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Figure 1. Our model predicts dense depth when both an ordinary camera and people in the scene are freely moving (right). We train our

model on our new MannequinChallenge dataset—a collection of Internet videos of people imitating mannequins, i.e., freezing in diverse,

natural poses, while a camera tours the scene (left). Because people are stationary, geometric constraints hold; this allows us to use

multi-view stereo to estimate depth which serves as supervision during training.2

Abstract

We present a method for predicting dense depth in scenar-

ios where both a monocular camera and people in the scene

are freely moving. Existing methods for recovering depth for

dynamic, non-rigid objects from monocular video impose

strong assumptions on the objects’ motion and may only

recover sparse depth. In this paper, we take a data-driven

approach and learn human depth priors from a new source

of data: thousands of Internet videos of people imitating

mannequins, i.e., freezing in diverse, natural poses, while

a hand-held camera tours the scene. Because people are

stationary, training data can be generated using multi-view

stereo reconstruction. At inference time, our method uses

motion parallax cues from the static areas of the scenes to

guide the depth prediction. We demonstrate our method on

real-world sequences of complex human actions captured by

a moving hand-held camera, show improvement over state-

of-the-art monocular depth prediction methods, and show

various 3D effects produced using our predicted depth.

1. Introduction

A hand-held camera viewing a dynamic scene is a com-

mon scenario in modern photography. Recovering dense

geometry in this case is a challenging task: moving objects

violate the epipolar constraint used in 3D vision, and are

often treated as noise or outliers in existing Structure-from-

Motion (SfM) and Multi-view Stereo (MVS) methods. Our

human depth perception, however, is not easily fooled by

object motion–rather, we maintain a feasible interpretation

of the objects’ geometry and depth ordering even if both

objects and the observer are moving, and even when the

scene is observed with just one eye [11]. In this work, we

take a step towards achieving this ability computationally.

We focus on the task of predicting accurate, dense depth

from ordinary videos where both the camera and people

in the scene are naturally moving. We focus on humans

for two reasons: i) in many applications (e.g., augmented

reality), humans constitute the salient objects in the scene,

and ii) human motion is articulated and difficult to model. By

taking a data-driven approach, we avoid the need to explicitly

impose assumptions on the shape or deformation of people,

but rather learn these priors from data.

Where do we get data to train such a method? Generating

high-quality synthetic data in which both the camera and the

people in the scene are naturally moving is very challenging.

Depth sensors (e.g., Kinect) can provide useful data, however

such data is typically limited to indoor environments and

requires significant manual work in capture and process.

Furthermore, it is difficult to gather people of different ages

and genders with diverse poses at scale. Instead, we derive

data from a surprising source: YouTube videos in which

people imitate mannequins, i.e., freeze in elaborate, natural

poses, while a hand-held camera tours the scene (Fig. 2).

These videos comprise our new MannequinChallenge (MC)

dataset, which we plan to release for the research community.

2In all figures, we use inverse depth maps for visualization purposes,

and refer to them as depth maps.
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Since the entire scene, including the people, is stationary, we

estimate the camera poses and depth using SfM and MVS,

which serves as supervision for training.

Using this data, we design and train a deep neural network

that takes an input RGB image, a mask of human regions,

and an initial depth of the environment (i.e., non-human

regions), and outputs a dense depth map over the entire

image, both the environment and the people (see Fig. 1).

Note that the initial depth of the environment is computed

using motion parallax between two frames of the video,

providing the network with information not available from

a single frame. Once trained, our model can handle natural

videos with arbitrary camera and human motion.

We demonstrate the applicability of our method on a va-

riety of real-world Internet videos, shot with a hand-held

camera, depicting complex human actions such as walking,

running, and dancing. Our model predicts depth to higher

accuracy than state-of-the-art monocular depth prediction

and motion stereo methods. We further show how our depth

maps can be used to produce various 3D effects such as syn-

thetic depth-of-field, depth-aware inpainting, and inserting

virtual objects into the 3D scene with correct occlusion.

In summary, our contributions are: i) a new source of data

for depth prediction consisting of a large number of Internet

videos in which the camera moves around people “frozen”

in natural poses, along with a methodology for generating

accurate depth maps and camera poses; ii) a deep-network-

based model designed and trained to predict dense depth

maps in the challenging case of simultaneous camera motion

and complex human motion.

