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Abstract

Most of the existing subspace clustering (SC) frame-

works assume that the noise contaminating the data is gen-

erated by an independent and identically distributed (i.i.d.)

source, where the Gaussianity is often imposed. Though

these assumptions greatly simplify the underlying problem-

s, they do not hold in many real-world applications. For

instance, in face clustering, the noise is usually caused by

random occlusions, local variations and unconstrained il-

luminations, which is essentially structural and hence sat-

isfies neither the i.i.d. property nor the Gaussianity. In this

work, we propose an independent and piecewise identically

distributed (i.p.i.d.) noise model, where the i.i.d. property

only holds locally. We demonstrate that the i.p.i.d. model

better characterizes the noise encountered in practical sce-

narios, and accommodates the traditional i.i.d. model as

a special case. Assisted by this generalized noise model,

we design an information theoretic learning (ITL) frame-

work for robust SC through a novel minimum weighted error

entropy (MWEE) criterion. Extensive experimental result-

s show that our proposed SC scheme significantly outper-

forms the state-of-the-art competing algorithms.

1. Introduction

Many practical high-dimensional data usually lie in a

low-dimensional structure, rather than being uniformly dis-

tributed over the ambient space [30, 36, 3, 5, 44]. Some rep-

resentative examples include feature trajectories of rigidly

moving objects in a video [30], face images of one subjec-

t [36], and the spectra of one instance in a hyperspectral

image [3]. As a result, a collection of data from multiple

categories can be regarded as the ones lying in a union of

low-dimensional subspaces [5]. Subspace clustering (SC)

refers to the problem of separating the data points accord-

ing to their underlying subspaces, and has found numerous

applications in motion segmentation [22, 43], image clus-

tering [20, 21], data representation [14], etc.

There are many different types of SC approach proposed,

e.g., the algebraic [17], the statistical [10], the iterative [41],

and the spectral clustering based [5, 20] algorithms. In this

work, we focus on the SC approaches based on the spec-

tral clustering [5, 20], due to their state-of-the-art perfor-

mance provided. Within the framework of spectral cluster-

ing based methods, an affinity matrix indicating the similar-

ity between pairs of the data points is first built, and then the

data points are separated by applying the spectral clustering

[25] on this affinity matrix. The primary difference of vari-

ous spectral clustering-based algorithms lies in how to learn

a robust subspace representation (SR) of each data point,

which seriously affects the clustering performance. Typi-

cally, the task of learning a robust SR is cast into a certain

optimization problem, usually consisting of two terms: the

fidelity term as well as the regularization term. The majority

of the previous efforts along this line focused on designing

the regularization functions with desirable properties, such

as sparsity [5, 19], low-rankness [20, 33], manifold struc-

tures [28], or a combination of them [37, 42].

On the other hand, the studies on the fidelity term es-

sentially accounting for the noise effect to robust SR are

relatively limited. For the analytical tractability and the

low complexity, most SC approaches simply adopted mean

square error (MSE) criterion, which provides the optimal-

ity only when the noise is i.i.d. Gaussian [2]. Because of

this limitation, MSE-based frameworks are very sensitive to

the non-Gaussian noise [8, 29, 39]. Besides, MSE criteri-

on only considers the second order statistics and may fail to

capture sufficient statistical information of the noise signal.

To remedy these drawbacks, information theoretic learning

(ITL) [15, 29, 23, 7, 8] has been recently suggested to han-

dle non-Gaussian noise, and successfully applied to image

recognition [12, 34]. Specifically, ITL aims to find the solu-

tion that produces the coding residual with the minimal in-

formation [7, 34]. To this end, ITL replaces the MSE crite-

rion with the one based on information theoretic measures,

e.g., correntropy [23] and Rényi’s entropy [6, 40]. Com-

pared with MSE, ITL does not make Gaussianity assump-

tion, and can exploit higher orders of statistical information

of the signal [15]. Despite these desirable properties, all the
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Figure 1. Four images corrupted with the additive white Gaussian

noise (standard deviation 50). They have the same backgrounds

and the same number of black pixels. The black pixels in (a)-(c)

exhibit structural patterns, while the ones in (d) is purely random.

