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Abstract

Image captioning has received significant attention with

remarkable improvements in recent advances. Neverthe-

less, images in the wild encapsulate rich knowledge and

cannot be sufficiently described with models built on image-

caption pairs containing only in-domain objects. In this

paper, we propose to address the problem by augmenting

standard deep captioning architectures with object learn-

ers. Specifically, we present Long Short-Term Memory with

Pointing (LSTM-P) — a new architecture that facilitates vo-

cabulary expansion and produces novel objects via pointing

mechanism. Technically, object learners are initially pre-

trained on available object recognition data. Pointing in

LSTM-P then balances the probability between generating

a word through LSTM and copying a word from the recog-

nized objects at each time step in decoder stage. Further-

more, our captioning encourages global coverage of ob-

jects in the sentence. Extensive experiments are conduct-

ed on both held-out COCO image captioning and ImageNet

datasets for describing novel objects, and superior results

are reported when comparing to state-of-the-art approach-

es. More remarkably, we obtain an average of 60.9% in F1

score on held-out COCO dataset.

1. Introduction

Automatic caption generation is the task of producing

a natural-language utterance (usually a sentence) that de-

scribes the visual content of an image. Practical applica-

tions of automatic caption generation include leveraging

descriptions for image indexing or retrieval, and helping

those with visual impairments by transforming visual sig-

nals into information that can be communicated via text-

to-speech technology. Recently, state-of-the-art image cap-

tioning methods tend to be monolithic deep models essen-

tially of “encoder-decoder” style [13, 28, 36]. In general,

∗This work was performed at JD AI Research.

a Convolutional Neural Network (CNN) is employed to en-

code an image into a feature vector, and a caption is then

decoded from this vector using a Long Short-Term Memo-

ry (LSTM) Network, which is one typical Recurrent Neu-

ral Network (RNN). Such models have indeed demonstrated

promising results on image captioning task. However, one

of the most critical limitations is that the existing models are

often built on a number of image-caption pairs, which con-

tain only a shallow view of in-domain objects. That hinders

the generalization of these models in real-world scenarios to

describe novel scenes or objects in out-of-domain images.

The difficulty of novel objects prediction in captioning

mainly originates from two aspects: 1) how to facilitate

word vocabulary expansion? 2) how to learn a hybrid net-

work that can nicely integrate the recognized objects (word-

s) into the output captions? We propose to mitigate the

first problem through leveraging the knowledge from visual

recognition datasets, which are freely available and easier

to be scalable for developing object learners. Next, point-

ing mechanism is devised to balance the word generation

from decoder and the word taken directly from the learnt

objects. In other words, such mechanism controls when to

directly put the learnt objects at proper places in the out-

put sentence, i.e., when to point. Moreover, despite having

high quantitative scores, qualitative analysis shows that au-

tomatically generated captions by deep captioning models

are often limited to describing very generic information of

objects, or rely on prior information and correlations from

training examples, and resulting frequently in undesired ef-

fects such as object hallucination [14]. As a result, we fur-

ther take the coverage of objects into account to cover more

objects in the sentence and thus improve the captions.

By consolidating the idea of pointing mechanism and the

coverage of objects into image captioning, we present a new

Long Short-Term Memory with Pointing (LSTM-P) archi-

tecture for novel object captioning. Given an image, a CNN

is utilized to extract visual features, which are fed into LST-

M at the initial time step as a trigger of sentence generation.

The output of LSTM is probability distribution over all the

12497



words in the vocabulary. The pre-trained object recogniz-

ers are employed in parallel to detect objects in the input

image. A Copying layer then takes the prediction scores of

objects and the current hidden state of LSTM as its inputs.

It outputs the probability distribution of being copied over

all the recognized objects. To dynamically accommodate

word generation through LSTM and word copying from the

learnt objects, pointing mechanism as a multi-layer percep-

tron is exploited to balance the output probability distribu-

tion from LSTM and copying layer at each time step. More-

over, the coverage of objects is encouraged to talk about

more objects found in the image, which is independent of

the position in the sentence. As such, the measure of cover-

age is performed on the bag-of-objects on sentence level.

The whole LSTM-P is trained by jointly minimizing the

widely-adopted sequential loss on the produced sentence

plus sentence-level coverage loss.

The main contribution of this work is the proposal of

LSTM-P architecture for addressing the issue of novel ob-

jects prediction in image captioning. This issue also leads

to the elegant view of how to expand vocabulary, and how to

nicely point towards the placements and moments of copy-

ing novel objects in the sentence, which are problems not

yet fully understood in the literature.