2. Related Work

Learning-based depth prediction. Numerous algorithms,

based on both supervised and unsupervised learning, have

recently been proposed for predicting dense depth from a

single RGB image [46, 17, 7, 6, 3, 19, 33, 8, 52, 49, 21,

41]. Some recent learning based methods also consider

multiple images, either assuming known camera poses [12,

47] or simultaneously predicting camera poses along with

depth [39, 51]. However, none of them is designed to predict

the depth of dynamic objects, which is the focus of our work.

Depth estimation for dynamic scenes. RGBD data has

been widely used for 3D modeling of dynamic scenes

[25, 55, 48, 5, 14], but only a few methods attempt to es-

timate depth from a monocular camera. Several methods

have been proposed to reconstruct sparse geometry of a

dynamic scene [27, 50, 36, 40]. Russell et al. [31] and Ran-

ftl et al. [29] suggest motion/object segmentation based al-

gorithms to decompose a dynamic scene into piecewise rigid

parts. However, these methods impose strong assumptions

of the object’s motion that are violated by articulated human

motion. Konstantinos et al. [30] predict depth of moving

soccer players using synthetic training data from FIFA video

games. However, their method is limited to soccer players,

and cannot handle general people in the wild.

RGBD data for learning depth. There are a number of

RGBD datasets of indoor scenes, captured using depth sen-

sors [35, 2, 4, 45] or synthetically rendered [37]. How-

ever, none of these datasets provide depth supervision for

moving people in natural environments. Several action

recognition methods use depth sensors to capture human

actions [54, 34, 22, 26], however most of them are captured

by a static camera and provide only a limited number of

indoor scenes. REFRESH [20] is a recent semi-synthetic

scene flow dataset created by overlaying animated people

on NYUv2 images. Here too, the dataset is limited to in-

door scenes and consists of synthetic humans placed in an

unrealistic configuration with their surrounding.

Human shape and pose prediction. Recovery of a posed

3D human mesh from a single RGB image has attracted

significant attention [18, 9, 16, 1, 28, 23]. Recent methods

achieve impressive results on natural images spanning a

variety of poses. However, such methods only model the

human body, disregarding hair, clothing, and the non-human

parts of the scenes. Finally, many of these methods rely on

correctly detecting human keypoints, requiring most of the

body to be within the frame.

3. MannequinChallenge Dataset

The Mannequin Challenge [42] is a popular video trend

in which people freeze in place—often in an interesting

pose—while the camera operator moves around the scene

filming them (e.g., Fig. 2). Thousands of such videos have

been created and uploaded to YouTube since late 2016. To

the extent that people succeed in staying still during the

videos, we can assume the scenes are static and obtain ac-

curate camera poses and depth information by processing

them with SfM and MVS algorithms. We found around

2,000 candidate videos for which this processing is possi-

ble. These videos comprise our new MannequinChallenge

Dataset, which spans a wide range of scenes with people of

different ages, naturally posing in different group configura-

tions. We next describe in detail how we process the videos

and derive our training data.

Estimating camera poses. Following a similar approach

to Zhou et al. [53], we use ORB-SLAM2 [24] to identify

trackable sequences in each video and to estimate an initial

camera pose for each frame. At this stage, we process a

lower-resolution version of the video for efficiency, and set

the field of view to 60 degrees (typical value for modern

cell-phone cameras). We then reprocess each sequence at

a higher resolution using a visual SfM system [32], which

refines the initial camera poses and intrinsic parameters. This

method extracts and matches features across frames, then

performs a global bundle adjustment optimization. Finally,

sequences with non-smooth camera motion are removed

using the technique of Zhou et al. [53].

Computing dense depth with MVS. With the estimated

camera poses for each clip in hand, we turn to reconstruct-
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Figure 2. Sample images from Mannequin Challenge videos. Each image is a frame from a video sequence in which the camera is

moving but humans are all static. The videos span a variety of natural scenes, poses, and configuration of people.

ing the scene’s dense geometry. Specifically, we recover

per-frame dense depth maps using the state-of-the-art MVS

system COLMAP [33].