existing ITL-based algorithms still imposed i.i.d. assump-

tion on the noise, namely, all the noise samples are generat-

ed from the same underlying distribution and no correlation

exists among them. Unfortunately, such i.i.d. assumption

often does not hold in reality. In many practical settings,

different portions of the noise could have different statis-

tical behaviors, exhibiting certain structures. A persuasive

example is shown in Fig. 1. If we naively model the sig-

nals in Figs. 1(a)-(d) with an i.i.d. source, then all these

four signals would have the same amount of information in

terms of the traditional entropy [40]. Apparently, this i.i.d.

noise model leads to inaccurate information estimations as

the signal in Fig. 1(d) should have much larger amount of

information from the view of information theory [11]. The

aforementioned phenomenon calls for a more generic noise

model that can better characterize the statistical behavior of

the noise encountered in various practical scenarios.

In this work, we present a new robust SC algorithm

through a more generic noise model called independent and

piecewise identically distributed (i.p.i.d.) model, where we

use a union of distributions, rather than a single one, to char-

acterize the statistical behavior of the underlying noise. To

the best of our knowledge, this is probably the first SC ap-

proach explicitly built upon a generic non-i.i.d. noise mod-

eling. The major contributions of our work are as follows:

1. Our framework makes neither the i.i.d. nor Gaussian-

ity assumptions on the noise, leading to the essential

difference from the existing SC approaches.

2. We develop a novel minimum weighted error entropy

(MWEE) criterion for the robust SC, through an i.p.i.d.

noise model. We demonstrate its effectiveness in ex-

ploiting the inherent statistical information of the noise

(including structural and purely random ones).

3. We design a relaxation technique to solve the optimiza-

tion problem for the robust SC under the MWEE crite-

rion, and an efficient implementation can be achieved.

4. The proposed MWEE criterion could be regarded as a

general technique and readily incorporated into many

existing learning systems to improve the robustness a-

gainst various types of practical noise.

The rest of the paper is organized as follows. Section 2

reviews the spectral clustering-based SC. Section 3 presents

the i.p.i.d. noise model. Section 4 introduces the MWEE-

based SC algorithm and its optimization. Experimental re-

sults are given in Section 5 and Section 6 concludes.

2. Review of the Spectral Clustering-based SC

Let {Sk}
K
k=1

be a union of K linear subspaces of RN ,

and {xi}
n
i=1 be a collection of n observed data. Define

X = [x1, ...,xn] = [X1, ...,XK ]P (1)

where P is a permutation matrix, and Xi ∈ R
N×nk con-

tains the nk data points lying in the subspace Si. Given

the data matrix X, the goal of SC is to correctly separate

the data points {xi}
n
i=1 into their underlying subspaces. In

this work, we focus on the methods based on the spectral

clustering [5, 20], which generally comprise two steps: i)

learning an affinity matrix indicating the similarity between

pairs of the data; and ii) obtaining the clustering results by

applying the spectral clustering to the learned affinity ma-

trix. The crucial difference among various SC algorithms

lies in the techniques on how to learn the affinity matrix.

The state-of-the-art methods for learning the affinity ma-

trix are based on the robust SR. According to the subspace

learning, each data point can be effectively represented as a

linear combination of the other points in X, i.e.,

X = XZ, diag(Z) = 0, (2)

where X is the self-expressive dictionary and Z serves as

the representation coefficient matrix. Generally, the solu-

tion of Z is not unique, due to the fact that rank(Xk) < nk.

To tackle this challenge, a commonly used technique is to

incorporate the prior-domain knowledge, and solve the fol-

lowing regularized optimization problem

min
Z

R(Z), s.t. X = XZ, diag(Z) = 0, (3)

where R(·) is a certain regularization function. In practice,

X is often observed with various kinds of noise, i.e.,

X = Xo +Eo, (4)

where Xo is the noise-free data matrix and Eo denotes the

noise term. Then (2) can be rewritten as

X = XZ+E, diag(Z) = 0, (5)

where E = Eo−EoZ. In the presence of noise, we usually

consider the following problem

min
Z

R(Z), s.t. L(X−XZ) < ǫ, diag(Z) = 0. (6)

Here L(·) is the fidelity function designed according to the

noise behavior, and R(·) represents the regularization func-

tion, which has been devised in many forms with different
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priors on the subspace structures. For example, ℓ1-norm

leads to the subspace-sparse representation [36, 5], and nu-

clear norm results in the subspace-low-rank representation

[20]. Once obtaining Z, the affinity matrix M can be in-

duced from Z, e.g., M = |Z|+ |ZT |.
At step ii), we apply the spectral clustering [25] to M,

and eventually obtain the clustering results.