2. Related Work

Image Captioning. Inspired from deep learning [10]

in computer vision and sequence modeling [24] in Natu-

ral Language Processing, modern image captioning meth-

ods [6, 21, 28, 31, 34, 35, 36] mainly exploit sequence

learning models to produce sentences with flexible syntac-

tical structures. For example, [28] presents an end-to-end

CNN plus RNN architecture which capitalizes on LSTM

to generate sentences word-by-word. [31] further extends

[28] by integrating soft/hard attention mechanism to auto-

matically focus on salient regions within images when pro-

ducing corresponding words. Moreover, instead of calculat-

ing visual attention over image regions at each time step of

decoding stage, [13] devises an adaptive attention mecha-

nism in encoder-decoder architecture to additionally decide

when to rely on visual signals or language model. Recently,

[29, 35] verify the effectiveness of injecting semantic at-

tributes into CNN plus RNN model for image captioning.

Moreover, [36] utilize the semantic attention measured over

attributes to boost image captioning. Most recently, [3] pro-

poses a novel attention based captioning model which ex-

ploits object-level attention to enhance sentence generation

via bottom-up and top-down attention mechanism.

Novel Object Captioning. The task of novel objec-

t captioning has received increasing attention most recent-

ly, which leverages additional image-sentence paired data

[15] or unpaired image/text data [8, 26] to describe nov-

el objects. Existing works mainly remould the RNN-based

image captioning frameworks towards the scenario of nov-

el object captioning by additionally leveraging image tag-

gers/object detectors to inject novel objects for describing.

Specifically, [15] is one of early attempts that describes nov-

el objects by enlarging the original limited vocabulary based

on only a few paired image-sentence data. A transposed

weight sharing strategy is especially devised to avoid ex-

tensive re-training. In contrast, [8] presents Deep Composi-

tional Captioner (DCC) which utilizes the largely available

unpaired image and text data (e.g., ImageNet and Wikipedi-

a) to facilitate novel object captioning. The knowledge of

semantically related objects is explicitly exploited in DCC

to compose the sentences containing novel objects. Venu-

gopalan et al. [26] further extend DCC by simultaneously

optimizing the visual recognition network, language mod-

el, and image captioning network in an end-to-end manner.

Recently, [33] integrates the regular RNN-based decoder

with copying mechanism which can simultaneously copy

the detected novel objects to the output sentence. Anoth-

er two-stage system is proposed in [17] by firstly building

a multi-entity-label image recognition model for predicting

abstract concepts and then leveraging such concepts as an

external semantic attention & constrained inference for sen-

tence generation. Furthermore, Anderson et al. [2] devise

constrained beam search to force the inclusion of selected

tag words in the output of RNN-based decoder, facilitating

vocabulary expansion to novel objects without re-training.

Most recently, [14] first generates a hybrid template that

contains a mix of words and slots explicitly associated with

image region, and then fills in the slots with visual concepts

identified in the regions by object detectors.

Summary. In short, our approach focuses on the lat-

ter scenario, that leverages object recognition data for novel

object captioning. Similar to previous approaches [17, 33],

LSTM-P augments the standard RNN-based language mod-

el with the object learners pre-trained on object recognition

data. The novelty is on the exploitation of pointing mech-

anism for dynamically accommodating word generation vi-

a RNN-based language model and word copying from the

learnt objects. In particular, we utilize the pointing mecha-

nism to elegantly point when to copy the novel objects to

target sentence, targeting for balancing the influence be-

tween copying mechanism and standard word-by-word sen-

tence generation conditioned on the contexts. Moreover, the

measure of sentence-level coverage is adopted as an addi-

tional training target to encourage the global coverage of

objects in the sentence.

3. Method

We devise our Long Short-Term Memory with Pointing

(LSTM-P) architecture to facilitate novel object captioning

by dynamically integrating the recognized novel objects in-

to the output sentence via pointing mechanism. In particu-
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Figure 1. An overview of our Long Short-Term Memory with Pointing (LSTM-P) for novel object captioning (better viewed in color). The

image representation extracted by CNN is firstly injected into LSTM at the initial time for triggering the standard word-by-word sentence

generation. The output of LSTM is the probability distribution over all the words in the vocabulary at each decoding time. Meanwhile,

the object learners pre-trained on object recognition data are utilized to detect the objects within the input image. Such predicted score

distribution over objects are further injected into a copying layer along with the current hidden state of LSTM, producing the probability

distribution of being copied over the recognized objects. To dynamically accommodate word generation via LSTM and word copying from

learnt objects, a pointing mechanism is specially devised to elegantly point when to copy the object depending on contextual information