Because our data consists of challenging Internet videos

(i.e., often involve camera motion blur, shadows and reflec-

tions), the raw depth maps estimated by MVS are often

too noisy for training purposes. We address this issue by a

careful depth filtering mechanism. We first refine and filter

depth outliers using the depth refinement method of [19].

Additionally, we remove additional erroneous depth values

by considering the consistency of the MVS depth and the

depth obtained from motion parallax between two frames.

Specifically, for each frame, we compute a normalized error

∆(p) for every valid pixel p:

∆(p) =
|DMVS(p)−Dpp(p)|
DMVS(p) +Dpp(p)

(1)

where DMVS is the depth map obtained by MVS and Dpp

is the depth map computed from two-frame motion paral-

lax (see Sec. 4.1). Depth values for which ∆(p) > δ are

removed, where we empirically set δ = 0.2.

Fig. 3 shows sample frames from our processed sequences

with corresponding estimated MVS depths after filtering.

See Supplemental Material (SM) for examples showing the

effect of the proposed cleaning approach.

Filtering clips. Several factors can make a video clip unsuit-

able for training. For example, people may “unfreeze” (start

moving) at some point in the video, or the video may contain

synthetic graphical elements in the background. Dynamic

objects and synthetic backgrounds do not obey multi-view

geometric constraints and hence are treated as outliers and

filtered out by MVS, potentially leaving few valid pixels.

Therefore, we remove frames where < 20% of pixels have

valid MVS depth after our two-pass cleaning stage.

Further, we remove frames where the estimated radial

distortion coefficient |k1| > 0.1 (indicative of a fisheye

camera) or where the estimated focal length is ≤ 0.6 or

≥ 1.2 (camera parameters are likely inaccurate). We keep

sequences that are at least 30 frames long, have an aspect

ratio of 16:9, and have a width of ≥ 1600 pixels. Finally,

we manually inspect the trajectories and point clouds of

the remaining sequences and remove obviously incorrect

reconstructions. Examples of removed images are shown in

SM.

After processing, we obtain 4,690 sequences with a total

of more then 170K valid image-depth pairs. We split our

MC dataset into training, validation and testing sets with a

80:3:17 split over clips.

4. Depth Prediction Model

We train the depth prediction model on the Mannequin-

Challenge dataset in a supervised manner, i.e., by regressing

to the depth generated by the MVS pipeline. A key ques-

tion is how to structure the input to the network to allow

training on frozen people but inference on freely moving

people. One option is to regress from a single RGB image

to depth, but this approach disregards geometric informa-

tion about the static regions of the scene that is available by

considering more than a single view. To benefit from such

information, we input to the network a depth map for the

static, non-human regions, estimated from motion parallax

w.r.t. another view of the scene.

The full input to our network, illustrated in Fig. 3, in-

cludes a reference image Ir, a binary mask of human re-

gions M , a depth map estimated from motion parallax (with

human regions removed) Dpp, confidence map C, and an op-

tional human keypoint map K. We assume known, accurate

camera poses from SfM during both training and inference

stages. In an online inference setting, camera poses can be

obtained by visual-inertial odometry.

Given these inputs, the network predicts a full depth map

for the entire scene. To match the MVS depth values, the

network must inpaint the depth in human regions, refine the

depth in non-human regions from the estimated Dpp, and

finally make the depth of entire scene consistent.

Our network architecture is a variant of the hourglass

network of [3], with the nearest-neighbor upsampling layers

replaced by bilinear upsampling layers.

The following sections describe each of the inputs to our

model and our training losses in detail. Please refer to the

SM for additional implementation details and full derivation.
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(a) Reference image I
r (b) Human mask M (c) Input depth Dpp (d) Input confidence C (e) MVS depth DMVS

Figure 3. System inputs and training data. The input to our network consists of: (a) RGB image, (b) human mask, (c) masked depth

computed from motion parallax w.r.t. a selected source image, and (d) masked confidence map. Low confidence regions (dark circles) in the

first two rows indicate the vicinity of the camera epipole, where depth from parallax is unreliable and is removed. The network is trained to

regress to MVS depth (e).