3. Construction of the i.p.i.d. Noise Model

Compared with R(·), the studies on the fidelity func-

tion L(·) to characterize the noise behavior are relatively

limited. For simplicity, most of the existing SC approach-

es adopted MSE for the fidelity term, naively modeling the

noise with i.i.d. Gaussian distribution. Though i.i.d. Gaus-

sianity assumption greatly simplifies the underlying prob-

lems, it does not hold in many real-world scenarios. In this

section, we present a generic noise model i.p.i.d., where the

i.i.d. property is satisfied only in a piecewise fashion. Later,

we will show that the proposed i.p.i.d. noise model leads to

a new design of L(·) under the framework of SC given in

(6). As neither i.i.d. nor Gaussianity assumptions are im-

posed, the resultant SC scheme exhibits superior robustness

against various types of noise encountered in practice.

3.1. Definition of the i.p.i.d. source and its properties

We define the 1-D i.p.i.d. source as follows.

Definition 3.1 Suppose that x = [x1, ..., xN ] ∈ R
N is a

sequence of N independent samples. Let {Pi}
L
i=1 be a

non-overlapping, sequential partition of the index vector

[1, 2, · · · , N ], i.e.,

Pi = {ni−1 + 1, ni−1 + 2, · · · , ni}, i ∈ {1, · · · , L}, (7)

where n0 = 0, ni < ni+1, and nL = N . The sequence x

is said to be generated by an i.p.i.d. source, if there exists a

union of probability density functions {fi}
L
i=1, such that

xni−1+1, xni−1+2, · · · , xni

i.i.d.
∼ fi, i ∈ {1, · · · , L}. (8)

The above definition can be readily extended to signal-

s in higher dimensional space, e.g., images and videos. A

somewhat similar definition was also given in [35] for the

binary source coding. With the Definition 3.1, the i.p.i.d.

source has the following properties. Locality: the i.p.i.d.

source can well exploit the local behavior of a signal, which

is different from a purely i.i.d. source; Fine-description,

the i.p.i.d. source characterizes a signal using a union of

density functions rather than a single one, providing it more

powerful descriptive capability to describe a complex sig-

nal. Generalization: the traditional i.i.d. source is a special

case of the i.p.i.d. source with L = 1.

Owning to these desirable properties, an i.p.i.d. source

can describe both structural signals (as shown in Figs. 1(a)-

(c)) and purely random ones (as shown in Fig. 1(d)). For ex-

ample, Fig. 1(a) can be satisfactorily modeled by an i.p.i.d.

Figure 2. An illustration of the illumination noise. (a) observed

image, (b) latent image, (c) noise, (d) an example of the synthetic

noise generated by an i.p.i.d. source.

source with L = 2, where the dark region and the back-

ground originate from two different distributions. A more

illustrative example is given in Figs. 2(a)-(c), where the

noise is dominated by the unconstrained illumination. Ob-

viously, such noise cannot be appropriately modeled with

any i.i.d. source; but it can be well characterized by the

i.p.i.d. model. To clarify this point, we show a synthetic

image generated by an i.p.i.d. source in Fig. 2(d). This syn-

thetic image is produced in a way that each disjoint 8 × 8
patch is generated by a Gaussian distribution, with the mean

gradually decreased by a constant 0.5 from left to right. We

can observe that the synthetic image can well approximate

the behavior of the illumination noise shown in Fig. 2(c).

3.2. Rényi’s entropy of an i.p.i.d. Source

We now discuss how to estimate the information of a

signal under the i.p.i.d. model, which is crucial for the pro-

posed robust SC scheme. We first review the traditional

Rényi’s entropy of an i.i.d. source. Let E be a random

variable, and its Rényi’s entropy with the order α (α > 0
and α 6= 1) is defined as

Hα(E) =
1

1− α
log

(

∫

(fE(e))
αde

)

. (9)

In practice, the probability density function fE(e) is gen-

erally unknown. Parzen window estimation [27] is a com-

monly adopted algorithm to approximate fE(e) using finite

samples {ei}
N
i=1, which is given by

f̂E(e) =
1

N

N
∑

i=1

κσ(e− ei), (10)

where κσ(·) is the Gaussian kernel and σ is the kernel size.