(i.e., current input word and LSTM hidden state). The whole LSTM-P is trained by minimizing two objectives in an end-to-end manner:

(1) the widely-adopted sequential loss that enforces the syntactic coherence of output sentence, and (2) the sentence-level coverage loss

that encourages the maximum coverage of all objects found in the image, which is independent of the position in the sentence.

lar, LSTM-P firstly utilizes a regular CNN plus RNN lan-

guage model to exploit the contextual relationships among

the generated words. Meanwhile, the object learners trained

on object recognition data are leveraged to detect objects for

the input image and a copying layer is further adopted to di-

rectly copy a word from the recognized objects. Next, the

two pathways for generating target word, i.e., the standard

word-by-word sentence generation and the direct copying

from recognized objects, are dynamically accommodated

through the pointing mechanism, which can point when to

copy the novel objects to target sentence conditioned on

the context. The overall training of LSTM-P is performed

by simultaneously minimizing the sequential loss that en-

forces the syntactic coherence of output sentence, and the

sentence-level coverage loss that encourages the maximum

coverage of all objects found in the image. An overview of

our framework is illustrated in Figure 1.

3.1. Notation

For novel object captioning task, we aim to de-

scribe an input image I with a textual sentence S =
{w1, w2, ..., wNs

} which consists of Ns words. Note that

we represent each image I as the Dv-dimensional visual

feature I ∈ R
Dv . Moreover, wt ∈ R

Dw denotes the Dw-

dimensional textual feature of the t-th word in sentence S .

Let Wd denote the vocabulary on the paired image-sentence

data. Furthermore, we leverage the freely available visu-

al recognition datasets to develop the object learners which

will be integrated into standard deep captioning architecture

for novel object captioning. We denote the object vocabu-

lary for the object recognition dataset as Wc, and Ic ∈ R
Dc

represents the probability distribution over all the Dc ob-

jects in Wc for image I via object learners. Hence the whole

vocabulary for our system is denoted as W = Wd ∪Wc. In

addition, to facilitate the additional measure of object cov-

erage in the sentence, we distill all the objects in textual

sentence S as another training target, denoted as the bag-

of-objects O = {wo1 , wo2 , ..., woK} with K object words.

3.2. Problem Formulation

In the novel object captioning problem, on one hand, the

words in the sentence should be organized coherently in lan-

guage, and on the hand, the generated descriptive sentence

must be able to address all the objects within image. As

such, we can formulate the novel object captioning problem

by minimizing the following energy loss function:

E(I,S) = Ed(I,S) + λ× Ec(I,O), (1)

where λ is the tradeoff parameter, Ed(I,S) and Ec(I,O)
are the sequential loss and sentence-level coverage loss, re-

spectively. The former measures the contextual dependen-

cy among the generated sequential words in the sentence
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through a CNN plus RNN language model which is intro-

duced below. The latter estimates the coverage degree of all

objects within image for output sentence, which is present-

ed in Section 3.4.

Specifically, inspired from the sequence learning mod-

els in image/video captioning [6, 11, 18, 19, 28, 31, 32]

and copying mechanism [33], we equip the regular CNN

plus RNN language model with the copying layer, which

predicts each target word through not only the word-by-

word generation by LSTM-based decoder, but also the di-

rect copying from the recognized objects via copying layer.

Hence, the sequential loss Ed(I,S) can be measured as the

negative log probability of the correct textual sentence giv-

en the image and recognized objects:

Ed(I,S) = − log Pr (S|I, Ic). (2)

As the whole captioning model generates sentence word-

by-word, we directly apply chain rule to model the joint

probability over the sequential words. Therefore, the log
probability of the sentence is calculated as the sum of the

log probabilities over target words:

log Pr (S|I, Ic) =

Ns∑

t=1

log Prt (wt| I, Ic,w0, . . . ,wt−1). (3)

Here the probability of each target word Prt (wt) is mea-

sured depending on both the probability distribution over

the whole vocabulary from LSTM-based decoder and the

probability distribution of being copied over the recognized

objects from copying layer. To dynamically integrate the

influence of such two different probability distributions, we

devise a pointing mechanism to adaptively make the deci-

sion of which score distribution to focus at each time step,

which will be elaborated in Section 3.3.