4.1. Depth from motion parallax

Motion parallax between two frames in a video provides

our initial depth estimate for the static regions of the scene

(assuming humans are dynamic while the rest of the scene

is static). Given a reference image Ir and source image Is

pair, we estimate an optical flow field from Ir to Is using

FlowNet2.0 [13]. Using the relative camera poses between

the two views, we compute an initial depth map Dpp from

the estimated flow field, using the Plane-Plus-Parallax (P+P)

representation [15, 43].

In some cases, such as forward/backward relative camera

motion between the frames, the estimated depth may be

ill-defined in some image regions (i.e., the epipole may be

located within the image). We detect and filter out such

depth values as described in Sec. 4.2.

Key-frame selection. Depth from motion parallax may

not be meaningful if the 2D displacement between the two

views is small or if it can be well-approximated by a homog-

raphy (e.g., in the case of pure camera rotation). To avoid

such cases, we apply a baseline criterion when selecting a

reference frame Ir and a corresponding source key-frame

Is. We want the two views to have significant overlap, while

having a large enough baseline. Formally, for each Ir, we

find the index s of Is as

s = argmax
j

drjorj (2)

where drj is the L2 distance between the camera centers of

Ir and its neighbor frame Ij . The term orj is the fraction

of co-visible SfM features in Ir and Ij : orj = 2|V r
⋂

V j |
|V r|+|V j | ,

where V j is the set of features visible in Ij . We discard

pairs of frames for which orj < τo, i.e., the fraction of

co-visible features should be larger than a threshold τo (we

set τo = 0.6), and limit the maximum frame interval to 10.

We found these view selection criteria work well in all our

experiments.

4.2. Confidence

Our data consists of challenging Internet video clips with

camera motion blur, shadows, low lighting, and reflections.

In such cases, optical flow is often noisy [44], compounding

uncertainty in the input depth map, Dpp. We thus estimate,

and input to the network, a confidence map, C. This al-

lows the network to rely more on the input depth in high-

confidence regions, and potentially use it to improve its

prediction in low-confidence regions. The confidence value

at each pixel p in the non-human regions is defined as:

C(p) = Clr(p)Cep(p)Cpa(p). (3)

The term Clr measures “left-right” consistency between

the forward and backward flow fields. That is, Clr(p) =
max

(

0, 1− r(p)2
)

, where r(p) is the forward-backward

warping error. For perfectly consistent forward and back-

ward flows Clr=1, while Clr=0 when the error is greater

than 1px.

The term Cep measures how well the flow field complies

with the epipolar constraint between the views [10]. Specif-

ically, Cep(p) = max
(

0, 1− (γ(p)/γ̄)2
)

, where γ(p) is

the distance between the warped pixel position of p based

on its optical flow and its corresponding epipolar line; γ̄
controls the epipolar distance tolerance (we set γ̄ = 2px in

our experiments).

Finally, Cpa assigns low confidence to pixels for which

the parallax between the views is small [33]. This is mea-

sured by the angle β(p) between the camera rays meeting at

the pixel p. That is, Cpa(p) = 1−
(

min(β̄,β(p))−β̄

β̄

)2

, where

β̄ is the angle tolerance (we use β̄ = 1° in our experiments).
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Figure 4. Qualitative results on MC test set. From top to bottom: reference images and their corresponding MVS depth (pseudo ground

truth); our depth predictions using: our single view model (third row) and our two-frame model (forth row). The additional network inputs

give improved performance in both human and non-human regions.

Fig. 3(d) shows examples of computed confidence maps.

Note that human regions as well as regions for which the

confidence C(p) < 0.25 are masked out.

4.3. Losses

We train our network to regress to depth maps computed

by our data pipeline. Because the computed depth values

have arbitrary scale, we use a scale-invariant depth regression

loss. That is, our loss is computed on log-space depth values

and consists of three terms:

Lsi = LMSE + α1Lgrad + α2Lsm. (4)

Scale-invariant MSE. LMSE denotes the scale-invariant

mean square error (MSE) [6]. This term computes the

squared, log-space difference in depth between two pixels in

the prediction and the same two pixels in the ground-truth,

averaged over all pairs of valid pixels. Intuitively, we look at

all pairs of points, and penalize the difference in their ratio

of depth values w.r.t. ground truth.

