
Label Efficient Semi-Supervised Learning via Graph Filtering

Qimai Li1 Xiao-Ming Wu∗1 Han Liu1 Xiaotong Zhang1 Zhichao Guan12

1The Hong Kong Polytechnic University, 2Zhejiang University,
{csqmli,csxmwu,cshliu,csxtzhang}@comp.polyu.edu.hk, zcguan@zju.edu.cn

Abstract

Graph-based methods have been demonstrated as one

of the most effective approaches for semi-supervised learn-

ing, as they can exploit the connectivity patterns between la-

beled and unlabeled data samples to improve learning per-

formance. However, existing graph-based methods either

are limited in their ability to jointly model graph structures

and data features, such as the classical label propagation

methods, or require a considerable amount of labeled data

for training and validation due to high model complexity,

such as the recent neural-network-based methods. In this

paper, we address label efficient semi-supervised learning

from a graph filtering perspective. Specifically, we propose

a graph filtering framework that injects graph similarity

into data features by taking them as signals on the graph

and applying a low-pass graph filter to extract useful data

representations for classification, where label efficiency can

be achieved by conveniently adjusting the strength of the

graph filter. Interestingly, this framework unifies two seem-

ingly very different methods – label propagation and graph

convolutional networks. Revisiting them under the graph

filtering framework leads to new insights that improve their

modeling capabilities and reduce model complexity. Exper-

iments on various semi-supervised classification tasks on

four citation networks and one knowledge graph and one

semi-supervised regression task for zero-shot image recog-

nition validate our findings and proposals.

1. Introduction

The success of deep learning and neural networks comes

at the cost of large amounts of labeled data and long train-

ing time. Semi-supervised learning [13] is important as it

can leverage ample available unlabeled data to aid super-

vised learning, thus greatly saving the cost, trouble, and

time for human labeling. Many researches have shown that

∗Corresponding author

when used properly, unlabeled data can significantly im-

prove learning performance [64, 31, 32].

One effective approach to making use of unlabeled data

is to represent the data in a graph where each labeled or

unlabeled sample is a vertex and then model the relations

between vertices. For some applications such as social net-

work analysis, data exhibits a natural graph structure. For

some other applications such as image or text classification,

data may come in a vector form, and a graph is usually con-

structed using data features. Nevertheless, in many cases,

graphs only partially encode data information. Take doc-

ument classification in a citation network as an example,

the citation links between documents form a graph which

represents their citation relation, and each document is rep-

resented as a bag-of-words feature vector which describes

its content. To correctly classify a document, both the cita-

tion relations and the content information need to be taken

into account, as they contain different aspects of document

information. For graph-based semi-supervised learning, the

key challenge is to exploit graph structures as well as other

information especially data features to improve learning

performance.

Despite many progresses, existing methods are still lim-

ited in their capabilities to leverage multiple modalities of

data information for learning. The classical label propaga-

tion methods only exploit graph structures to make predic-

tions on unlabeled examples, which are often inadequate in

many scenarios. To go beyond their limit and jointly model

graph structures and data features, a common approach is

to train a supervised learner to classify data features while

regularizing the classifier with graph similarity. Manifold

regularization [4] trains a support vector machine with a

graph Laplacian regularizer. Deep semi-supervised embed-

ding [53] and Planetoid [56] train a neural network with

an embedding-based regularizer. Recently, graph convolu-

tional networks (GCN) [32] have demonstrated impressive

results in semi-supervised learning, due to its special de-

sign of a first-order convolutional filter that nicely integrates

graph and feature information in each layer. The success of

19582

GCN has inspired many follow-up works [60, 62] on graph

neural networks for semi-supervised learning. However,

although these neural-network-based models tend to have

stronger modelling capabilities than the conventional ones,

they typically require a considerable amount of labeled data

for training and validation due to high model complexity,

hence may not be label efficient.

In this paper, we propose to study semi-supervised learn-

ing from a principled graph filtering perspective. The basic

idea is to take data features as signals sitting on the underly-

ing graph that encodes relations between data samples, and

uses the graph to design proper low-pass graph convolu-

tional filters to generate smooth and representative features

for subsequent classification. In this process, graph simi-

larity is injected into data features to produce more faith-

ful data representations. It also enables learning with few

labels by flexibly adjusting filter strength to achieve label

efficiency. More interestingly, it unifies well-known semi-

supervised learning methods including the label propaga-

tion methods [61] and the graph convolutional networks

[32], with useful insights for improving their modelling ca-

pabilities.

Under the graph filtering framework, we show that label

propagation methods can be decomposed into three compo-

nents: graph signal, graph filter, and classifier. Based on

this, we then propose a class of generalized label propaga-

tion (GLP) methods by naturally extending the three com-

ponents, including using data feature matrix instead of label

matrix as input graph signals, extending the graph filter to

be any low-pass graph convolutional filter, and using any

desired classifier for classification. GLP can achieve label

efficiency in semi-supervised learning by taking advantages

of data features, strong and efficient graph filters, and pow-

erful supervised classifiers.

The popular graph convolutional networks (GCN) [32]

can also be interpreted under the graph filtering framework.

It has been shown that GCN implements the graph con-

volution in each layer by conducting Laplacian smoothing

[33]. When revisited under the graph filtering framework,

it further elucidates the inner working of GCN including

the renormalization trick and the model parameter settings.

Furthermore, it leads to an improved GCN model (IGCN)

that is more flexible and label efficient. By adding an expo-

nent parameter on the filter of GCN to easily control filter

strength, IGCN can significantly reduce trainable parame-

ters and effectively prevent overfitting when training data is

very limited.

We conduct extensive experiments to validate our find-

ings and the effectiveness of the proposed methods. We test

a variety of semi-supervised classification tasks including

document classification on four citation networks and entity

classification on one knowledge graph. We also test a semi-

supervised regression task for zero-shot image recognition.

The proposed GLP and IGCN methods perform superiorly

in terms of prediction accuracy and training efficiency.

Our contributions are summarized as follows. First, we

propose a graph filtering framework for semi-supervised

learning, which provides new insights into GCN and shows

its close connection with label propagation. Second, we

propose GLP and IGCN to successfully tackle label insuffi-

ciency in semi-supervised learning. Third, we demonstrate

the high efficacy and efficiency of the proposed methods on

various semi-supervised classification and regression tasks.