3.3. Pointing Mechanism

When humans have a limited information on how to call

an object of interest, it seems natural for humans (and also

some primates) to have an efficient behavioral mechanis-

m by drawing attention to objects of interest, i.e., Point-

ing [16]. Such pointing behavior plays the major role in

the information delivery and can naturally associate con-

text to a particular object without knowing how to call it,

i.e., the novel object that never seen before. Inspired from

the pointing behavior and the pointer networks [27], we de-

sign a pointing mechanism to deal with the novel objects

in image captioning scenario. More precisely, the pointing

mechanism is a hybrid between the regular LSTM-based

language model plus a copying layer and a pointing behav-

ior. It facilitates directly copying recognized objects, which

concentrates on the handling of novel objects, while retrain-

ing the ability to generate coherence words in grammar vi-

a language model. The interactions between LSTM plus

copying layer and the pointing mechanism is depicted in

the left part of Figure 1.

Specifically, in the decoding stage, given the current L-

STM cell output ht at the t-th time step, two probability

distributions over the whole vocabulary W and the objec-

t vocabulary Wc are firstly calculated with regard to the

regular sequence modeling in LSTM and the direct copy-

ing of objects in copying layer, respectively. For the prob-

ability distribution over the whole vocabulary of LSTM,

the corresponding probability of generating any target word

wt+1 ∈ W is measured as

Prtd (wt+1) = w⊤

t+1Mdh
t, (4)

where Dh is the dimensionality of LSTM output and Md ∈
R

Dw×Dh is the transformation matrix for textual features of

word. For the probability distribution of being copied over

the object vocabulary, we directly achieve the probability of

copying any object wt+1 ∈ Wc conditioned on the current

LSTM cell output ht and the output of object learners Ic:

Prtc (wt+1) = w⊤

t+1M
1
c

(

Ic ⊙ σ
(

M2
ch

t
))

, (5)

where M1
c ∈ R

Dw×Dc and M2
c ∈ R

Dc×Dh are the trans-

formation matrices, σ is the sigmoid function and ⊙ is the

element-wise dot product function.

Next, the pointing mechanism encapsulates dynamic

contextual information (current input word and LSTM cel-

l output) to learn when to point novel objects for copying,

which is applied with feature transformation, to produce a

weight value and followed by a sigmoid function to squash

the weight value to a range of [0, 1]. Such output weight

value pt in pointing mechanism is computed as

pt = σ(Gswt +Ghh
t + bp), (6)

where Gs ∈ R
Dw , Gh ∈ R

Dh are the transformation ma-

trices for textual features of word and cell output of LSTM

respectively, and bp is the bias. Here the weight value pt

is adopted as a soft switch to choose between generating a

word through LSTM, or directly copying a word from the

recognized objects. As such, the final probability of each

target word wt+1 over the whole vocabulary W is obtained

by dynamically fusing the two probability distributions in

Eq.(4) and Eq.(5) with the weight value pt:

Prt (wt+1) = p
t

d · φ(Prtd (wt+1)) + p
t

c · φ(Pr
t

c (wt+1)),

p
t

d = 1− pt, p
t

c = pt,
(7)

where pt
d and pt

c denote the weight for generating a word

via LSTM or copying a word from recognized objects. φ

represents a softmax function.

3.4. Coverage of Objects

While high quantitative scores have been achieved

through RNN-based image captioning systems in encoder-

decoder paradigm, there is increasing evidence [5, 14] re-

vealing that such paradigm still lacks visual grounding (i.e.,
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do not associate mentioned concepts to pixels of image).

As such, the generated captions are more prone to describe

generic information of objects or even copy the most fre-

quently phrases/captions in training data, resulting in unde-

sired effects such as object hallucination. Accordingly, we

further measure the coverage of objects as additional train-

ing target to holistically cover more objects in the sentence,

aiming to emphasis the correctness of mentioned objects re-

gardless of syntax structure and thus improve the captions.

In particular, measuring the coverage of objects is for-

mulated as the multi-label classification problem. We firstly

accumulate all the probability distributions of being copied

on the object vocabulary generated at decoding stage. The

normalized sentence-level probability distribution for copy-

ing is thus obtained via aggregating all the probability dis-

tributions for copying weighted by the weight value pt in

pointing mechanism, followed by a sigmoid normalization:

Prs (woi) = σ

(

Ns
∑

t=1

ptPr
t
c (woi)

)

. (8)

Here the sentence-level probability for each object woi ∈
Wc represents how possible the object been directly copied

in the generated sentence regardless of the position in the

sentence. Thus, the sentence-level coverage loss is calcu-

lated as the cross entropy loss in multi-label classification:

Ec(I,O) = −
K
∑

i=1

log Prs (woi). (9)

By minimizing this sentence-level coverage loss, the cap-

tioning system is encouraged to talk about more objects

found in the image.