Multi-scale gradient term. We use a multi-scale gradient

term, Lgrad, which is the L1 difference between the predicted

log depth derivatives (in x and y directions) and the ground

truth log depth derivatives, at multiple scales [19]. This term

allows the network to recover sharp depth discontinuities

and smooth gradient changes in the predicted depth images.

Multi-scale, edge-aware smoothness terms. To encour-

age smooth interpolation of depth in texture-less regions

where MVS fails to recover depth, we use a simple smooth-

ness term, Lsm, which penalizes L1 norm of log depth deriva-

tives based on the first- and second-order derivatives of im-

Net inputs si-full si-env si-hum si-intra si-inter

I. I 0.333 0.338 0.317 0.264 0.384

II. IFCM 0.330 0.349 0.312 0.260 0.381

III. IDppM 0.255 0.229 0.264 0.243 0.285

IV. IDppCM 0.232 0.188 0.237 0.221 0.268

V. IDppCMK 0.227 0.189 0.230 0.212 0.263

Table 1. Quantitative comparisons on MC test set. Different

input configurations of our model: (I.) single image; (II.) optical

flow masked in the human region (F ), confidence and human mask;

(III.) masked input depth, human mask, and additional confidence

for IV.; in V, we also input human keypoints. Lower is better for

all metrics.

ages and is applied at multiple scales [41]. This term encour-

ages piecewise smoothness in depth regions where there is

no image intensity change.

5. Results

We tested our method quantitatively and qualitatively

and compare it with several state-of-the-art single-view and

motion-based depth prediction algorithms. We show ad-

ditional qualitative results on challenging Internet videos

with complex human motion and natural camera motion, and

demonstrate how our predicted depth maps can be used for

several visual effects.

Error metrics. We measure error using the scale-invariant

RMSE (si-RMSE), equivalent to
√
LMSE, described in

Sec. 4.3. We evaluate si-RMSE on 5 different regions: si-

full measures the error between all pairs of pixels, giving the

overall accuracy across the entire image; si-env measures

pairs of pixels in non-human regions E , providing depth ac-

curacy of the environment; and si-hum measures pairs where
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(a) Ir (b) Is (c) GT (d) DORN [7] (e) DeMoN [39] (f) Ours (RGB) (g) Ours (full)

Figure 5. Qualitative comparisons on TUM RGBD dataset. (a) Reference images, (b) source images (used to compute our initial depth

input), (c) ground truth sensor depth, (d) single view depth prediction method DORN [7], (e) two-frame motion stereo DeMoN [39], (f-g)

depth predictions from our single view and two-frame models, respectively.

at least one pixel lies in the human region H, providing depth

accuracy for people. si-hum can further be divided into two

error measures: si-intra measures si-RMSE within H, or

human accuracy independent of the environment; si-inter

measures si-RMSE between pixels in H and in E , or human

accuracy w.r.t. the environment. We include derivations in

SM.

5.1. Evaluation on MC test set

We evaluated our method on our MC test set, which

consists of more than 29K images taken from 756 video

clips. Processed MVS depth values DMVS obtained by our

pipeline (see Sec. 3) are considered as ground truth.

To quantify the importance of our designed model’s input,

we compare the performance of several models, each trained

on our MC dataset with a different input configuration. The

two main configurations are: (i) a single-view model (input

is RGB image) and (ii) our full two-frame model, where the

input includes a reference image, an initial masked depth

map Dpp, a confidence map C, and a human mask M . We

also perform ablation studies by replacing the input depth

with optical flow F , removing C from the input, and adding

a human keypoint map K.

Quantitative evaluations are shown in Table 1. By com-

paring rows (I.), (III.) and (IV.), it is clear that adding the

initial depth of environment as well as a confidence map

significantly improves the performance for both human and

non-human regions. Adding human keypoint locations to

the network input further improves performance. Note that

if we input an optical flow field to the network instead of

depth (II.), the performance is only on a par with the single

view method. The mapping from 2D optical flow to depth

depends on the relative camera poses, which are not given to

the network. This result indicates that the network is not able

to implicitly learn the relative poses and extract the depth

information.

