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Abstract

Affordance1 modeling plays an important role in visual

understanding. In this paper, we aim to predict affordances

of 3D indoor scenes, specifically what human poses are af-

forded by a given indoor environment, such as sitting on

a chair or standing on the floor. In order to predict valid

affordances and learn possible 3D human poses in indoor

scenes, we need to understand the semantic and geometric

structure of a scene as well as its potential interactions with

a human. To learn such a model, a large-scale dataset of

3D indoor affordances is required. In this work, we build

a fully automatic 3D pose synthesizer that fuses seman-

tic knowledge from a large number of 2D poses extracted

from TV shows as well as 3D geometric knowledge from

voxel representations of indoor scenes. With the data cre-

ated by the synthesizer, we introduce a 3D pose generative

model to predict semantically plausible and physically fea-

sible human poses within a given scene (provided as a sin-

gle RGB, RGB-D, or depth image). We demonstrate that our

human affordance prediction method consistently outper-

forms existing state-of-the-art methods. The project web-

site can be found at https://sites.google.com/

view/3d-affordance-cvpr19.

1. Introduction

There is a long history of studies on functional reason-

ing of objects and scenes. Instead of focusing on the se-

mantics of objects and scenes, Gibson proposes the idea of

affordances [5], which can be seen as the “opportunities for

interactions” with the environment.

To infer the affordances of objects and scenes, re-

searchers have studied the explicit modeling of physical in-

teractions and contacts between human and the 3D scene

through simulations [35, 23, 7]. For example, Zhu et al. [35]

explicitly model sitting styles by inferring the forces and

∗Work done during an internship at NVIDIA.
1Affordances are opportunities for interactions in a scene or environ-

ment. It represents what interactions an environment could provide for

humans, e.g., a chair provides the opportunity to sit.
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Figure 1. Overview of the proposed method. Our method con-

tains two stages. First, we propose a fully-automatic 3D pose syn-

thesizer, which can synthesize an infinite number of 3D poses for

indoor scenes (see Sec. 3). We illustrate synthesized pose sam-

ples in the light blue box. Second, we learn an end-to-end 3D

affordance prediction model by jointly learning the distribution of

locations and 3D poses (see Sec. 4). We show generated poses in

the light orange box. Zoom-in to see details.

pressures from the interaction between humans and objects

in a scene. However, explicit modeling suffers from the

problem of generalization for other types of poses. To tackle

the problem of generalization, researchers have proposed to

directly infer affordances in a data-driven manner [4, 3, 27].

Specifically, Wang et al. [27] design a method to collect

human-scene interactions by processing video frames of

various TV shows and train CNNs for affordance reason-

ing. Though the method is able to generate semantically

plausible human poses aligned with scene images, it is not

able to follow the geometry of the 3D world and often pro-

duces results violating physics (e.g., first row in Fig. 7) due

to a lack of 3D geometric information of the scenes (as the

data consists only of video frames and 2D poses).
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In this paper, our goal is to learn a model that is able

to generate 3D human poses that not only follow natural

human behaviors (e.g., humans should sit rather than stand

on a chair), but also are physically feasible (e.g., humans

should not collide with objects). To achieve this goal, we

need to synthesize an appropriate dataset containing hu-

man poses in various indoor scenes. We first train a 2D

pose prediction model using an existing real-world video

dataset [27]. The trained model is then adapted to the in-

door images in the SUNCG dataset [26, 30], which con-

tains complete 3D annotations, e.g., camera parameters and

3D geometry (we use a voxel representation). Since there

exist well-defined links between the 2D images and the 3D

world, given these annotations, we can map the generated

2D poses into the 3D world. We further adjust these mapped

poses in 3D voxel space to make sure they are physically

feasible (no intersections with objects and well supported

by surrounding furniture). Our dataset synthesis approach

is fully automatic and can synthesize numerous, diverse

“ground-truth” poses in different locations.

Given this large amount of data, we are able to train an

affordance prediction model, which aims to generate 3D

human poses given a single scene image. We model the

pose distributions conditioned on the scene context, where

the pose distributions are factorized into the distributions

of (a) pose pelvis joint locations, and (b) pose appearance

on top of sampled locations. We name them the where and

what modules, respectively. The two modules are jointly

trained using the pose pelvis joint locations as a differen-

tiable bridge. Essentially, we propose a geometry-aware

discriminator to encourage the model to better understand

the geometry of the scene (see Fig. 4 (b)), even through a

single RGB image. We evaluate the plausibility of our gen-

erated 3D poses via user study as well as a trained classifier

that aims to score the “authenticity” of generated poses. We

also map generated poses back to the 3D voxel space to

evaluate their physical correctness in the 3D world.