3.5. Optimization

Training. The overall training objective of our LSTM-P

integrates the widely-adopted sequential loss in Eq.(2) and

sentence-level coverage loss in Eq.(9). Hence we obtain the

following optimization problem:

L = −

Ns
∑

t=1

log Prt (wt)− λ

K
∑

i=1

log Prs (woi), (10)

where λ is tradeoff parameter. With this overall loss objec-

tive, the crucial goal of this optimization is to encourage the

generated sentence to be coherent in language and mean-

while address all the objects within image.

Inference. In the inference stage, we choose output

word among the whole vocabulary W with maximum prob-

ability at each time step with the guidance from pointing

mechanism. The embedded textual feature of output word is

set as LSTM input for the next time step. This process con-

tinues until the end sign word is emitted or the pre-defined

maximum sentence length is reached.

4. Experiments

We conduct extensive evaluations of our proposed

LSTM-P for novel object captioning task on two image

datasets, including the held-out COCO image captioning

dataset (held-out COCO) [8], a subset of image caption-

ing benchmark—COCO [12], and ImageNet [22] which is

a large-scale object recognition dataset.

4.1. Dataset and Experimental Settings

Dataset. The held-out COCO consists of a subset of

COCO by excluding all the image-sentence pairs which

contain at least one of eight specific objects in COCO: “bot-

tle,” “bus,” “couch,” “microwave,” “pizza,” “racket,” “suit-

case,” and “zebra”. In this dataset, each image is annotated

with five descriptions by humans. Since the annotations of

the official testing set are not publicly available, we follow

the split in [8] and take half of COCO validation set as vali-

dation set and the other half for testing. In the experiments,

we firstly train the object learners with all the images in

COCO training set including the eight novel objects, and

the LSTM is pre-trained with all the sentences from CO-

CO training set. Next, all the paired image-sentence data

from held-out COCO training set are leveraged to optimize

our novel object captioning system. Our LSTM-P model is

finally evaluated over the testing set of held-out COCO to

verify the ability of describing the eight novel objects.

ImageNet is the large-scale object recognition dataset

and we adopt a subset of ImageNet containing 634 object-

s that are not present in COCO for evaluation, as in [26].

Specifically, we take about 75% of images in each class for

training and the rest for testing. Hence the training and test-

ing sets include 493,519 and 164,820 images in total. In

the experiments, we firstly train the object learners with the

entire ImageNet training set, and the LSTM is pre-trained

with all the sentences from COCO training set. After that,

our novel object captioning system is optimized with all the

paired image-sentence data from COCO training set. Dur-

ing inference, we directly produce sentences for testing im-

ages in ImageNet and evaluate the ability of describing the

634 novel objects for our LSTM-P.

Implementation Details. For fair comparison with oth-

er state-of-the-art methods, we take the output of 4,096-

dimensional fc7 from 16-layer VGG [23] pre-trained on

ImageNet [22] as image representation. Each word in the

sentence is represented as Glove embeddings [20]. For the

object learners on COCO, we select only the 1,000 most

common words from COCO and utilize MIL model [7] to

train the object learners over the whole training data of CO-

CO. For the object learners on ImageNet, we directly fine-

tune 16-layer VGG pre-trained on ImageNet to obtain the

634 object learners. The hidden layer size in LSTM is set

as 1,024. The tradeoff parameter λ to balance the sequential

loss and the sentence-level coverage loss is empirically set
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Table 1. Per-object F1, averaged F1, SPICE, METEOR, and CIDEr scores of our proposed model and other state-of-the-art methods on

held-out COCO dataset for novel object captioning. All values are reported as percentage (%).

Model F1bottle F1bus F1couch F1microwave F1pizza F1racket F1suitcase F1zebra F1average SPICE METEOR CIDEr