Fig. 4 shows qualitative comparisons between our single-

view model (I) and our full model (IDppCMK). Our full

model results are more accurate in both human regions (e.g.,

first column) and non-human regions (e.g., second column).

In addition, the depth relations between people and their

surroundings are improved in all examples.

5.2. Evaluation on TUM RGBD dataset

We used a subset of the TUM RGBD dataset [38], which

contains indoor scenes of people performing complex ac-

tions, captured from different camera poses. Sample images

from this dataset are shown in Fig. 5(a-b).

To run our model, we first estimate camera poses using

ORB-SLAM2 3. In some cases, due to severe low image

quality, motion blur and rolling shutter effects, the estimated

camera poses may be incorrect. We manually filter such

failures by inspecting the camera trajectory and point cloud.

In total, we obtain 11 valid image sequences with 1815

3We found estimates from ORB-SLAM2 to be better synchronized with

the RGB images than the ground truth poses provided by the TUM dataset.
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Methods Dataset two-view? si-full si-env si-hum si-intra si-inter RMSE Rel

Russell et al. [31] - Yes 2.146 2.021 2.207 2.206 2.093 2.520 0.772

DeMoN [39] RGBD+MVS Yes 0.338 0.302 0.360 0.293 0.384 0.866 0.220

Chen et al. [3] NYU+DIW No 0.441 0.398 0.458 0.408 0.470 1.004 0.262

Laina et al. [17] NYU No 0.358 0.356 0.349 0.270 0.377 0.947 0.223

Xu et al. [46] NYU No 0.427 0.419 0.411 0.302 0.451 1.085 0.274

Fu et al. [7] NYU No 0.351 0.357 0.334 0.257 0.360 0.925 0.194

I MC No 0.318 0.334 0.294 0.227 0.319 0.840 0.204

IFCM MC Yes 0.316 0.330 0.302 0.228 0.323 0.843 0.206

IDppM MC Yes 0.246 0.225 0.260 0.233 0.273 0.635 0.136

IDppCM (w/o d. cleaning) MC Yes 0.272 0.238 0.293 0.258 0.282 0.688 0.147

IDppCM MC Yes 0.232 0.203 0.252 0.224 0.262 0.570 0.129

IDppCMK MC Yes 0.221 0.195 0.238 0.215 0.247 0.541 0.125

Table 2. Results on TUM RGBD datasets. Different si-RMSE metrics as well as standard RMSE and relative error (Rel) are reported. We

evaluate our models (light gray background) under different input configurations, as described in Table 1. w/o d. cleaning indicates the

model is trained using raw MVS depth predictions as supervision, without our depth cleaning method. Dataset ‘-’ indicates the method is not

learning based. Lower is better for all error metrics.

(a) Ir (b) Is (c) DORN [7] (d) Chen et al. [3] (e) DeMoN [39] (f) Ours (full)
Figure 6. Comparisons on Internet video clips with moving cameras and people. From left to right: (a) reference image, (b) source

image, (c) DORN [7], (d) Chen et al. [3], (e) DeMoN [39], (f) our full method.

images in total for evaluations.

We compare our depth predictions (using our MC trained

models) with several state-of-the-art monocular depth predic-

tion methods trained on indoor NYUv2 [17, 46, 7] and Depth

in the Wild (DIW) datasets [3], and the recent two-frame

stereo model DeMoN [39], which assumes a static scene.

We also compare with Video-Popup [31], which deals with

dynamic scenes. We use the same image pairs for computing

Dpp as inputs to DeMoN and Video-Popup.

Quantitative comparisons are show in Table 2, where we

report 5 different scale-invariance error measures as well

as standard RMSE and relative error; the last two are com-

puted by applying a single scaling factor that aligns the

predicted and ground-truth depth in the least-squares sense.