Our main contributions can be summarized as: (a) We

propose an efficient, fully-automatic 3D human pose syn-

thesizer that leverages the pose distributions learned from

the 2D world, and the physical feasibility extracted from

the 3D world. (b) We develop a generative model for 3D af-

fordance prediction which generates plausible human poses

with full 3D information, from a single scene image. (c)

We set a new benchmark for large-scale human-centric af-

fordance prediction on the SUNCG dataset by leveraging

the human pose synthesizer and the pose generator.

2. Related Work

Scene understanding. In recent years, much progress has

been made [28, 1, 31] in the field of semantic scene un-

derstanding thanks to large-scale labeled datasets [33, 18].

A few methods [6, 29, 19] aim to specially model human-

scene interactions. However, they focus on detecting

human-object interactions rather than explicitly reasoning

about object functionality in a scene.

Object functionality reasoning. For deeper reasoning of

objects in a scene beyond the conventional scene under-

standing techniques, several approaches [7, 35, 32, 36] re-

visit the principle of affordance [5] via explicitly modeling

the functionality of objects in a scene. For instance, Grabner

et al. [7] propose to detect a chair by considering its func-

tionality (i.e. examining whether an imaginary human can

sit on the object). Zhu et al. [36] recognize tools and infer

their functionality by analyzing RGB-D videos. However,

these methods are hard to generalize to real-world scenarios

because they rely heavily on complete 3D geometry infor-

mation of a scene.

Human affordance prediction. Other than explicitly mod-

eling object functionality, several recent algorithms [15, 2,

34, 14] exploit human affordance in a data-driven manner.

Gupta et al. [8] manually associate human actions with ex-

emplar poses and search feasible locations for those actions

in a scene by performing 3D correlation between poses and

scene voxels. Fouhey et al. [3] propose to estimate human-

scene interactions and scene geometry by observing human

actions in time-lapse sequences. Roy and Todorovic [24]

predict affordance segmentation maps for specific actions

from single images by predicting and fusing mid-level vi-

sual cues. Wang et al. [27] collect human-scene and human-

object interactions by scanning through millions of video

frames in different TV series and train CNNs for human af-

fordance reasoning, which partly motivated our work. How-

ever, the data collection process still requires manual ef-

fort, and can only collect limited training examples (⇠20K).

Without sufficient data and geometric knowledge of scenes,

it is hard for CNNs to follow the geometric constraints of a

scene, leading to results that often violate the physics.

Instance placement in a scene. Our affordance predic-

tion method which puts humans into feasible locations in

a scene can be seen as an instance placement task. Several

recent approaches [17, 21, 16] focus on predicting either

location or appearance of an instance in a scene. For ex-

ample, Lin et al. [17] propose to insert objects into feasible

locations in a scene. However, this method requires a user

provided template as the instance. Ouyang et al. [21] utilize

a Generative Adversarial Network to in-paint pedestrians at

given locations in a scene. Closest to our work, Lee [16]

jointly model a context-aware distribution of the location

and shape of object instances given a scene. Nevertheless,

their method focuses on inserting instances in 2D images

and does not consider any physical feasibility in 3D scenes.

3. 3D Pose Synthesis
Collecting a large-scale dataset of human poses with 3D

scene annotations is currently a tedious task [22]. In this

section, we show how to automatically synthesize “ground-

12369



geometry adjustment

(f)

semantic knowledge adaptation !
" # $ %

&

'
(

AdaIn

(a) (b) (c) (e)(d)

AdaIn

Figure 2. Pose synthesis. (a) Input image. (b) Location heat map.

The blue and red regions denote the areas suitable for standing and

sitting. (c) Generated pose. (d) Corresponding pose in the voxel.

(e) Adjusted pose in voxel. (f) Mapping from image to voxel.

truth” 3D human poses in various indoor scenes. To en-

sure the correctness of generated poses, we take two fac-

tors into account: (i) semantic plausibility; the synthesized

poses should follow natural human behaviours in typical in-

door environments, and (ii) physical correctness; the human

poses should not collide with objects in a scene or float in

the air. To satisfy constraint (i), we learn a 2D human pose

generative model that encodes the natural human pose dis-

tributions from existing 2D examples [27] (see Fig. 2(a) to

(c) and Sec. 3.1). Then, given the camera parameters, we

map the generated poses into the 3D world represented as

voxels. (see Fig. 2(f)) and Sec. 3.2). Finally, we introduce

an efficient way to adjust the poses in the 3D scene to satisfy

constraint (ii) (see Fig. 2(d) to (e) and Sec. 3.3).