LRCN [6] 0 0 0 0 0 0 0 0 0 - 19.3 -

DCC [8] 4.6 29.8 45.9 28.1 64.6 52.2 13.2 79.9 39.8 13.4 21.0 59.1

NOC [26] 14.9 69.0 43.8 37.9 66.5 65.9 28.1 88.7 51.8 - 20.7 -

NBT [14] 7.1 73.7 34.4 61.9 59.9 20.2 42.3 88.5 48.5 15.7 22.8 77.0

Base+T4 [2] 16.3 67.8 48.2 29.7 77.2 57.1 49.9 85.7 54 15.9 23.3 77.9

KGA-CGM [17] 26.4 54.2 42.1 50.9 70.8 75.3 25.6 90.7 54.5 14.6 22.2 -

LSTM-C [33] 29.7 74.4 38.8 27.8 68.2 70.3 44.8 91.4 55.7 - 23.0 -

DNOC [30] 33.0 76.9 54.0 46.6 75.8 33.0 59.5 84.6 57.9 - 21.6 -

LSTM-P− 26.7 74.5 46.2 50.5 81.7 47.2 61.1 91.9 60.0 16.5 23.2 88.0

LSTM-P 28.7 75.5 47.1 51.5 81.9 47.1 62.6 93.0 60.9 16.6 23.4 88.3

to 0.3. Following [26], we implicitly integrate the overal-

l energy loss with a text-specific loss on external sentence

data for maintaining the model’s ability to address novel

objects among sentences and a binary classification loss to

guide the learning of pointing mechanism. Our novel object

captioning model is mainly implemented on Caffe [9], one

of widely adopted deep learning frameworks. Specifically,

we set the initial learning rate as 0.0005 and the mini-batch

size is set as 512. For all experiments, the maximum train-

ing iteration is set as 50 epoches.

Evaluation Metrics. To quantitatively evaluate our

LSTM-P on held-out COCO dataset, we utilize the most

common metrics of image captioning task, i.e., METEOR

[4], CIDEr [25], and SPICE [1], to evaluate the quality of

generated description. In addition, F1-score [8] is adopted

to further evaluate the ability of describing novel object-

s. Note that the metric of F1-score indicates whether the

novel object is addressed in the generated sentences of the

given image which contains that novel object. In our exper-

iments, for fair comparison, both of the METEOR and F1-

score metrics are calculated by utilizing the codes1 released

by [8]. For the evaluation on ImageNet which contains no

ground-truth sentences, we follow [26] and adopt another

two metrics: describing novel objects (Novel) and Accu-

racy scores. Here the Novel score calculates the percent-

age of all the 634 novel objects addressed in the generated

sentences. In other words, for each novel object, the mod-

el should mention it within at least one description for the

image containing this object. The Accuracy score of each

novel object denotes the percentage of images containing

this novel object which can be correctly described by men-

tioning that novel object in generated descriptions. We ob-

tain the final Accuracy score by averaging all the accuracy

scores of 634 novel objects.

4.2. Compared Approaches

We compare our LSTM-P model with the following

state-of-the-art methods, which include both the regular im-

1https://github.com/LisaAnne/DCC

age captioning methods and novel object captioning model-

s: (1) LRCN [6] is a basic LSTM-based captioning model

which triggers sentence generation by injecting input image

and previous word into LSTM at each time step. We direct-

ly train LRCN on the paired image-sentence data without

any novel objects. (2) DCC [8] leverages external unpaired

data to pre-train lexical classifier and language model. Nex-

t, the whole captioning framework is trained with paired

image-sentence data. (3) NOC [26] presents a novel object

captioning system consisting of visual recognition network,

LSTM-based language model, and image captioning net-

work. The three components are simultaneously optimized

in an end-to-end fashion. (4) NBT [14] first generates a

hybrid template that contains a mix of words and slots asso-

ciated with image region, and then fills in the slots with de-

tected visual concepts. (5) Base+T4 [2] designs constrained

beam search to force the inclusion of predicted tag words in

the output of RNN-based decoder without re-training. (6)

KGA-CGM [17] takes the predicted concepts as an external

semantic attention and constrained inference for sentence

generation. (7) LSTM-C [33] integrates the standard RNN-

based decoder with copying mechanism which can directly

copy the predicted objects into the output sentence. (8) D-

NOC [30] generates the caption template with placeholder

and then fill in the placeholder with the detected objects vi-

a key-value object memory. (9) LSTM-P is the proposal

in this paper. Moreover, a slightly different version of this

run is named as LSTM-P−, which is trained without the

sentence-level coverage loss.