2. Graph Filtering

This section introduces the concepts of graph signal,

graph convolutional filter, and graph filtering.

Notations. A non-oriented graph G = (V,W,X) with

n = |V| vertices is given, with a nonnegative symmetric

affinity matrix W ∈ R
n×n
+ encoding edge weights and a

feature matrix X ∈ R
n×m where an m-dimensional feature

vector is associated with each vertex. For semi-supervised

classification, only a small subset of vertices are labeled,

and the goal is to predict the labels of other vertices. Denote

by Y ∈ {0, 1}n×l the label matrix1, where l is the number

of classes.

In graph signal processing [44], the eigenvalues and

eigenvectors of the graph Laplacian correspond to frequen-

cies and Fourier basis in classical harmonic analysis. The

graph Laplacian is defined as L = D −W , where D is the

degree matrix. It can be eigen-decomposed as L = ΦΛΦ−1,

where Λ = diag(λ1, · · · , λn) and (λi)1≤i≤n are the eigen-

values in the increasing order, and Φ = (φ1, · · · ,φn)
and (φi)1≤i≤n are the associated orthogonal eigenvectors.

Note that the normalized graph Laplacian Lr = D−1L

and the symmetrically normalized graph Laplacian Ls =
D− 1

2LD− 1

2 have similar eigen-decomposition as L. The

eigenvalues (λi)1≤i≤n can be considered as frequencies,

and the associated eigenvectors (φi)1≤i≤n form the Fourier

basis.

Definition 1 (Graph Signal). A graph signal is a real-

valued function f : V → R on the vertex set V of a graph,

which can be represented as f = (f(v1), · · · , f(vn))
⊤ in

the vector form.

Any graph signal f can be decomposed into a linear

combination of the basis signals (φi)1≤i≤n :

f = Φc =
∑

i

ciφi, (1)

where c = (c1, · · · , cn)
⊤ and ci is the coefficient of φi.

The magnitude of the coefficient |ci| represents the strength

1If the label of vertex vi is known, then Y (i, :) is a one-hot embedding

of vi with yij = 1 if vi belongs to the j-th class and yij = 0 otherwise.

If the label of vertex vi is not given, then Y (i, :) is a vector of all zeros.

9583

of the basis signal φi presented in the signal f . It is well

known that the basis signals associated with lower frequen-

cies (smaller eigenvalues) are smoother [64] on the graph,

where the smoothness of the basis signal φi is measured by

the eigenvalue λi, i.e.,

∑

(vj ,vk)∈E

wjk[φi(j)− φi(k)]
2 = φi

⊤Lφi = λi. (2)

Hence, a smooth graph signal f should mostly consist of

low-frequency basis signals.

The basic idea of graph filtering is to use the underlying

data relation graph to design proper graph filters to produce

smooth signals for downstream tasks. A graph filter is a

function that takes a graph signal as input and outputs a new

signal. A linear graph filter can be represented as a matrix

G ∈ R
n×n, and the output signal is Gf . In this paper, we

focus on graph convolutional filters due to their linear shift-

invariant property [42].

Definition 2 (Graph Convolutional Filter). A linear graph

filter G is convolutional if and only if there exists a function

p(·) : R → R, satisfying G = Φp(Λ)Φ−1, where p(Λ) =
diag(p(λ1), · · · , p(λn)).

The function p(·) is known as the frequency response

function of the filter G. We shall denote by p(L) the fil-

ter with frequency response function p(·).
To produce a smooth signal, the filter G should be able to

preserve the low-frequency basis signals in f while filtering

out the high-frequency ones. By (1), the output signal can

be written as

f̄ = Gf = Φp(Λ)Φ−1 · Φc =
∑

i

p(λi)ciφi. (3)

In the output signal f̄ , the coefficient ci of the basis signal

φi is scaled by p(λi). To preserve the low-frequency signals

and remove the high-frequency ones, p(λi) should be large

for small λi and small for large λi. Simply put, p(·) should

behave like a low-pass filter in classical harmonic analysis.

Fig. 1(a) shows an example of a low-pass function whose

response decreases as the frequency increases.

Taking the vertex features as graph signals, e.g., a col-

umn of the feature matrix X can be considered as a graph

signal, graph filtering provides a principled way to integrate

graph structures and vertex features for learning. In the fol-

lowing, we will revisit two popular semi-supervised learn-

ing methods – label propagation and graph convolutional

networks under this framework and gain new insights for

improving their modelling capabilities.

3. Revisit and Extend Label Propagation

Label propagation (LP) [63, 61, 5] is arguably the most

popular method for graph-based semi-supervised learning.

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

p a
r(

)

=3
=5

=10
=20

(a) par(λ) = (1 + αλ)−1

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

p r
nm

(
)

k=1
k=2

k=3
k=4

(b) prnm(λ) = (1− λ)k

Figure 1: Frequency response functions.

As a simple and effective tool, it has been widely used in

many scientific research fields and numerous industrial ap-

plications. The objective of LP is to find a prediction (em-

bedding) matrix Z ∈ R
n×l that agrees with the label matrix

Y while being smooth on the graph such that nearby ver-

tices have similar embeddings:

Z = argmin
Z

{ ||Z − Y ||22
︸ ︷︷ ︸

Least square fitting

+ αTr(Z⊤LZ)
︸ ︷︷ ︸

Laplcacian regularization

}, (4)

where α is a balancing parameter controlling the degree of

Laplacian regularization. In (4), the fitting term enforces the

prediction matrix Z to agree with the label matrix Y , while

the regularization term makes each column of Z smooth

along the graph edges. A closed-form solution of the above

unconstrained quadratic optimization can be obtained by

taking the derivative of the objective function and setting

it to zero:

Z = (I + αL)−1Y. (5)

Each unlabeled vertex vi is then classified by simply com-

paring the elements in Z(i, :) or with some normalization

applied on the columns of Z first [63].

3.1. Revisit Label Propagation

From the perspective of graph filtering, we show that LP

is comprised of three components: signal, filter, and classi-

fier. We can see from (5) that the input signal matrix of LP

is simply the label matrix Y , where each column Y (:, i) can

be considered as a graph signal. Note that in Y (:, i), only

the labeled vertices in class i have value 1 and others 0.