Note that an important assumption of the Parzen window

estimation is that the samples {ei}
N
i=1 are i.i.d.

To differentiate from the above traditional Rényi’s en-

tropy estimator defined under the i.i.d. assumption, we call

our estimator under the i.p.i.d. assumption as the piecewise

Rényi’s entropy (PRE). As a well-known fact, the tradition-

al entropy reflects the smallest number of bits on average, to

represent a symbol generated by an i.i.d. source. To be con-

sistent with this rule for an i.p.i.d. source, we define PRE as

follows:
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Definition 3.2 Suppose that e = [e1, e2, .., eN ] is a se-

quence generated by an i.p.i.d. source with the index par-

tition {Pq}
L
q=1. Its information estimator PRE is given by

Ĥα(e) =
1

1− α

∑

q

|Pq|

N
log

∫

(

fEq
(e)

)α

de, (11)

where fEq
(e) is the probability density function estimated

with the samples indexed by the partition Pq , i.e.,

fEq
(e) =

1

|Pq|

∑

i∈Pq

κσ(e− ei). (12)

It can be shown that the PRE reduces to the traditional

entropy Hα(e) when the signal is actually i.i.d.; otherwise

if the signal is i.p.i.d., PRE can more precisely exploit the

entropy information. Without loss of generality, we set α =
2, and the resulting estimator is denoted by Ĥ2(e).

It should be noted that calculating Ĥ2(e) is not straight-

forward in reality, because the partitions {Pq}
L
q=1 are gen-

erally unknown. In fact, we believe that it is rather chal-

lenging, if possible, to estimate the partitions from the given

data. This is typically true when the signal is very complex

or gradually varied (see e.g., Fig. 2). Fortunately, thanks to

the properties of the i.p.i.d. source, we can still approximate

Ĥ2(e) without explicitly knowing the partitions {Pq}
L
q=1.

Specifically, for the data samples in a sufficiently small lo-

cal region, they can reasonably be assumed as i.i.d., accord-

ing to the locality property of the i.p.i.d. source. Then we

can estimate the probability density function for each small

local region, and approximate Ĥ2(e) by taking the average

over all the local regions by resorting to Definition 3.2.

Specifically, let Iq be the location of eq in the original

data space 1. For each location Iq , we first construct a local

region, denoted by ΩIq , centered at Iq . Then we estimate

the probability density function for ΩIq as

fEIq
(e) =

1

|ΩIq|

∑

i∈ΩIq

κσ(e− ei), (13)

Note that (12) and (13) are equivalent if ΩIq happens to

be the actual partition Pq . In the sequel, we use the notation

fIq (e) instead of fEIq
(e) for simplicity.

However, the number of samples in a small local region

is often insufficient for the density estimation. Alternative-

ly, we propose to estimate fIq (e) by using all the samples in

e by introducing a weighting function, potentially achieving

more accurate estimation. A somewhat similar strategy was

employed in [1] for density estimation with a few samples.

To preserve the locality property of the i.p.i.d. source, when

estimating fIq (e), we assign larger weights to the samples

with smaller distances to Iq . Concretely, we define the dis-

tance of two locations Ii and Ij in the data space as

1For the 1-D signal (e.g., voice), Iq is a scalar. For the 2-D signal (e.g.,

image), Iq is a 2-D index.

Di,j = Dis(Ii, Ij), (14)

where Dis(·) is a certain distance function, e.g., ||·||2. Then

the probability density function for ΩIq is estimated by

f̂Iq (e) =

N
∑

i=1

c(Dq,i)κσ(e− ei). (15)

Here c(·) is an appropriately designed weighting function.

In our work, we simply choose c(·) as a Gaussian function

c(Dq,i) =
1

Q
e
−

(Dq,i)
2

σ2
w , (16)

where Q is the normalizer such that
∑

Ii
c(Dq,i) = 1, and

σ2
w is empirically set as N

1000
. We then call (15) the weighted

Parzen window (WPW) estimation.