4.3. Performance Comparison

Evaluation on held-out COCO. Table 1 shows the per-

formances of compared ten models on held-out COCO

dataset. Overall, the results across all the four general e-

valuation metrics consistently indicate that our proposed

LSTM-P exhibits better performance than all the state-of-

the-art techniques including regular image captioning mod-

el (LRCN) and seven novel object captioning systems. In

particular, the F1average score of our LSTM-P can achieve

60.9%, making the relative improvement over the best com-
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GT: a woman walking on a tennis 
court holding a tennis racket
LRCN: a young boy holding a 
baseball bat on a court
LSTM-P: a tennis player holding a 
racket on a court

bus: 0.93
people: 0.77
city: 0.49
building: 0.38
street: 0.35

dog: 1.00
couch: 0.21
bed: 0.13
blanket: 0.12
head: 0.11

tennis: 1.00
court: 0.92
racket: 0.78
woman: 0.71
player: 0.69

GT: a small group of people that are 
in front of a bus
LRCN: a woman is standing in front 
of a truck
LSTM-P: a group of people standing 
around a bus

GT: a large dog laying on a blanket 
on a couch
LRCN: a dog is laying down in a bed
LSTM-P: a dog laying on a couch 
with a blanket

Figure 2. Objects and sentence generation results on held-out CO-

CO. The detected objects are predicted by MIL model in [7], and

the output sentences are generated by 1) Ground Truth (GT): one

ground truth sentence, 2) LRCN and 3) our LSTM-P.

petitor by 5.2%, which is generally considered as a signif-

icant progress on this dataset. As expected, by addition-

ally utilizing external object recognition data for training,

all the latter nine novel object captioning models outperfor-

m the regular image captioning model LRCN on both de-

scription quality and novelty. By augmenting the standard

RNN-based language model with the object/concept learn-

ers, LSTM-C leads to a performance boost against NOC

that produces novel objects purely depending on genera-

tive mechanism in LSTM. The results basically indicate

that the advantage of directly “copying” the predicted ob-

jects/concepts into output sentence via copying mechanism.

However, the performances of LSTM-C are still lower than

our LSTM-P−, which leverages the pointing mechanism to

balance the influence between copying mechanism and s-

tandard word-by-word sentence generation conditioned on

the contexts. This confirms the effectiveness of elegantly

pointing when to copy the novel objects to target sentence

for novel object captioning. In addition, by further integrat-

ing sentence-level coverage loss into overall training objec-

tive, LSTM-P exhibits better performance than LSTM-P−,

which demonstrates the merit of encouraging the generated

sentence to be coherent in language and meanwhile address

all the objects within image.

Evaluation on ImageNet. To further verify the scal-

ability of our proposed LSTM-P, we additionally perform

experiment on ImageNet to describe hundreds of novel ob-

jects that outside of the paired image-sentence data. Table

2 shows the performance comparison on ImageNet. Sim-

ilar to the observations on held-out COCO, our LSTM-P

exhibits better performance than other runs. In particu-

lar, the Novel, F1, and Accuracy scores for LSTM-P can

GT: lawnmower
LRCN: a man walking down a 
road next to a truck
LSTM-P: a man sitting on a 
lawnmower in the grass

orangutan: 1.00
grass: 0.95
ground: 0.21
animal: 0.20
face: 0.19

abacus: 1.00
child: 0.53
boy: 0.39
kid: 0.15
baby: 0.14

lawnmower: 0.97
man: 0.81
grass: 0.78
trees: 0.49
person: 0.27

GT: orangutan
LRCN: a brown bear that is in the 
grass
LSTM-P: a brown orangutan is 
laying on a grass field

GT: abacus
LRCN: a little boy sitting in front 
of a table
LSTM-P: a young child is holding 
a abacus in his hand

Figure 3. Objects and sentence generation results on ImageNet.

GT denotes the ground truth object. The detected objects are pre-

dicted by the standard CNN architecture [23], and the output sen-

tences are generated by 1) LRCN and 2) our LSTM-P.

Table 2. Novel, F1 and Accuracy scores of our proposed model and

other state-of-the-art methods on ImageNet dataset. All values are

reported as percentage (%).

Model Novel F1 Accuracy

NOC [26]

-COCO 69.08 15.63 10.04

-BNC&Wiki 87.69 31.23 21.96

LSTM-C [33]

-COCO 72.08 16.39 11.83

-BNC&Wiki 89.11 33.64 31.11

LSTM-P

-COCO 90.06 17.67 11.91

-BNC&Wiki 91.17 52.07 44.63

reach 90.06%, 17.67%, and 11.91%, making the relative

improvement over LSTM-C by 24.9%, 7.8%, and 0.7%, re-

spectively. The results basically indicate the advantage of

exploiting pointing mechanism to balance the word genera-

tion from decoder and the word copied from learnt objects,

and the global coverage of objects in output sentence, for

novel object captioning, even when scaling into ImageNet

images with hundreds of novel objects. Moreover, we fol-

low [26, 33] and include the external unpaired text data

(i.e., British National Corpus and Wikipedia) for training

our LSTM-P. The performance gains are further attained.