Our single-view model already outperforms the other single-

view models,demonstrating the benefit of the MC dataset

for training. Note that VideoPopup [31] failed to produce

meaningful results due to the challenging camera and ob-

ject motion. Our full model, by making use of the initial

(masked) depth map, significantly improves performance

for all the error measures. Consistent with our MC test set

results, when we use optical flow as input (instead of initial

depth map) the performance is only slightly better than the

single-view network. Finally, we show the importance of our

proposed “depth cleaning” method, applied to the training

data (see Eq. 1). Compared to the same model, only trained

using the raw MVS depth predictions as supervision (“w/o

d. cleaning”), we see a drop of about 15% in performance.
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(a) Input (b) Defocus

(c) Object insertion (d) People removal

(e) Input (f) People removal

Figure 7. Depth-based visual effects. We use our predicted depth

maps to apply depth-aware visual effects on (a, e) input images; we

show (b) defocus, (c) object insertion, and (d, f) people removal

with inpainting results.

Fig. 5 shows qualitative comparison between the differ-

ent methods. Our models’ depth predictions (Fig. 5(f-g))

strongly resemble the ground truth and show high level of

details and sharp depth discontinuities. This result is a no-

table improvement over competing methods, which often

produce significant errors in both human regions (e.g., legs

in the second row of Fig. 5), and non-human regions (e.g.,

table and ceiling in the last two rows).

5.3. Internet videos of dynamic scenes

We tested our method on challenging Internet videos

(downloaded from YouTube and Shutterstock), involving

simultaneous natural camera motion and human motion. Our

SLAM/SfM pipeline was used to generate sequences ranging

from 5 seconds to 15 seconds with smooth and accurate

camera trajectories, after which we apply our method to

obtain the required network input buffers.

We qualitatively compare our full model (IDppCMK)

with several recent learning based depth prediction models:

DORN [7], Chen et al. [3], and DeMoN [39]. For fair com-

parisons, we use DORN with a model trained on NYUv2

for indoor videos and a model trained on KITTI for outdoor

videos; For [3], we use the models trained on both NYUv2

and DIW. For all of our predictions, we use a single model

trained from scratch on our MC dataset.

As illustrated in Fig. 6, our depth predictions are sig-

nificantly better than the baseline methods. In particular,

DORN [7] has very limited generalization to Internet videos,

and Chen et al. [3], which is mainly trained on Internet pho-

tos, is not able to capture accurate depth. DeMoN often

Figure 8. Failure cases. Moving, non-human objects such as cars

and shadows can cause bad estimates (left and middle, boxed);

fine structures such as limbs may be blurred for distant people in

challenging poses (right, boxed).

produces incorrect depth, especially in human regions, as it

designed for static scenes. Our predicted depth maps depict

accurate depth ordering both between people and other ob-

jects in the scene (e.g., between people and buildings, fourth

row of Fig. 6), and within human regions (such as the arms

and legs of people in the first three rows of Fig. 6).

Depth-Based Visual Effects. Our depth can be used to

apply a range of depth-based visual effects. Fig. 7 shows

depth-based defocus, insertion of synthetic 3D graphics, and

removal of nearby humans with inpainting. See SM for more

examples including mono-to-stereo conversion.

The depth estimates are sufficiently stable over time to

allow inpainting from frames elsewhere in the video. To use

a frame for inpainting, we construct a triangle heightfield

from the depth map, texture the heightfield with the video

frame, and render the heightfield from the target frame using

the relative camera transformation. Fig. 7 (d, f) show the

results of inpainting two street scenes. Humans near the

camera are removed using the human mask M , and holes are

filled with colors from up to 200 frames later in the video.

Some artifacts are visible in areas the human mask misses,

such as shadows on the ground.

6. Discussion and Conclusion

We demonstrated the power of a learning-based approach

for predicting dense depth of dynamic scenes where a monoc-

ular camera and people are freely moving. We make a new

source of data available for training: a large corpus of Man-

nequin Challenge videos from YouTube, in which the cam-

era moves around and people “frozen” in natural poses. We

showed how to obtain reliable depth supervision from such

noisy data, and demonstrated that our models significantly

improve over state-of-the-art methods.

Our approach still has limitations. We assume known

camera poses, which may difficult to infer if moving objects

cover most of the scene. In addition, the predicted depth

may be inaccurate for non-human, moving regions such as

cars and shadows (Fig. 8). Our approach also only uses

two views, sometimes leading to temporally inconsistent

depth estimates. However, we hope this work can guide and

trigger further progress in monocular dense reconstruction

of dynamic scenes.
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