Overall, we use our pose synthesizer to produce around

1.5 million “ground-truth” poses, which are then used in

Sec. 4. Fig. 1 (light blue box) shows samples of poses ob-

tained by our pose synthesizer in 3D space and their projec-

tions onto 2D images.

3.1. Affordance Prediction in 2D Scene Images

We synthesize 3D human poses by first generating poses

in 2D images, then projecting them into the 3D world

as shown in Fig. 2. To this end, we utilize the Sitcom

dataset [27] which contains pose samples captured from sit-

com videos and train a human pose prediction model. Then

we adapt the trained model onto the SUNCG images to gen-

erate poses that follow natural human behaviors. The work

by Wang et al. [27] only focuses on predicting the most

plausible human pose at a feasible location in 2D scene im-

ages. However, the annotations of such feasible locations

are not available in the SUNCG dataset. Therefore, we need

to learn a network that predicts locations to put humans in a

scene, before utilizing the method in [27] to generate human

poses at each predicted location.

We represent each pose location by its pelvis joint coor-

dinates. A typical technique [24] for predicting human pose

locations is to learn a pixel-wise probability map of a scene.

However, the existing 2D pose annotations are highly sparse

(typically only a few poses per scene). To address this issue,

we augment the annotation from a single point to a local

square patch, assuming the nearby area can afford the same

pose. Furthermore, Wang et al. [27] cluster all poses into

30 clusters according to their gestures and feed the cluster

center corresponding to each pose as a condition to their

pose prediction model. Thus to utilize their pose predic-

tion model, we not only need to find feasible locations for

human poses, but also predict the most likely pose class at

each predicted location.

To this end, for each location that has a pose annotation,

we use a 31-dimensional binary vector to represent the cor-

responding pose class. Locations without pose annotations

are labeled as background (the 31st class). This results in a

31⇥ h⇥w pose location map as the ground truch heatmap

for each scene, where h and w are the height and width of

the scene image. We learn a CNN that takes a scene image

as input and predicts the corresponding heat map. During

the testing process, we sample from the heat map and out-

put both locations possible for human poses as well as the

most likely pose class at these locations.

Since our ultimate goal is to generate 3D poses, we first

map 2D pose annotations in the Sitcom dataset to 3D poses

in the Human3.6M dataset [11] and then train the pose gen-

eration model in [27] to generate 3D poses. Detailed map-

ping process can be found in the appendix. In this way, we

extend the pose prediction in [27] from generating 2D poses

in given ground truth locations, to generating 3D poses at

sampled locations. Fig. 2(b) and (c) illustrate location heat

maps and poses predicted by our model respectively.

To narrow the domain gap between the SUNCG and the

Sitcom dataset, we perform domain adaptation [10] when

applying the trained model onto the SUNCG images, via

matching the second-order statistics of image features for

both location and pose prediction models. More details

about the domain adaptation can be found in the appendix.

3.2. Mapping Poses into 3D Scenes

Mapping a pixel from the image coordinates to the 3D

world requires its depth value and the camera parameters.

Unfortunately, depth values are not known for the gener-

ated human poses. However, we circumvent this problem

by estimating these depth values from the known real-world

distribution of human heights. We sample the height of a

human for standing pose from N (1.65, 0.1), and for sitting

pose from N (1.20, 0.1). Given the sampled human height

in 3D world, we can estimate the depth d of each pose by

d = H×f
Hp×r32

, where Hp is the pose height at pixel coor-

dinate system, H is the sampled human height mentioned

above, f is focal length and r32 is a specific parameter in

camera extrinsic matrix. A detailed derivation is available

in the appendix. Fig. 2(f) illustrates the mapping process.

We take the resulting pose depth as the depth of the pelvis

joint and calculate the depths of other joints by their offsets

w.r.t. the pelvis joint. Then, we map each joint into the 3D

world using intrinsic and extrinsic camera matrices.
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Figure 3. Affordance adjustment. (a) Generated pose by the

model described in Sec. 3.1. (b) Corresponding pose in the voxel

space. (c) A scene voxel. (d) The surface of a bed (colored in red)

detected by a 3D Gaussian kernel. (e) Positive responses indicat-

ing locations suitable for the given sitting pose (colored red). (f)

Adjusted pose at the location with the highest positive response.