The graph filter of LP is the Auto-Regressive (AR) filter

[48]:

par(L) = (I + αL)−1 = Φ(I + αΛ)−1Φ−1, (6)

with the frequency response function:

par(λi) =
1

1 + αλi

. (7)

Note that this also holds for the normalized graph Lapla-

cians. As shown in Fig. 1(a), par(λi) is low-pass. For any

9584

α > 0, par(λi) is near 1 when λi is close to 0, and par(λi)
decreases and approaches 0 as λi increases. Applying the

AR filter on the signal Y (:, i) will produce a smooth signal

Z(:, i), where vertices of the same class have similar values

and those of class i have larger values than others under the

cluster assumption. The parameter α controls the strength

of the AR filter. When α increases, the filter becomes more

low-pass (Fig. 1(a)) and will produce smoother signals.

Finally, LP adopts a nonparametric classifier on the em-

beddings to classify the unlabeled vertices, i.e., the label of

an unlabeled vertex vi is given by yi = argmaxj Z(i, j).

3.2. Generalized Label Propagation Methods

The above analysis shows that LP only takes into account

the given graph W and the label matrix Y , but without us-

ing the feature matrix X . This is one of its major limita-

tions in dealing with datasets that provide both W and X ,

e.g., citation networks. Here, we propose generalized la-

bel propagation (GLP) methods by naturally extending the

three components of LP.

• Signal: Use the feature matrix X instead of the label

matrix Y as input signals.

• Filter: The filter G can be any low-pass graph convo-

lutional filter.

• Classifier: The classifier can be any classifer trained

on the embeddings of labeled vertices.

GLP consists of two simple steps. First, a low-pass filter

G is applied on the feature matrix X to obtain a smooth

feature matrix X̄ ∈ R
n×m:

X̄ = GX. (8)

Second, a supervised classifier (e.g., multilayer perceptron,

convolutional neural networks, support vector machines,

etc.) is trained with the filtered features of labeled vertices,

which is then applied on the filtered features of unlabeled

vertices to predict their labels.

GLP has the following advantages. First, by injecting

graph relations into data features, it can produce more use-

ful data representations for the downstream classification

task. Second, it offers the flexibility of using computation-

ally efficient filters and conveniently adjusting their strength

for different application scenarios. Third, it allows taking

advantage of powerful domain-specific classifiers for high-

dimensional data features, e.g., a multilayer perceptron for

text data and a convolutional neural network for image data.

4. Revisit and Improve Graph Convolutional

Networks

The recently proposed graph convolutional networks

(GCN) [32] has demonstrated superior performance in

semi-supervised learning and attracted much attention. The

GCN model consists of three steps. First, a so-called

renormalization trick is applied on the adjacency matrix W

by adding an self-loop to each vertex, resulting in a new

adjacency matrix W̃ = W + I with the degree matrix

D̃ = D + I , which is then symmetrically normalized as

W̃s = D̃− 1

2 W̃ D̃− 1

2 . Second, define the layerwise propaga-

tion rule:

H(t+1) = σ
(

W̃sH
(t)Θ(t)

)

, (9)

where H(t) is the matrix of activations fed to the t-th layer

and H(0) = X , Θ(t) is the trainable weight matrix in the

layer, and σ is the activation function, e.g., ReLU(·) =
max(0, ·). The graph convolution is defined as multiply-

ing the input of each layer with the renormalized adjacency

matrix W̃s from the left, i.e., W̃sH
(t). The convoluted fea-

tures are then fed into a projection matrix Θ(t). Third, stack

two layers up and apply a softmax function on the output

features to produce a prediction matrix:

Z = softmax
(

W̃s ReLU
(

W̃sXΘ(0)
)

Θ(1)
)

, (10)

and then train the model with the cross-entropy loss on la-

beled samples.

4.1. Revisit Graph Convolutional Networks

In this section, we interpret GCN under the graph filter-

ing framework and explain its implicit design features in-

cluding the choice of the normalized graph Laplacian and

the renormalization trick on the adjacency matrix.

GCN conducts graph filtering in each layer with the filter

W̃s and the signal matrix H(t). We have W̃s = I − L̃s,

where L̃s is the symmetrically normalized graph Laplacian

of the graph W̃ . Eigen-decompose L̃s as L̃s = ΦΛ̃Φ−1,

then the filter is

W̃s = I − L̃s = Φ(I − Λ̃)Φ−1, (11)

with frequency response function

p(λ̃i) = 1− λ̃i. (12)

Clearly, as shown in Fig. 1(b), this function is linear and

low-pass on [0, 1], but not on [1, 2].

It can be seen that by performing all the graph convo-

lutions in (10) first, i.e., by exchanging the renormalized

adjacency matrix W̃s in the second layer with the internal

ReLU function, GCN is a special case of GLP, where the

input signal matrix is X , the filter is W̃ 2
s , and the classifier

is a two-layer multi-layer perceptron (MLP). One can also

see that GCN stacks two convolutional layers because W̃ 2
s

is more low-pass than W̃s, which can be seen from Fig. 1(b)

that (1− λ)2 is sort of more low-pass than (1− λ) by sup-

pressing the large eigenvalues harder .

9585

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

(a) 1− λ

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

(b) 1− λ̃

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

(c) (1− λ)2

0.0 0.5 1.0 1.5 2.0
1.0

0.5

0.0

0.5

1.0

(d) (1− λ̃)2

Figure 2: Effect of the renormalization trick. Left two fig-

ures plot points (λi, p(λi)). Right two figures plot points

(λ̃i, p(λ̃i)).

Why Use Normalized Graph Laplacian. GCN uses the

normalized Laplacian Ls because the eigenvalues of Ls fall

into [0, 2] [18], while those of the unnormalized Laplacian

L are in [0,+∞]. If using L, the frequency response in (12)

will amplify eigenvalues in [2,+∞], which will introduce

noise and undermine performance.

Why the Renormalization Trick Works. We illustrate

the effect of the renormalization trick used in GCN in Fig. 2,

where the frequency responses on the eigenvalues of Ls and

L̃s on the Cora citation network are plotted respectively. We

can see that by adding a self-loop to each vertex, the range

of eigenvalues shrinks from [0, 2] to [0, 1.5], which avoids

amplifying eigenvalues near 2 and reduces noise. Hence, al-

though the response function (1−λ)k is not completely low-

pass, the renormalization trick shrinks the range of eigen-

values and makes L̃s resemble a low-pass filter. It can be

proved that if the largest eigenvalue of Ls is λm, then all

the eigenvalues of L̃s are no larger than dm

dm+1λm, where

dm is the largest degree of all vertices.