Upon estimating the density f̂Iq(e) for each ΩIq , the

PRE Ĥ2(e) can then be approximated by H̄2(e) through

taking the average over all the locations, i.e.,

H̄2(e) = −
1

N

∑

Iq

log

∫

(

f̂Iq (e)
)2

de

= −
1

N

∑

Iq

log

N
∑

i,j=1

c(Dq,i)c(Dq,j)κ√
2σ(ei − ej). (17)

3.3. Relationship among H2(e), Ĥ2(e) and H̄2(e)

Compared with Ĥ2(e) defined in (11), H̄2(e) does not

need to know the partitions {Pq}
L
q=1 explicitly. Further-

more, it can be proved below that H̄2(e) derived under

the i.p.i.d. assumption is still equivalent to the traditional

Rényi’s entropy H2(e) under the i.i.d. setting.

Theorem 3.1 Suppose that the signal elements in e =
[e1, e2, .., eN ] are independently sampled from the same dis-

tribution f(e). Then the PRE estimator H̄2(e) defined in

(17) is equivalent to the traditional Rényi’s entropy H2(e)
given by (9) and (10).

The proof is given in the supplementary file. It provides a

fundamental theoretical basis for the capability of H̄2(e) to

characterize the i.i.d. source.

To further show the relationship among the traditional

Rényi’s entropy H2(e), the PRE Ĥ2(e) and its approxima-

tion H̄2(e), we give a toy example here by generating an

i.p.i.d. sequence e = [e1, e2, ..., eN ] (N = 2000) with L
partitions. For the q-th partition, the samples are indepen-

dently generated by a Gaussian distribution

fEq
(e) =

1
√

2πq2
exp

(

−
(e− µ)2

2q2

)

, (18)

where µ = 200

L
(q−1). For simplicity, each partition has the

same number of samples, i.e., ⌊N/L⌋. Obviously, L = 1
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Figure 3. Two examples of the i.p.i.d. sequence.
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Figure 4. H2(e), Ĥ2(e), H̄2(e) and H̃2(e) w.r.t. L

implies that the sequence e is generated by a standard nor-

mal distribution; while when L > 1, e is a 1-D signal with

structures. Fig. 3 shows two examples of the sequences

when L = 1 (red) and L = 10 (blue). Fig. 4 plots the curves

of different estimators with various number of partitions.

We can observe that under the i.i.d. case, i.e., L = 1, H2(e),
Ĥ2(e) and H̄2(e) are the same, which coincides with The-

orem 3.1. When L > 1, H2(e) becomes much larger than

the PRE Ĥ2(e) and H̄2(e). This is because H2(e) totally

ignores the structural information of e, and simply treats all

the signal elements as i.i.d. From Fig. 4, we can also ob-

serve that H̄2(e) can well approximate Ĥ2(e), even without

knowing the partitions.

4. Proposed SC Method and Its Optimization

Based on the proposed i.p.i.d. noise model, we now sug-

gest a new fidelity function L(·) in (6) for the robust SC.

4.1. MWEEbased sparse SC

In this work, we focus on the popular Sparse Subspace

Clustering (SSC) method [5], which adopts ℓ1-norm for

R(·) to achieve a subspace-sparse representation, while de-

signing L(·) under MSE criterion. Namely,

argmin
Z

||Z||1, s.t. ||X−XZ||2F < ǫ, diag(Z) = 0. (19)

As aforementioned, the MSE criterion has many serious

limitations. Motivated by the great success of ITL to handle

non-Gaussian noise, we suggest to design a new ITL-type

fidelity function L(·) through the proposed i.p.i.d. noise

model. Specifically, given a data point and a dictionary, the

ITL-based framework aims to find a representation produc-

ing the coding residual with minimal information [12, 34].

In light of this motivation, we replace the Frobenius norm

in (19) with our proposed PRE, and we have

argmin
Z

||Z||1, s.t. Φ(X−XZ) < ǫ, diag(Z) = 0, (20)

where

Φ(X−XZ) =

n
∑

i=1

H̄2(xi −Xzi), (21)

and zi is the i-th column of Z. In this work, we name

the criterion of minimizing H̄2(e) as Minimum Weighted

Error Entropy (MWEE) criterion, due to the weighted na-

ture of H̄2(e). Different from MSE and all the existing

ITL criteria, such as the ones based on correntropy [12]

and Rényi’s entropy [40, 34], MWEE built upon the i.p.i.d.

model makes neither the i.i.d. nor Gaussianity assumptions.