3.3. Affordance Constraint in the 3D World

Since the pose prediction model is trained with only 2D

information, a plausible generated pose may not be physi-

cally feasible when mapped to 3D, e.g., the pose collides

with the bed as exemplified in Fig. 2(d). Therefore, we

adjust it locally to make the pose physically feasible. For

example, we can adjust pose locations to avoid collision as

shown in Fig. 2(e), or adjust a sitting pose right onto the

surface of a bed as shown in Fig. 3(f).

The method by Gupta et al. [8] manually associates each

action with an exemplar pose and searches locations valid

for the pose by satisfying the free space constraint and the

support constraint. However, such a manual solution is not

feasible in our case since our poses are generated, rather

than selected from a set of fixed poses. We explain next how

to extend the method in [8] to search for locations satisfying

both constraints in an efficient and fully-automatic manner.

Free space constraint. The free space constraint states that

no human body parts can intersect with any object in the

scene, such as furniture or walls. To satisfy this constraint,

we perform a 3D correlation between poses and a voxel rep-

resentation of the scene. We denote the voxelized 3D pose

as p, with all voxel valued as one. We binarized the original

voxel (Fig. 3(c)) with the free space as zero, and the occu-

pied ones as one, denoted as Vf . The free space constraint

is satisfied in the locations where Rf below a threshold Tf :

Rf = p ⇤ Vf (1)

where ⇤ indicates a 3D correlation operation. Necessary

contacts between human and objects should be considered.

Thus we mask out these body parts that have to contact with

objects, including thigh and pelvis for sitting poses and feet

for standing poses, when performing the 3D correlation.

Support constraint. The support constraint states that the

human pose should be supported by a surface of surround-

ing objects (e.g., floor, bed). We search locations that sat-

isfy this constraint by performing two 3D correlations. The

first correlation is performed between scene voxels Vs and

a 3D Gaussian kernel to detect voxel cells on the surfaces

of affordable objects (e.g., the bed in Fig. 3(d)). The Vs is

produced by marking all voxels of affordable objects (chair,

sofa, floor etc.) to zero, and the other voxels (including

unoccupied voxels or objects that can not support a human

pose) to one. After correlating with a 3D Gaussian kernel,

all voxels except voxels on the boundaries will be either

zero or one. Masking them out would leave us only vox-

els on affordable objects boundaries. We further mask out

boundary voxels that do not have an upward surface normal.

Next, we perform another 3D correlation between poses

and the object surfaces (see Fig. 3(e)) and take the location

with the maximum correlation score as the optimal loca-

tion for putting the pose (see Fig. 3(f)). Similar to the free

space constraint discussed above, we denote the voxelized

3D human pose and pre-processed affordable object bound-

ary voxel as p and Vs, the Gaussian kernel as G, then the

support constraint Rs can be expressed as:

Rs = p ⇤ (G ⇤ Vs) (2)

We adjust a pose to the “best location” where the per-

son can comfortably lay or sit with maximal contacting area

with the support surface. The location can be explicitly ob-

tained through localizing at the point with max (Rs). Note

that poses are adjusted in a local region to preserve the se-

mantic information. Poses that do not find a valid location

are discarded, i.e., the support constraint is satisfied in the

locations where max (Rs) is above a threshold Ts.

4. 3D Affordance Generative Model

In this section, we show how to generate 3D human

poses conditioned on a single scene image using the syn-

thesized data described in Sec. 3. Generating human poses

in 3D scenes requires modeling the joint distribution of hu-

man scale, pose, location and interactions with objects in

3D, which is very challenging. A typical solution is to use

a single network to model the joint distribution of pose lo-

cations and gestures. This approach, however, will result

in a huge solution space and poor performance, as analysed

in Sec. 5.3. In contrast, we break it down to two jointly

learned sub-tasks, where the generative model for each sub-

task is much easier to learn, To be specific, we first predict

the plausible locations in a scene (see the where module in

Fig. 1 and Fig. 4 (a)) and then predict the suitable human

poses that are aligned with their surrounding context (see

the what module in Fig. 1 and Fig. 4 (a)) of the predicted

locations. Both modules are jointly trained using the pose

location as a differentiable link, which allows the two mod-

ules to mutually benefit from each other, as well as from the

discriminator described in Sec. 4.3.