4.2. Improved Graph Convolutional Networks

One notable drawback of the current GCN model is that

one cannot easily control filter strength. To increase filter

strength and produce smoother features, one has to stack

multiple layers. However, since in each layer the convolu-

tion is coupled with a projection matrix by the ReLU, stack-

ing many layers will introduce many trainable parameters.

This may lead to severe overfitting when label rate is small,

or it will require extra labeled data for validation and model

selection, both of which are not label efficient.

To fix this, we propose an improved GCN model (IGCN)

by replacing the filter W̃s with W̃ k
s :

Z = softmax
(

W̃ k
s ReLU

(

W̃ k
s XΘ(0)

)

Θ(1)
)

. (13)

We call prnm(L̃s) = W̃ k
s the renormalization (RNM) filter,

with frequency response function

prnm(λ) =
(

I − λ̃
)k

. (14)

IGCN can achieve label efficiency by using the exponent k

to conveniently adjust the filter strength. In this way, it can

maintain a shallow structure with a reasonable number of

trainable parameters to avoid overfitting.

5. Filter Strength and Computation

The strength of the AR and RNM filters is controlled

by the parameters α and k respectively. However, choos-

ing appropriate α and k for different application scenarios

is non-trivial. An important factor that should be taken into

account is label rate. Intuitively, when there are very few

labels in each class, one should increase filter strength such

that distant nodes can have similar feature representations

as the labeled nodes for the ease of classification. However,

over-smoothing often results in inaccurate class boundaries.

Therefore, when label rate is reasonably large, it would be

desirable to reduce filter strength to preserve feature diver-

sity in order to learn more accurate class boundaries.

Fig. 3 visualizes the raw and filtered features of Cora

produced by the RNM filter and projected by t-SNE [49]. It

can be seen that as k increases, the RNM filter produces

smoother embeddings, i.e., the filtered features exhibit a

more compact cluster structure, making it possible for clas-

sification with few labels.

The computation of the AR filter par(L) = (I + αL)−1

involves matrix inversion, which is computationally expen-

sive with complexity O(n3). Fortunately, we can circum-

vent this problem by approximating par using its polynomial

expansion:

(I + αL)−1 =
1

1 + α

+∞∑

i=0

[
α

1 + α
W

]i

, (α > 0). (15)

We can then compute X̄ = par(L)X iteratively with

X ′(0) = O, · · · , X ′(i+1) = X +
α

1 + α
WX ′(i),

and let X̄ = 1
1+α

X ′(k). Empirically, we find that k =
⌈4α⌉ is enough to get a good approximation. Hence, the

computational complexity is reduced to O(nmα + Nmα)
(note that X is of size n × m), where N is the number of

nonzero entries in L, and N ≪ n2 when the graph is sparse.

9586

(a) Raw features (b) k = 1

(c) k = 5 (d) k = 10

Figure 3: Visualization of raw and filtered Cora features (by

using the RNM filter with different k).

For the RNM filter prnm(L̃s) = W̃ k
s =

(

I − L̃s

)k

, note

that for a sparse graph, (I − L̃s) is a sparse matrix. Hence,

the fastest way to compute X̄ = prnm(L̃s)X is to left mul-

tiply X by (I − L̃s) repeatedly for k times, which has the

computational complexity O(Nmk).

6. Experiments

To validate the performance of our methods GLP and

IGCN, we conduct experiments on various semi-supervised

classification tasks and a semi-supervised regression task

for zero-shot image recognition.

6.1. SemiSupervised Classification

For semi-supervised classification, we test our methods

GLP and IGCN on two tasks.2 1) Semi-supervised docu-

ment classification on citation networks, where nodes are

documents and edges are citation links. The goal is to clas-

sify the type of the documents with only a few labeled docu-

ments. 2) Semi-supervised entity classification on a knowl-

edge graph. A bipartite graph is extracted from the knowl-

edge graph [56], and there are two kinds of nodes: entity

and relation, where the edges are between the entity and re-

lation nodes. The goal is to classify the entity nodes with

only a few labeled entity nodes.

Datasets. We evaluate our methods on four citation

networks – Cora, CiteSeer, PubMed [43] and Large Cora,

and one knowledge graph – NELL [11]. The dataset statis-

tics are summarized in Table 1. On citation networks, we

2Code is available at https://github.com/liqimai/Efficient-SSL

Table 1: Dataset statistics.

Dataset Vertices Edges Classes Features

Cora 2,708 5,429 7 1433

CiteSeer 3,327 4,732 6 3703

PubMed 19,717 44,338 3 500

Large Cora 11,881 64,898 10 3780

NELL 65,755 266,144 210 5414

test two scenarios – 4 labels per class and 20 labels per

class. On NELL, we test three scenarios – 0.1%, 1% and

10% label rates.

Baselines. We compare GLP and IGCN with the state-

of-the-art semi-supervised classification methods: mani-

fold regularization (ManiReg) [4], semi-supervised embed-

ding (SemiEmb) [53], DeepWalk [40], iterative classifica-

tion algorithm (ICA) [43], Planetoid [56], graph attention

networks (GAT) [51], multi-layer perceptron (MLP), LP

[54], and GCN [32].

Settings. We use MLP as the classifier of GLP, and test

GLP and IGCN with RNM and AR filters. We follow [32]

to use a two-layer structure for all neural networks, includ-

ing MLP, GCN, IGCN. Guided by our analysis in section 5,

the filter parameters k and α should be set large if the label

rate is small, and should be set small if the label rate is large.

Specifically, when 20 labels per class on citation networks

are available or 10% entities of NELL are labeled, we set

k = 5 for RNM and α = 10 for AR filters in GLP. In other

scenarios with less labels, we set k = 10, α = 20 for GLP.

The k, α choosen for IGCN is equal to the above k, α di-

vided by the number of layers – 2. We follow [32] to set the

parameters of MLP, GCN, IGCN: for citation networks, we

use a two-layer network with 16 hidden units, 0.01 learning

rate, 0.5 dropout rate, and 5 × 10−4 L2 regularization, ex-

cept that the hidden layer is enlarged to 64 units for Large

Cora; for NELL, we use a two-layer network with 64 hid-

den units, 0.01 learning rate, 0.1 dropout rate, and 1×10−5

L2 regularization. For more fair comparison with different

baselines, we do not use a validation set for model selection

as in [32], instead we select the model with the lowest train-

ing loss in 200 steps. All results are averaged over 50 ran-

dom splits of the dataset. We set α of LP to 100 for citation

networks and 10 for NELL. Parameters of GAT are same as

[51]. Results of other baselines are taken from [56, 32].