4.4. Experimental Analysis

In this section, we further analyze the qualitative results,

the weights visualization in pointing mechanism, and the ef-

fect of the tradeoff parameter λ for novel object captioning

task on held-out COCO dataset.

Qualitative Analysis. Figure 2 and Figure 3 showcase

a few sentence examples generated by different methods,

the detected objects and human-annotated ground truth on
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tennis: 1.00
court: 0.93
ball: 0.92
player: 0.72
racket: 0.72

truck: 0.59
road: 0.53
street: 0.51
bus: 0.43
city: 0.38

tennisa player hitting a ball with a racket #EOS

#EOSa yellow truck driving down a street next to a bus

: weight for generating a word via LSTM 

: weight for copying a word from objects 

: weight for generating a word via LSTM 

: weight for copying a word from objects 

0
0.2
0.4
0.6
0.8

1

0
0.2
0.4
0.6
0.8

1

Figure 4. Sentence generation results with visualized weights learnt in pointer mechanism of our LSTM-P at each decoding step on held-out

COCO dataset. The bar plot at each decoding step corresponds to the weights for generating a word via LSTM or copying a word from

recognized objects when the corresponding word was generated.

(a) F1average (b) METEOR

59

59.5

60

60.5

61

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
23.2

23.3

23.4

23.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Figure 5. The effect of the tradeoff parameter λ in our LSTM-P

over (a) F1average (%) and (b) METEOR (%) on held-out COCO.

held-out COCO and ImageNet, respectively. From these

exemplar results, it is easy to see that all of these cap-

tioning models can generate somewhat relevant sentences

on both datasets, while our proposed LSTM-P can correct-

ly describe the novel objects by learning to point towards

the placements and moments of copying novel objects via

pointing mechanism. For example, compared to object ter-

m “bed” in the sentence generated by LRCN, “couch” in

our LSTM-P is more precise to describe the image content

in the last image on held-out COCO dataset, since the nov-

el object “couch” is among the top object candidates and

directly copied to the output sentence at the correspond-

ing decoding step. Moreover, by additionally measuring

the coverage over the bag-of-objects on sentence level, our

LSTM-P is encouraged to produce sentences which cover

more objects found in images, leading to more descriptive

sentence with object “blanket.”

Visualization of weights in pointing mechanism. To

better qualitatively evaluate the generated results with

pointing mechanism of our LSTM-P, we further visualize

the generated weights of generating a word via LSTM or

copying a word from recognized objects for a few examples

in Figure 4. We can easily observe that our LSTM-P cor-

rectly chooses to copy word from recognized objects when

the object word to be generated. For instance, in the first

image, when LSTM-P is about to generate object word (i.e.,

“tennis,” “player,” “ball,” and “racket”), it mostly prefer to

copy the object word from recognized objects with higher

weight value pt
c. Also, for the second video, the pointer

mechanism attends to direct copying from objects when the

object terms (i.e., “truck,” “street,” and “bus”) are about to

be generated at decoding stage.

Effect of the Tradeoff Parameter λ. To clarify the ef-

fect of the tradeoff parameter λ in Eq.(10), we illustrate the

performance curves over two evaluation metrics with a d-

ifferent tradeoff parameter in Figure 5. As shown in the

figure, we can see that all performance curves are generally

like the “∧” shapes when λ varies in a range from 0 to 1.

Hence we set the tradeoff parameter λ as 0.3 in our experi-

ments, which can achieve the best performance. This again

proves that it is reasonable to encourage both the syntactic

coherence and the global coverage of objects in the output

sentence for boosting novel object captioning.

5. Conclusions

We have presented Long Short-Term Memory with

Pointing (LSTM-P) architecture which produces novel ob-

jects in image captioning via pointing mechanism. Particu-

larly, we study the problems of how to facilitate vocabulary

expansion and how to learn a hybrid network that can nicely

integrate the recognized objects into the output caption. To

verify our claim, we have initially pre-trained object learn-

ers on free available object recognition data. Next the point-

ing mechanism is devised to balance the word generation

from RNN-based decoder and the word taken directly from

the learnt objects. Moreover, the sentence-level coverage of

objects is further exploited to cover more objects in the sen-

tence and thus improve the captions. Experiments conduct-

ed on both held-out COCO image captioning and ImageNet

datasets validate our model and analysis. More remarkably,

we achieve new state-of-the-art performance of single mod-

el: 60.9% in F1average score on held-out COCO dataset.
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