We take two factors into consideration when designing

both the where and the what modules. First, both modules

should be able to understand the semantics of scene context

to generate poses that follow natural human behaviors (e.g.,

sit rather than stand on a sofa). To this end, we model the
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Figure 4. Overview of the 3D affordance learning model. (a) Our end-to-end framework consists of a where (Sec. 4.1) and a what

(Sec. 4.2) component for pose location and gesture prediction respectively. (b) Detailed illustration of our adversarial training (blue block

in (a), detailed in Sec. 4.3). Grey blocks convert joint coordinates and depth to a “depth heat map”, which are pretrained and fixed when

jointly training the where and the what module. Blocks with same color share parameters.

distributions of pose locations and gestures by two VAEs

conditioned on the scene context. We explain them in detail

in Sec. 4.1 and Sec. 4.2 respectively. Second, both mod-

ules should be able to hallucinate 3D geometry of the scene

to generate poses that obey physical rules in a scene (e.g.,

poses should be well supported by objects rather than float

in the air). To achieve this goal, we introduce a geometry-

aware discriminator that further regularizes the two mod-

ules to generate physically correct poses, which we discuss

in Sec. 4.3. Fig. 4 illustrates the complete pipeline of our

pose prediction model.

4.1. The Where Module: Pose Locations Prediction

Given a scene image I , we build a where VAE to encode
pose locations in 3D scenes, by simultaneously reconstruct-
ing pose pelvis joint coordinates (x, y) and depth d, as well
as the most likely pose class pc at the predicted location.
The standard variational equality is represented as:

logP (Y |I)−KL(Q(z|Y, I)||P (z|Y, I)) (3)

= Ez∼Q(logP (Y |z, I))−KL(Q(z|Y, I)||P (z|I))

P (z|I) and Q(z|Y, I) are two normal distributions

N (0, 1) and N (µ(Y, I),σ(Y, I)) and KL represents the

Kullback-Leibler divergence.

The pose class pc provides a clue for the likely pose ap-

pearance (e.g., sitting or standing), which can be obtained

by assigning each pose to one of the 30 pose clusters de-

scribed in [27]. Note that [27] uses an one-hot vector to

represent the pose class, which does not consider the sim-

ilarities of different pose typologies between classes. Here

we directly represent pc by the normalized center pose of

each cluster so that similar pose classes have similar repre-

sentations, i.e., each pc 2 R3×17 (each pose has 17 joints).

The structure of the where module. As illustrated in Fig. 4

(a), the encoder extracts image features using an 18 layer

ResNet [9] and concatenates them with the location features

and pose class features extracted by two fully connected

layers. The final concatenated feature is then fed into four

fully connected layers to predict µ(Y, I) and σ(Y, I) for dis-

tribution Q. The decoder takes a latent variable z sampled

from Q and the scene context features shared with the en-

coder to predict {x, y, d, pc}. Because it is challenging for

the model to associate numerical coordinates with the ex-

act location in the image, we predict a heat map in the de-

coder to indicate possible locations for a pose and adopt one

Differentiable Spatial to Numerical Transform (DSNT) [20]

layer to convert the heat map to pose location coordinates.

The objectives of the where module. We use three losses
in training the where module. First, we minimize the Eu-
clidean distance on the estimated pose class, depth and
pelvis coordinates by Lmse = kY ∗ � Y k. Second, we
minimize the KL-divergence between the estimated distri-
bution Q and the normal distribution N (0, 1) by Lkld =
KL[Q(z|µ(Y, I),σ(Y, I))||N (0, 1)]. In addition, to bet-
ter associate predicted pelvis joint depth and pixel coordi-
nates, we minimize the Euclidean distance between ground
truth and predicted pelvis coordinates under the world co-
ordinate system using camera parameters for each scene.
We refer this loss as geometry loss and represent it as
Lgeo = kMeMi[x

∗, y∗, d∗]�MeMi[x, y, d]k, where Me

and Mi are camera extrinsic and intrinsic matrices. Our fi-
nal objective is:

L = λmseLmse + λkldLkld + λgeoLgeo, (4)

where λmse, λkld, λgeo are the weights that balance the

three objective terms.

4.2. The What Module: Pose Gestures Prediction

The what module takes pelvis joint coordinates (x, y),
depth d and pose class pc predicted by the where module as
well as a scene image I as inputs, and learns to predict co-
ordinates and depth of each joint in p 2 R

3×17, so that the
generated pose p can align well with its surrounding con-
text. In other words, the what module needs to understand
the scene context, and be able to sample poses conditioned
on it. Similarly, we model the pose appearance distribution
with a conditional VAE, which is represented as:

log(P (S|R, I))−KL(Q(z|S,R, I)||P (z|S,R, I)) (5)

= Ez∼Q(logP (P |z,R, I))−KL(Q(z|S,R, I)||P (z|R, I)),

where S represents the coordinates and depth {x, y, d} for

each joint, R denotes {x, y, d, pc} predicted by the where
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module. Other symbols follow those in Sec. 4.1.