Performance of GLP and IGCN. The results are summa-

rized in Table 2, where the top 3 classification accuracies

are highlighted in bold. Overall, GLP and IGCN perform

best. Especially when the label rates are very small, they

significantly outperform the baselines. Specifically, on ci-

tation networks, with 20 labels per class, GLP and IGCN

perform slightly better than GCN and GAT, but outperform

other baselines by a considerable margin. With 4 labels per

9587

Table 2: Classification accuracy and running time on citation networks and NELL.

Label rate 20 labels per class 4 labels per class 10% 1% 0.1%

Cora CiteSeer PubMed Large Cora Cora CiteSeer PubMed Large Cora NELL

ManiReg 59.5 60.1 70.7 - - - - - 63.4 41.3 21.8

SemiEmb 59.0 59.6 71.7 - - - - - 65.4 43.8 26.7

DeepWalk 67.2 43.2 65.3 - - - - - 79.5 72.5 58.1

ICA 75.1 69.1 73.9 - 62.2 49.6 57.4 - - - -

Planetoid 75.7 64.7 77.2 - 43.2 47.8 64.0 - 84.5 75.7 61.9

GAT 79.5 68.2 76.2 67.4 66.6 55.0 64.6 46.4 - - -

MLP 55.1 (0.6s) 55.4 (0.6s) 69.5 (0.6s) 48.0 (0.8s) 36.4 (0.6s) 38.0 (0.5s) 57.0 (0.6s) 30.8 (0.6s) 63.6 (2.1s) 41.6 (1.1s) 16.7 (1.0s)

LP 68.8 (0.1s) 48.0 (0.1s) 72.6 (0.1s) 52.5 (0.1s) 56.6 (0.1s) 39.5 (0.1s) 61.0 (0.1s) 37.0 (0.1s) 84.5 (0.7s) 75.1 (1.8s) 65.9 (1.9s)

GCN 79.9 (1.3s) 68.6 (1.7s) 77.6 (9.6s) 67.7 (7.5s) 65.2 (1.3s) 55.5 (1.7s) 67.7 (9.8s) 48.3 (7.4s) 81.6 (33.5s) 63.9 (33.5s) 40.7 (33.2s)

IGCN(RNM) 80.9 (1.2s) 69.0 (1.7s) 77.3 (10.0s) 68.9 (7.9s) 70.3 (1.3s) 57.4 (1.7s) 69.3 (10.3s) 52.1 (8.1s) 85.9 (42.4s) 76.7 (44.0s) 66.0 (46.6s)

IGCN(AR) 81.1 (2.2s) 69.3 (2.6s) 78.2 (11.9s) 69.2 (11.0s) 70.3 (3.0s) 58.0 (3.4s) 70.1 (13.6s) 52.5 (13.6s) 85.4 (77.9s) 75.7 (116.0s) 67.4 (116.0s)

GLP(RNM) 80.3 (0.9s) 68.8 (1.0s) 77.1 (0.6s) 68.4 (1.8s) 68.0 (0.7s) 56.7 (0.8s) 68.7 (0.6s) 51.1 (1.1s) 86.0 (35.9s) 76.1 (37.3s) 65.4 (38.5s)

GLP(AR) 80.8 (1.0s) 69.3 (1.2s) 78.1 (0.7s) 69.0 (2.4s) 67.5 (0.8s) 57.3 (1.1s) 69.7 (0.8s) 51.6 (2.3s) 80.3 (57.4s) 67.4 (76.6s) 55.2 (78.6s)

Table 3: Results for unseen classes in AWA2.

Method Devise SYNC GCNZ GPM DGPM ADGPM
IGCN(RNM) GLP(RNM)

k=1 k=2 k=3 k=2 k=4 k=6

Accuracy 59.7 46.6 68.0 (1840s) 77.3 (864s) 67.2 (932s) 76.0 (3527s) 77.9 (864s) 77.7 (1583s) 73.1 (2122s) 76.0 (12s) 75.0 (13s) 73.0 (11s)

class, GLP and IGCN significantly outperform all the base-

lines, demonstrating their label efficiency. On NELL, GLP

and IGCN with the RNM filter as well as IGCN with the

AR filter slightly outperform two very strong baselines –

LP and Planetoid, and outperform other baselines by a large

margin.

Table 2 also reports the running time of the methods

tested by us. We can see that GLP with the RNM filter

runs much faster than GCN on most cases, and IGCN with

the RNM filter has similar time efficiency as GCN.

Results Analysis. Compared with methods that only use

graph information, e.g., LP and DeepWalk, the large per-

formance gains of GLP and IGCN clearly come from lever-

aging both graph and feature information. Compared with

methods that use both graph and feature information, e.g.,

GCN and GAT, GLP and IGCN are much more label ef-

ficient. The reason is that they allow using stronger fil-

ters to extract higher level data representations to improve

performance when label rates are low, which can be easily

achieved by increasing the filter parameters k and α. But

this cannot be easily achieved in the original GCN. As ex-

plained in section 4, to increase smoothness, GCN needs to

stack many layers, but a deep GCN is difficult to train with

few labels.

6.2. SemiSupervised Regression

The proposed GLP and IGCN methods can also be used

for semi-supervised regression. In [52], GCN was used for

zero-shot image recognition with a regression loss. Here,

we replace the GCN model used in [52] with GLP and

IGCN to test their performance on the zero-shot image

recognition task.

Zero-shot image recognition in [52] is to learn a visual

classifier for the categories with zero training examples,

with only text descriptions of categories and relationships

between categories. In particular, given a pre-trained CNN

for known categories, [52] proposes to use a GCN to learn

the model/classifier weights of unseen categories in the last-

layer of the CNN. It first takes the word embedding of each

category and the relations among all the categories (Word-

Net knowledge graph) as the inputs of GCN, then trains

the GCN with the model weights of known categories in

the last-layer of the CNN, and finally predicts the model

weights of unseen categories.