The minimization target PRE can better reflect the inherent

information of the noise, no matter it is structural or pure-

ly random. As expected and will be shown experimentally,

our algorithm is very robust against various kinds of noise.

The problem (20) can be decomposed into n independent

subproblems, with the i-th one expressed as

argmin
zi∈Rn

||zi||1, s.t. H̄2(xi −Xzi) < ǫi, zi,i = 0, (22)

where ǫ =
∑n

i=1
ǫi. To handle the problem (22), we can

first solve

argmin
z′

i
∈Rn−1

||z′i||1, s.t. H̄2(xi − X̂z′i) < ǫi. (23)

where X̂ = [x1, ..,xi−1,xi+1, ..,xn]. Then the solution zi
of (22) is eventually computed by

zi = [z′i,1, ..., z
′
i,i−1, 0, z

′
i,i, ..., z

′
i,n−1].

Nevertheless, it is very difficult to solve the problem

(23), since 1) H̄2(e) defined in (17) is a summation of

complex logarithmic functions; and 2) the kernel function

κ√
2σ(·) is highly non-convex [12]. To tackle this challenge,

we now propose a relaxation technique for H̄2(e) such that

the resulting problem can be efficiently solved.

4.2. Relaxation of H̄2(e)

Define

cqi,j = c(Dq,i)c(Dq,j), (24)

where Dq,i is given in (14). Since
∑

Iq
1

N
= 1, by the

convexity of the negative log function and the Jassen’s in-

equality, we have

H̄2(e) ≥ −log
∑

Iq

1

N

N
∑

i,j=1

cqi,jκ
√
2σ(ei − ej) (25)

= −log
∑

Iq

N
∑

i,j=1

cqi,jκ
√
2σ(ei − ej) + logN.
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Figure 5. Illustration of the face clustering. Images are from the Extended Yale B database [18].

Algorithm 1 Half-quadratic algorithm for the problem (32)

Input: The data matrix A = [x1, ..,xi−1,xi+1, ..,xn], a data

point y = xi, the parameter λ and t = 0.

1: Calculate ỹ = [ỹ1, ..., ỹN ]T and X̃ = [x̃T
1 , ..., x̃

T
N ]T .

2: While ‘not converged’, do

3: ut+1

i = 1

2σ2 κ√

2σ(ỹi − x̃iz
t), i = 1, 2, · · · , N

4: zt+1 = argmin
z

(ỹ− X̃z)T diag(ut+1)(ỹ− X̃z)+λ||z||1

5: t = t+ 1
6: end while

Output: The representation vector z.

Algorithm 2 MWEE-based SC (MWEE-S)

Input: The data matrix X = [x1, ...,xn], the number of sub-

spaces K, the parameter λ.

1: Normalize the columns of X to have unit l2 norm.

2: Compute the representation matrix Z by solving (20) to deal

with linear subspaces , or solving (33) for affine subspaces.

3: Construct the similarity matrix M = |Z|+ |Z|T .

4: Apply the spectral clustering algorithm [25] to M.

Output: K clusters.

Let

H̃2(e) = −logS(e) + logN, (26)

where

S(e) =

N
∑

i,j=1

wi,jκ√
2σ(ei − ej), wi,j =

∑

Iq

cqi,j . (27)

From (25), we can see that H̃2(e) is a lower bound of

H̄2(e). It can be shown that when the signal elements in

e are i.i.d., the inequality in (25) holds with equality. Fur-

ther, H̄2(e) and H̃2(e) have the same minimizer e = c1 for

some constant c. In Fig. 4, we also plot the curve of H̃2(e)
with different number of partitions. Motivated by the work

[16], we suggest to substitute H̄2(e) with H̃2(e) in (23).

Noticing that H̃2(e) is monotonically decreasing w.r.t.