The structure and objectives of the what module. Our

what module shares similar structure as the where module

(Fig. 4), except that the inputs are pose location, scene con-

text and pose class, and the outputs are the coordinates and

depth for each joint.

Similar to the where module, the what module contains

three losses: a Euclidean loss on estimated joint coordi-

nates and depth Lmse = kS∗ � Sk, a KL-divergence loss

Lkld = KL[Q(z|µ(R, I),σ(R, I))||N (0, 1)], and a geom-

etry loss Lgeo =
�

�MeMi[x
∗

j , y
∗

j , d
∗

j ]�MeMi[xj , yj , dj ]
�

�,

where [xj , yj , dj ] are pixel coordinates and depth for joint j.

While our goal is to model the shape of poses through mod-

eling the joint distribution of joints S, the final objective is

same as in Equation 4.

4.3. The Geometry-Aware Discriminator

In this work, we aim to generate poses in 3D scenes that

follow physical rules in the scene, which requires our model

to properly hallucinate the 3D scene geometry merely from

a 2D image. To this end, in addition to including the

depth value of each pose during training, we introduce a

geometry-aware discriminator that further regularizes the

where and what module simultaneously to generate poses

that obey geometry rules in the scene.

As shown in Fig. 4(b), the discriminator takes generated
poses and scene depth images as inputs and learns to dis-
criminate between geometrically feasible (real) vs. unfeasi-
ble (fake) pairs. However, it is challenging for the discrimi-
nator to associate the discrete depth value of each joint to a
scene depth map (i.e., the depth of each point between two
connected joints is not modeled). Thus we first train a net-
work which converts coordinates and depth of each joint to
a “depth heat map” (Fig. 4(b)), where each pixel is either
the depth of a point between two joints or �1 for back-
ground pixels. Details about the network are available in
the appendix. We then feed this “depth heat map” together
with the scene depth image into the discriminator. Our final
adversarial objective is:

Ladv(G,D) =Ec,pr [logD(F (pr), c)]+

Ec,pz [log (1−D(F (pz), c))]
(6)

where G and D represent the pose prediction model and

the discriminator model, F represents a pre-trained CNN

that converts joint coordinates and depth to the “depth heat

map” described above, pr and pz denote ground truth and

generated poses, c denotes the depth image of the scene.

We note that both the geometry-aware discriminator as

well as the geometrically feasible/unfeasible labels are uti-

lized only during training. During testing, only the the part

shown in Fig. 4(a) is needed to support single image con-

ditioned generation, which makes the algorithm easy to be

adapted to many application scenarios.

5. Experimental Results

In this section, we first introduce the details of our syn-

thesized dataset and the quantitative evaluation metrics in

Sec. 5.1. Then, we present the experimental results of our

affordance prediction model in Sec. 5.2, as well as the ab-

lation studies to understand how the main modules of the

proposed algorithm contribute in Sec. 5.3. Finally, we com-

pare the proposed method with the state-of-the-art affor-

dance prediction method [27] in Sec. 5.4.

5.1. Dataset Synthesis and Evaluation Metrics

Dataset synthesis. As described in Sec. 3, we use the Sit-

com dataset [27] for pose prediction in images and map

the generated poses into the scene voxels in the SUNCG

dataset [30, 26] for 3D pose affordance correction. In total,

we apply the synthesizer to generate 1.5 million poses in

13, 774 SUNCG scenes. We use 13, 074 scenes for training

and 700 scenes for evaluation.

Quantitative evaluation metrics. The primary goal of this

paper is to model 3D human affordance by generating hu-

man poses that are semantically plausible and physically

feasible in a given scene. The semantic plausibility de-

scribes how reasonable a generated pose looks in an indoor

environment. We design two ways to evaluate it.

First, we train a pose authenticity classifier to determine

whether a generated pose is plausible. To train the classi-

fier, we collect the ground truth poses from our synthesizer

in Sec. 3 as positive samples, and manually annotate the

negative samples following [27]. As shown in Fig. 6(b),

the negative pose samples are either impossible or uncom-

mon to appear in an indoor environment. In total, we col-

lect 18, 000 pose samples in different scenes for training,

and 1, 400 pose samples for evaluation. Both the training

and the testing dataset contain an equal number of positive

and negative poses. Our trained pose authenticity classi-

fier achieves a classification accuracy as high as 86% on the

testing dataset, and is ready to be used to test the plausibility

of a pose, i.e., to check if a pose looks like a natural human

pose in the given scene context. We define the ratio of poses

that are classified as positive by the pose authenticity clas-

sifier as “semantic score”. High semantic scores indicate

that the model is able to understand the scene semantics to

generate plausible poses in an indoor environment.