Datasets. We evaluate our methods and baselines on the

ImageNet [41] benchmark. ImageNet is an image database

organized according to the WordNet hierarchy. All cate-

gories of ImageNet form a graph through “is a kind of” rela-

tion. For example, drawbridge is a kind of bridge, bridge is

a kind of construction, and construction is a kind of artifact.

According to [52], the word embedding of each category is

learned from Wikipedia by the GloVe text model [39].

Baselines. We compare our methods GLP and IGCN with

six state-of-the-art zero-shot image recognition methods,

namely Devise [22], SYNC [12], GCNZ [52], GPM [29],

DGPM [29] and ADGPM [29]. The prediction accuracy of

9588

these baselines are taken from their papers. Notably, the

GPM model is exactly our IGCN with k = 1.

Settings. There are 21K different classes in ImageNet. We

split them into a training set and a test set similarly as in

[29]. A ResNet-50 model was pre-trained on the ImageNet

2012 with 1k classes. The weights of these 1000 classes

in the last layer of CNN are used to train GLP and IGCN

for predicting the weights of the remaining classes. The

evaluation of zero-shot image recognition is conducted on

the AWA2 dataset [55], which is a subset of ImageNet. For

IGCN and the classifier (MLP) of GLP, we both use a two-

layer structure with 2048 hidden units. We test k = 1, 2, 3
for IGCN and k = 2, 4, 6 for GLP. Results are averaged

over 20 runs.

Performance and Results Analysis. The results are sum-

marized in Table 3, where the top 3 classification accuracies

are highlighted in bold. We can see that IGCN with k = 1, 2
and GPM [29] perform the best, and outperform other base-

lines including Devise [22], SYNC [12], GCNZ [52] and

DGPM [29] by a significant margin. GLP with k = 2 is

the second best compared with the baselines, only slightly

lower than GPM. We observe that smaller k achieves better

performance on this task, which is probably because the di-

versity of features (classifier weights) should be preserved

for the regression task [29]. This also explains why DGPM

[29] (that expands the node neighborhood by adding dis-

tant nodes) does not perform very well. It is also worth

noting that by replacing the 6-layer GCN in GCNZ with a

2-layer IGCN with k = 3 and a GLP with k = 6, the per-

formance boosts from 68% to around 73%, demonstrating

the low complexity and training efficiency of our methods.

Another thing to notice is that GLP runs hundreds of times

faster than GCNZ, and tens of times faster than others.

7. Related Works

There is a vast literature on semi-supervised learn-

ing [13, 64], including generative models [2, 31], semi-

supervised support vector machine [6], self-training [24],

co-training [9], and graph-based methods [30, 34, 35, 59].

Early graph-based methods adopt a common assumption

that nearby vertices are likely to have same labels. One

approach is to learn smooth low-dimensional embeddings

with Markov random walks [45], Laplacian eigenmaps [3],

spectral kernels [14, 57], and context-based methods [40].

Another line of works rely on graph partition, where the cuts

should agree with the labeled vertices and be placed in low

density regions [7, 8, 28, 63], among which the most popu-

lar one is perhaps the label propagation methods [5, 15, 61].

It was shown in [21, 23] that they can be interpreted as

low-pass graph filtering. To further improve learning per-

formance, many methods were proposed to jointly model

graph structures and data features. Iterative classification

algorithm [43] iteratively classifies an unlabeled data by us-

ing its neighbors’ labels and features. Manifold regulariza-

tion [4], deep semi-supervised embedding [53], and Plane-

toid [56] regularize a supervised classifier with a Laplacian

regularizer or an embedding-based regularizer.

Inspired by the success of convolutional neural networks

(CNN) on grid-structured data such as image and video, a

series of works proposed a variety of graph convolutional

neural networks [10, 27, 20, 1] to extend CNN to gen-

eral graph-structured data. To avoid the expensive eigen-

decomposition, ChebyNet [19] uses a polynomial filter rep-

resented by k-th order polynomials of graph Laplacian

via Chebyshev expansion. Graph convolutional networks

(GCN) [32] further simplifies ChebyNet by using a local-

ized first-order approximation of spectral graph convolu-

tion, and has achieved promising results in semi-supervised

learning. It was shown in [33] that the success of GCN

is due to performing Laplacian smoothing on data fea-

tures. MoNet [38] shows that various non-Euclidean CNN

methods including GCN are its particular instances. Other

related works include GraphSAGE [25], graph attention

networks [51], attention-based graph neural network [47],

graph partition neural networks [36], FastGCN [16], dual

graph convolutional neural network [65], stochastic GCN

[17], Bayesian GCN [58], deep graph infomax [50], Lanc-

zosNet [37], etc. We refer readers to two comprehensive

surveys [60, 62] for more discussions.

Another related line of research is feature smoothing,

which has long been used in computer graphics for fairing

3D surface [46]. [26] proposed manifold denoising (MD)

by using feature smoothing as a preprocessing step for semi-

supervised learning, where the denoised data features are

used to construct a graph for running a label propagation al-

gorithm. MD uses the data features to construct a graph

and employs the AR filter for feature smoothing. How-

ever, it cannot be directly applied to datasets such as citation

networks where the graph is given.

8. Conclusion

This paper studies semi-supervised learning from a uni-

fying graph filtering perspective, which offers new insights

into the classical label propagation methods and the recently

popular graph convolution networks. Based on the analysis,

we propose generalized label propagation methods and im-

proved graph convolutional networks to extend their mod-

eling capabilities and achieve label efficiency. In the future,

we plan to investigate the design and automatic selection

of proper graph filters for various application scenarios and

apply the proposed methods to solve more real applications.

Acknowledgments

This research was supported by the grants 1-ZVJJ and G-

YBXV funded by the Hong Kong Polytechnic University.

9589

References

[1] J. Atwood and D. Towsley. Diffusion-convolutional neural

networks. In Conference on Neural Information Processing

Systems, pages 1993–2001, 2016. 8

[2] S. Baluja. Probabilistic modeling for face orientation dis-

crimination: Learning from labeled and unlabeled data.

