. Gehler. Unite the people: Closing the loop between 3d

and 2d human representations. In CVPR, 2017.

[23] B. H. Le and Z. Deng. Smooth skinning decomposition with

rigid bones. TOG, 2012.

[24] J. P. Lewis, M. Cordner, and N. Fong. Pose space deforma-

tion: a unified approach to shape interpolation and skeleton-

driven deformation. In SIGGRAPH, 2000.

[25] C.-L. Li, W.-C. Chang, Y. Cheng, Y. Yang, and B. Póczos.

Mmd gan: Towards deeper understanding of moment match-

ing network. In NIPS, 2017.

[26] C.-L. Li, M. Zaheer, Y. Zhang, B. Poczos, and R. Salakhut-

dinov. Point cloud gan. arXiv preprint arXiv:1810.05795,

2018.

[27] O. Litany, T. Remez, E. Rodolà, A. M. Bronstein, and M. M.

Bronstein. Deep functional maps: Structured prediction for

dense shape correspondence. In ICCV, 2017.

[28] M. Loper, N. Mahmood, J. Romero, G. Pons-Moll, and M. J.

Black. Smpl: A skinned multi-person linear model. TOG,

2015.

[29] N. Magnenat-Thalmann, R. Laperrire, and D. Thalmann.

Joint-dependent local deformations for hand animation and

object grasping. In GI, 1988.

[30] X. Mao, Q. Li, H. Xie, R. Y. Lau, and Z. Wang. Least squares

generative adversarial networks. In ICCV, 2017.

[31] D. Mehta, S. Sridhar, O. Sotnychenko, H. Rhodin,

M. Shafiei, H.-P. Seidel, W. Xu, D. Casas, and C. Theobalt.

Vnect: Real-time 3d human pose estimation with a single

rgb camera. TOG, 2017.

[32] Y. Mroueh and T. Sercu. Fisher gan. In NIPS, 2017.

[33] S. Nowozin, B. Cseke, and R. Tomioka. f-gan: Training

generative neural samplers using variational divergence min-

imization. In NIPS, 2016.

[34] G. Pons-Moll, J. Romero, N. Mahmood, and M. J. Black.

Dyna: A model of dynamic human shape in motion. TOG,

2015.

[35] C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep

learning on point sets for 3d classification and segmentation.

In CVPR, 2017.

[36] C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep

hierarchical feature learning on point sets in a metric space.

In NIPS, 2017.

[37] T. Rhee, J. P. Lewis, and U. Neumann. Real-time weighted

pose-space deformation on the gpu. In EUROGRAPHICS,

2006.

[38] J. Romero, D. Tzionas, and M. J. Black. Embodied hands:

Modeling and capturing hands and bodies together. TOG,

2017.

[39] A. Sinha, J. Bai, and K. Ramani. Deep learning 3d shape

surfaces using geometry images. In ECCV, 2016.

[40] A. Sinha, A. Unmesh, Q. Huang, and K. Ramani. Surfnet:

Generating 3d shape surfaces using deep residual networks.

In CVPR, 2017.

[41] P.-P. J. Sloan, C. F. Rose III, and M. F. Cohen. Shape by

example. In SI3D, 2001.

11975



[42] A. Tewari, M. Zollhoefer, F. Bernard, P. Garrido, H. Kim,

P. Perez, and C. Theobalt. High-fidelity monocular face re-

construction based on an unsupervised model-based face au-

toencoder. TPAMI, 2018.

[43] G. Varol, J. Romero, X. Martin, N. Mahmood, M. J. Black,

I. Laptev, and C. Schmid. Learning from synthetic humans.

In CVPR, 2017.

[44] P. Wang, W. Li, Z. Gao, J. Zhang, C. Tang, and P. O. Ogun-

bona. Action recognition from depth maps using deep con-

volutional neural networks. THMS, 2016.

[45] X. C. Wang and C. Phillips. Multi-weight enveloping: least-

squares approximation techniques for skin animation. In

SCA, 2002.

[46] L. Wei, Q. Huang, D. Ceylan, E. Vouga, and H. Li. Dense

human body correspondences using convolutional networks.

In CVPR, 2016.

[47] J. Wu, C. Zhang, T. Xue, B. Freeman, and J. Tenenbaum.

Learning a probabilistic latent space of object shapes via 3d

generative-adversarial modeling. In NIPS, 2016.

[48] Z. Wu, S. Song, A. Khosla, F. Yu, L. Zhang, X. Tang, and

J. Xiao. 3d shapenets: A deep representation for volumetric

shape modeling. In CVPR, 2015.

[49] Y. Yang, C. Feng, Y. Shen, and D. Tian. Foldingnet: Point

cloud auto-encoder via deep grid deformation. In CVPR,

2018.

[50] M. Zaheer, S. Kottur, S. Ravanbakhsh, B. Poczos, R. R.

Salakhutdinov, and A. J. Smola. Deep sets. In NIPS, 2017.

[51] S. Zuffi and M. J. Black. The stitched puppet: A graphical

model of 3d human shape and pose. In CVPR, 2015.

11976