Second, we conduct a user study to let humans to deter-

mine how authentic the generated poses look like. Given

a pair of poses sampled from ground truth poses and gen-

erated poses, either by the baseline method [27] or our

method, in the same scene, a user is asked to select the pose

that is more reasonable in an indoor environment. Note

that since we focus on visual plausibility, both the gener-

ated/ground truth poses and the scenes for user study are

projected and displayed as 2D images, which can be com-

pared with [27].

12373



Table 1. Quantitative evaluation of our affordance prediction model. We show comparisons of our model with three different input

modalities against the baseline model described in Sec. 5.2 in (b) and (c). Additionally, we show the performance of different variants of

our model in (d) to (f) as discussed in Sec. 5.3.

.
(a) Metric (b) Baseline

(c) Ours (d) Ours w/o adversarial (e) Ours w/o joint training (f) Ours w/o geometry loss

RGB RGB-D Depth RGB RGB-D Depth RGB RGB-D Depth RGB RGB-D Depth

semantic score 72.53 91.69 91.14 89.86 90.17 91.6 89.31 83.34 81.40 77.09 89.74 88.40 88.11

geometry score 23.25 66.40 71.17 72.11 62.71 72.00 70.91 46.46 71.37 60.83 56.11 66.40 63.77

Figure 5. Generated poses by our model. The three rows show generated poses by models that take a RGB, RGB-D or depth map as

input. For each scene, the first column illustrates pose projections in 2D scene images, and the last two columns illustrate poses in scene

voxels visualized from different views.

Table 2. Quantitative evaluation of the what module. We show

comparisons between the baseline model [27] and our model with

three different input modalities.

Model Baseline
Ours

RGB RGB-D Depth

semantic score 91.29 91.43 91.86 90.86

geometry score 56.29 78.43 82.00 84.00

46.43

74.45

53.57

72.36

25.55 27.64

0%

25%

50%

75%

100%

GT vs. ours GT vs. baseline ours vs. baseline

GT ours baseline

(a) user study (b) negative samples

Figure 6. Semantic plausibility evaluation. (a) User study re-

sults. Each subject is asked to select the more reasonable pose

through pairwise comparisons. The number indicates the percent-

age of preference on that comparison pair. “GT” means ground

truth poses. (b) Manually annotated negative pose samples that

are either impossible (column 1) or uncommon (column 2) in an

indoor environment.

Finally, to check if a generated pose violates the geomet-

ric rules in a scene, we map it into the corresponding scene

voxel, and check if the pose satisfies the free space con-

straint and support constraint as discussed in Sec. 3.3. We

re-utilize the constraints as our evaluation criteria, by defin-

ing the ratio of poses that satisfy both constraints as geome-

try score. To be specific, for a standing pose, it satisfies the

support constraint if the feet of the pose is within 8 voxel

units (each voxel unit is 0.02 meter) of the floor. For a sit-

ting pose, it satisfies the support constraint if there is an af-

fordable surface (with Ts >= 100 as discussed in Sec. 3.3)

within 8 voxel units of the pose. Furthermore, a pose that

intersects less than or equal to 5 voxels (i.e. Tf <= 5) is

considered satisfying the free space constraint. High geom-

etry scores indicate that the model can hallucinate the 3D

geometry and obey the rules in the scene.

5.2. 3D Affordance Prediction

We visualize the generated poses by our where and what

module with different input modalities in Fig. 5. We present

quantitative evaluations in Table 1. For each model, we

generate 3, 500 poses and calculate the semantic as well as

geometry score over these poses. Note that the previous

work [27] only focuses on predicting pose gestures at given

locations. For a fair comparison, we combine the location

heat map prediction model introduced in Sec. 3.1, with the

pose generator from [27] as our baseline model. Further-

more, since the baseline model can not predict the pose

depth values, to calculate the geometry score described in

Sec. 5.1, we adopt the strategy as introduced in Sec. 3.2 to

estimate the pose depth and map the poses into 3D scenes.