In Conference on Neural Information Processing Systems,

pages 854–860, 1998. 8

[3] M. Belkin and P. Niyogi. Semi-supervised learning on

Riemannian manifolds. Machine Learning, 56(1):209–239,

2004. 8

[4] M. Belkin, P. Niyogi, and V. Sindhwani. Manifold regular-

ization: A geometric framework for learning from labeled

and unlabeled examples. Journal of Machine Learning Re-

search, 7(1):2399–2434, 2006. 1, 6, 8

[5] Y. Bengio, O. Delalleau, and N. Le Roux. Label propagation

and quadratic criterion. Semi-supervised Learning, pages

193–216, 2006. 3, 8

[6] K. P. Bennett and A. Demiriz. Semi-supervised support vec-

tor machines. In Conference on Neural Information Process-

ing Systems, pages 368–374, 1998. 8

[7] A. Blum and S. Chawla. Learning from labeled and unla-

beled data using graph mincuts. In International Conference

on Machine Learning, pages 19–26, 2001. 8

[8] A. Blum, J. Lafferty, M. Rwebangira, and R. Reddy. Semi-

supervised learning using randomized mincuts. In Interna-

tional Conference on Machine Learning, page 13, 2004. 8

[9] A. Blum and T. M. Mitchell. Combining labeled and unla-

beled data with co-training. In Conference on Computational

Learning Theory, pages 92–100, 1998. 8

[10] J. Bruna, W. Zaremba, A. Szlam, and Y. LeCun. Spectral

networks and locally connected networks on graphs. Inter-

national Conference on Learning Representations, 2014. 8

[11] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hr-

uschka Jr, and T. M. Mitchell. Toward an architecture for

never-ending language learning. In AAAI Conference on Ar-

tificial Intelligence, pages 1306–1313, 2010. 6

[12] S. Changpinyo, W.-L. Chao, B. Gong, and F. Sha. Syn-

thesized classifiers for zero-shot learning. In Conference

on Computer Vision and Pattern Recognition, pages 5327–

5336, 2016. 7, 8

[13] O. Chapelle, B. Schölkopf, A. Zien, et al. Semi-supervised

Learning. MIT Press, 2006. 1, 8

[14] O. Chapelle, J. Weston, and B. Scholkopf. Cluster kernels

for semi-supervised learning. In Conference on Neural In-

formation Processing Systems, pages 601–608, 2003. 8

[15] O. Chapelle and A. Zien. Semi-supervised classification by

low density separation. In International Workshop on Artifi-

cial Intelligence and Statistics, pages 57–64, 2005. 8

[16] J. Chen, T. Ma, and C. Xiao. Fastgcn: Fast learning

with graph convolutional networks via importance sampling.

In International Conference on Learning Representations,

2018. 8

[17] J. Chen, J. Zhu, and L. Song. Stochastic training of graph

convolutional networks with variance reduction. In Inter-

national Conference on Machine Learning, pages 941–949,

2018. 8

[18] F. R. Chung. Spectral Graph Theory. American Mathemati-

cal Society, 1997. 5

[19] M. Defferrard, X. Bresson, and P. Vandergheynst. Convolu-

tional neural networks on graphs with fast localized spectral

filtering. In Conference on Neural Information Processing

Systems, pages 3844–3852, 2016. 8

[20] D. K. Duvenaud, D. Maclaurin, J. Iparraguirre, R. Bom-

barell, T. Hirzel, A. Aspuru-Guzik, and R. P. Adams. Con-

volutional networks on graphs for learning molecular finger-

prints. In Conference on Neural Information Processing Sys-

tems, pages 2224–2232, 2015. 8

[21] V. N. Ekambaram, G. Fanti, B. Ayazifar, and K. Ramchan-

dran. Wavelet-regularized graph semi-supervised learning.

In Global Conference on Signal and Information Processing,

pages 423–426, 2013. 8

[22] A. Frome, G. S. Corrado, J. Shlens, S. Bengio, J. Dean,

T. Mikolov, et al. Devise: A deep visual-semantic embed-

ding model. In Conference on Neural Information Process-

ing Systems, pages 2121–2129, 2013. 7, 8

[23] B. Girault, P. Gonçalves, E. Fleury, and A. S. Mor. Semi-

supervised learning for graph to signal mapping: A graph

signal wiener filter interpretation. In Conference on Acous-

tics, Speech and Signal Processing, pages 1115–1119, 2014.

8

[24] G. Haffari and A. Sarkar. Analysis of semi-supervised learn-

ing with the yarowsky algorithm. In Conference on Uncer-

tainty in Artificial Intelligence, pages 159–166, 2007. 8

[25] W. Hamilton, Z. Ying, and J. Leskovec. Inductive represen-

tation learning on large graphs. In Conference on Neural

Information Processing Systems, pages 1024–1034, 2017. 8

[26] M. Hein and M. Maier. Manifold denoising. In Conference

on Neural Information Processing Systems, pages 561–568,

2007. 8

[27] M. Henaff, J. Bruna, and Y. LeCun. Deep convolu-

tional networks on graph-structured data. arXiv preprint

arXiv:1506.05163, 2015. 8

[28] T. Joachims. Transductive learning via spectral graph parti-

tioning. In International Conference on Machine Learning,

pages 290–297, 2003. 8

[29] M. Kampffmeyer, Y. Chen, X. Liang, H. Wang, Y. Zhang,

and E. P. Xing. Rethinking knowledge graph propagation for

zero-shot learning. arXiv preprint arXiv:1805.11724, 2018.

7, 8

[30] A. Kapoor, Y. A. Qi, H. Ahn, and R. W. Picard. Hyperpa-

rameter and kernel learning for graph based semi-supervised

classification. In Conference on Neural Information Process-

ing Systems, pages 627–634, 2005. 8

[31] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling.