Even with a single RGB image as input, our method

achieves 19.47% higher semantic score, and 19.02% higher

geometry score than the baseline model (see Table 1(b) and

(c)). The results indicate that our model is able to under-

stand both the context and moreover, the geometry of a

scene. In addition, we generate 50 poses in different scenes

and conduct the user study discussed in Sec. 5.1. In total,
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we collect 400 votes from 20 users and present the result

in Fig. 6(a). According to the user study result, the poses

generated by our method are not only more reasonable than

poses predicted by the baseline method, but also indistin-

guishable from the ground truth poses.

Furthermore, we show that our pose prediction model

can be further improved by including depth information of

the scene. Specifically, we train two variants of our model

that take a RGB-D or a depth map as input and present their

performance in Table 1. From this table, we can see that in-

cluding depth information of the scene constantly improve

the geometry score of the pose prediction model under dif-

ferent experimental settings. Similar observations can also

be found in Fig. 5, where the sitting pose generated by the

model that takes a RGB image as input floats above the sofa

(column 3, row 1), while the sitting pose generated by the

model that takes a RGB-D or depth map as input aligns well

with the sofa (column 3, row 2 and 3).

5.3. Ablation Studies
A single model for affordance learning. We conduct a

baseline method to show that a single, straightforward gen-

erative network does not work for modeling complex joint

distributions – we use a single VAE to encode 2D scene,

pose locations and gestures. All the other settings remain

the same. We obtain semantic and geometry scores of 76.23
and 52.94 when taking RGB images as inputs (Table 1 (b)),

which are worse than the proposed method (Table 1 (c)).

Joint training. First, we evaluate our model without joint

training the where and what module. Table 1(c) vs. (e)

shows the significant contribution of joint training for the

semantic score. Without it, the semantic score reduces by

8.06% when taking a RGB image as input. We observe that

although the model without joint training present higher ge-

ometry score, many of the generated locations have wrong

depth values, which lead to unreasonably small poses that

do not collide with other objects.

Adversarial training. Hallucinating 3D geometry purely

based on 2D information is a challenging task. Thus we

propose to use a geometry-aware discriminator which con-

ditions on the depth map of a scene and learns to discrim-

inate generated poses from “ground truth” poses (see Sec.

4.3). Table 1(c) vs. (d) shows the effectiveness of adversar-

ial training. With adversarial training, our model is able to

generate poses that better obey the rules of geometry in a

scene (higher geometry score).

Geometry loss. A pose that looks plausible in a 2D con-

text may still violate the rules of geometry when mapped

into the 3D scene. Thus, to encourage our model to gen-

erate poses that are consistent with the geometry of the 3D

world, we minimize the Euclidean distance between pre-

dicted poses and ground truth poses in the world coordinate

space. Table 1(c) vs. (f) demonstrates the contribution of

the geometry loss. Without it, the geometry score drops by

Figure 7. Pose generation at given locations. We show poses

generated by the baseline method [27] (top row) and our method

(bottom row) at given locations. The first column shows pose pro-

jections in scene images, and the last two columns show generated

poses in 3D voxels visualized from two different views.

4.59% when taking a RGB image as input.

5.4. Comparison with State-of-the-Art

In this section, we follow the experimental settings by

Wang et al. [27] and only focus on pose generation at given

locations, i.e., the what module. To have a fair comparison,

we train a what module that takes the same inputs as [27],

i.e., the 2D pelvis coordinates (x, y) and predicts the coor-

dinates as well as depth for each joint. We train the model

in [27] on the SUNCG dataset with the synthesized poses

for the ease of comparison. This model takes the 2D pelvis

coordinates (x, y) as our model but only predicts 2D coordi-

nates of each joint. Table 2 shows the quantitative scores of

these two models. Note that we use similar method to cal-

culate geometry score for the baseline method discussed in

Sec. 5.2. As shown in the table, our model achieves 6.66%
higher geometry score, indicating that our model performs

favorably in generating poses that obey the physical rules in

the scene. The same observation can also be found in Fig. 7.

Though given the same location, both the poses generated

by our model and the baseline model appear plausible in the

2D image, only our generated pose is geometrically valid

when mapped into the 3D scene.

6. Conclusion.
In this work, we propose to predict where and what

human poses can be put in 3D scenes using a two stage

pipeline. We develop a 3D pose synthesizer that can pro-

duce millions of ground truth poses in 3D scenes automat-

ically by fusing semantic and geometric knowledge from

the Sitcom dataset [27] and a 3D scene dataset [26, 30].

Then we learn an end-to-end generative model that pre-

dicts both locations and gestures of human poses that are

semantically plausible and geometrically feasible. Exper-

imental results demonstrate the effectiveness of our pro-

posed method against the stage-of-the-art human affordance

prediction method.
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