Semi-supervised learning with deep generative models. In

Conference on Neural Information Processing Systems,

pages 3581–3589, 2014. 1, 8

[32] T. N. Kipf and M. Welling. Semi-supervised classification

with graph convolutional networks. In International Confer-

ence on Learning Representations, 2017. 1, 2, 4, 6, 8

[33] Q. Li, Z. Han, and X.-M. Wu. Deeper insights into graph

convolutional networks for semi-supervised learning. In

AAAI Conference on Artificial Intelligence, pages 3538–

3545, 2018. 2, 8

9590

[34] Y. Li, S. Wang, and Z. Zhou. Graph quality judgement: A

large margin expedition. In International Joint Conference

on Artificial Intelligence, pages 1725–1731, 2016. 8

[35] D. Liang and Y. Li. Lightweight label propagation for large-

scale network data. In International Joint Conference on Ar-

tificial Intelligence, pages 3421–3427, 2018. 8

[36] R. Liao, M. Brockschmidt, D. Tarlow, A. L. Gaunt, R. Urta-

sun, and R. Zemel. Graph partition neural networks for semi-

supervised classification. arXiv preprint arXiv:1803.06272,

2018. 8

[37] R. Liao, Z. Zhao, R. Urtasun, and R. S. Zemel. Lanczos-

net: Multi-scale deep graph convolutional networks. arXiv

preprint arXiv:1901.01484, 2019. 8

[38] F. Monti, D. Boscaini, J. Masci, E. Rodolà, J. Svoboda,

and M. M. Bronstein. Geometric deep learning on graphs

and manifolds using mixture model cnns. In Conference

on Computer Vision and Pattern Recognition, pages 5425–

5434, 2017. 8

[39] J. Pennington, R. Socher, and C. Manning. Glove: Global

vectors for word representation. In Conference on Empirical

Methods in Natural Language Processing, pages 1532–1543,

2014. 7

[40] B. Perozzi, R. Al-Rfou, and S. Skiena. Deepwalk: Online

learning of social representations. In ACM SIGKDD Interna-

tional Conference on Knowledge Discovery and Data Min-

ing, pages 701–710, 2014. 6, 8

[41] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International Journal of Computer Vision, 115(3):211–252,

2015. 7

[42] A. Sandryhaila and J. M. Moura. Discrete signal process-

ing on graphs. IEEE Transactions on Signal Processing,

61(7):1644–1656, 2013. 3

[43] P. Sen, G. Namata, M. Bilgic, L. Getoor, B. Galligher, and

T. Eliassi-Rad. Collective classification in network data. AI

Magazine, 29(3):93–106, 2008. 6, 8

[44] D. I. Shuman, S. K. Narang, P. Frossard, A. Ortega, and

P. Vandergheynst. The emerging field of signal process-

ing on graphs: Extending high-dimensional data analysis to

networks and other irregular domains. IEEE Signal Process-

ing Magazine, 30(3):83–98, 2013. 2

[45] M. Szummer and T. Jaakkola. Partially labeled classifica-

tion with Markov random walks. In Conference on Neural

Information Processing Systems, pages 945–952, 2002. 8

[46] G. Taubin. Curve and surface smoothing without shrinkage.

In International Conference on Computer Vision, pages 852–

857, 1995. 8

[47] K. K. Thekumparampil, C. Wang, S. Oh, and L.-J. Li.

Attention-based graph neural network for semi-supervised

learning. arXiv preprint arXiv:1803.03735, 2018. 8

[48] N. Tremblay, P. Gonçalves, and P. Borgnat. Design of graph

filters and filterbanks. In Cooperative and Graph Signal Pro-

cessing, pages 299–324. 2018. 3

[49] L. Van der Maaten and G. Hinton. Visualizing high-

dimensional data using t-sne. Journal of Machine Learning

Research, 9:2579–2605, 2008. 5

[50] P. Veličković, W. Fedus, W. L. Hamilton, P. Liò, Y. Ben-

gio, and R. D. Hjelm. Deep graph infomax. arXiv preprint

arXiv:1809.10341, 2018. 8

[51] P. Velikovi, G. Cucurull, A. Casanova, A. Romero, P. Li, and

Y. Bengio. Graph attention networks. In International Con-

ference on Learning Representations, 2018. 6, 8

[52] X. Wang, Y. Ye, and A. Gupta. Zero-shot recognition via

semantic embeddings and knowledge graphs. In Conference

on Computer Vision and Pattern Recognition, pages 6857–

6866, 2018. 7, 8

[53] J. Weston, F. Ratle, H. Mobahi, and R. Collobert. Deep learn-

ing via semi-supervised embedding. In International Confer-

ence on Machine Learning, pages 1168–1175, 2008. 1, 6, 8

[54] X. Wu, Z. Li, A. M. So, J. Wright, and S.-f. Chang. Learning

with Partially Absorbing Random Walks. In Conference on

Neural Information Processing Systems, pages 3077–3085,

2012. 6

[55] Y. Xian, C. H. Lampert, B. Schiele, and Z. Akata. Zero-

shot learning-a comprehensive evaluation of the good, the

bad and the ugly. IEEE Transactions on Pattern Analysis

and Machine Intelligence, 2018. 8

[56] Z. Yang, W. W. Cohen, and R. Salakhutdinov. Revisiting

semi-supervised learning with graph embeddings. In In-

ternational Conference on Machine Learning, pages 40–48,

2016. 1, 6, 8

[57] T. Zhang and R. Ando. Analysis of spectral kernel design

based semi-supervised learning. In Conference on Neural

Information Processing Systems, pages 1601–1608, 2006. 8

[58] Y. Zhang, S. Pal, M. Coates, and D. Üstebay. Bayesian graph

convolutional neural networks for semi-supervised classifi-

cation. arXiv preprint arXiv:1811.11103, 2018. 8

[59] Y. Zhang, X. Zhang, X. Yuan, and C. Liu. Large-scale graph-

based semi-supervised learning via tree laplacian solver. In

AAAI Conference on Artificial Intelligence, pages 2344–

2350, 2016. 8

[60] Z. Zhang, P. Cui, and W. Zhu. Deep learning on graphs: A

survey. CoRR, abs/1812.04202, 2018. 2, 8

[61] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and

B. Schölkopf. Learning with local and global consistency.

In Conference on Neural Information Processing Systems,

pages 321–328, 2004. 2, 3, 8

[62] J. Zhou, G. Cui, Z. Zhang, C. Yang, Z. Liu, and M. Sun.

Graph neural networks: A review of methods and applica-

tions. CoRR, abs/1812.08434, 2018. 2, 8

[63] X. Zhu, Z. Ghahramani, and J. D. Lafferty. Semi-supervised

learning using gaussian fields and harmonic functions. In

International Conference on Machine Learning, pages 912–

919, 2003. 3, 8

[64] X. Zhu and A. Goldberg. Introduction to semi-supervised

learning. Synthesis Lectures on Artificial Intelligence and

Machine Learning, 3(1):1–130, 2009. 1, 3, 8

[65] C. Zhuang and Q. Ma. Dual graph convolutional networks

for graph-based semi-supervised classification. In Interna-

tional World Wide Web Conference, pages 499–508, 2018.

8

9591