S(e), minimizing H̃2(e) is equivalent to minimizing

−S(e). By replacing H̄2(e) with −S(e), and introducing a

Lagrange multiplier λ, we reformulate the problem (23) as

argmin
z′

i

− S(xi − X̂z′i) + λ||z′i||1. (28)

For the notation simplicity, we further let y = xi, A = X̂

and z = z′i. Then, the problem (28) becomes

argmin
z

− S(y −Az) + λ||z||1. (29)

By resorting to a similar strategy proposed in [34], we

approximate S(e) with

S̃(e) =
N
∑

i=1

κ√
2σ





N
∑

j=1

wi,j(ei − ej)



 . (30)

Denote the i-th entry of y by yi and the i-th row of A by ai.
Since

∑

j wi,j = 1 (proof given in the supplementary file),

we have

S̃(y −Az) =
N
∑

i=1

κ√

2σ

(

N
∑

j=1

wi,j ((yi − aiz)− (yj − ajz))

)

=
N
∑

i=1

κ√

2σ

(

yi −
N
∑

j=1

wi,jyj −

(

ai −
N
∑

j=1

wi,jaj

)

z

)

.

(31)

Substituting S(y − Az) by S̃(y −Az), the problem (29)

finally becomes

argmin
z

−

N
∑

i=1

κ√
2σ(ỹi − x̃iz) + λ||z||1, (32)

where ỹi = yi −
∑N

j=1
wi,jyj and x̃i = ai −

∑N

j=1
wi,jaj .

(32) can be efficiently solved via the half-quadratic theory

[26]. Algorithm 1 shows the optimization procedures, and

the detailed derivation is given in the supplementary file.

Remark: Note that in many cases, data points lie in a u-

nion of affine subspaces rather than linear subspaces, as will

be discussed in Section 5.2. To deal with affine subspaces,

we adopt the strategy suggested in [5], by introducing addi-

tional linear equality constraints in (20), i.e.,

argmin
Z

||Z||1,

s.t. Φ(X−XZ) < ǫ, ZT1 = 1, diag(Z) = 0.
(33)

This problem can be efficiently solved by using a simi-

lar technique described in Algorithm 1, incorporating with

the Alternating Direction Method of Multipliers (ADMM)

method [5].

Upon having the representation matrix Z, we then build

the affinity matrix by M = |Z| + |Z|T . Finally, we apply

spectral clustering [25] to M, and obtain the clustering re-

sults. The whole SC algorithm is summarized in Algorithm

2. In this work, we refer the MWEE-based SC algorithm to

as MWEE-S for short.
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Table 1. Clustering accuracy (%) of different algorithms on the

Extended Yale B.
Methods LSA SSC0 SSC1 LRR TSC L2-G S3C MWEE-S

2 subjects 71.09 99.22 96.89 97.66 97.66 98.44 99.22 100.0
4 subjects 42.58 75.39 92.97 93.75 91.80 98.44 99.22 100.0
6 subjects 45.05 85.94 94.01 96.62 93.49 98.44 95.83 100.0
8 subjects 33.98 60.35 93.75 75.59 90.43 97.66 94.92 100.0
10 subjects 32.50 53.75 87.19 76.56 86.41 96.56 94.69 99.84

Figure 6. Some simulated examples. Images from left to right are

randomly occluded by 0%, 10%, 20%, 30% and 40%, respectively.

Figure 7. Average clustering accuracy of different algorithms on

the Extended Yale B against 25% contiguous occlusion.

5. Experimental Results

We evaluate our proposed SC algorithm MWEE-S, in

dealing with two practical problems: face clustering and

motion segmentation. To embrace the concept of repro-

ducible research [32], the code of our paper will be available

upon the acceptance.

5.1. Face clustering

Given a set of facial images from multiple subjects, the

goal of face clustering is to separate them according to their

underlying subjects. An example is shown in Fig. 5. The

Extended Yale B dataset [18] is adopted in this exper-

iment, which contains 2432 frontal face images from 38

subjects, with 64 instances for each subject. Images in this

dataset are captured under various lighting conditions. For

efficiency, we resize all the images to 96× 84. We compare

the performance of our MWEE-S in (20) with SSC0 [4], SS-

C1 [5], LRR [20], TSC [13], LSA [38], S3C [19] and L2-G

[28]. We use the codes provided by their authors with the

default parameter settings. More specifically, for S3C, we

adopt the soft S3C implementation, since it leads to the best

performance among all the variants [19]. For LRR, we use

the code newly updated [20]. The difference between SSC0

and SSC1 is that SSC0 adopts || · ||2F as the fidelity function

while SSC1 uses || · ||1. For our proposed MWEE-S, the

parameter λ is consistently set as 10−4.

As shown in Fig. 5, the noise in the Extended

Yale B is mainly caused by the unconstrained illumina-

tion, which obviously satisfies neither the i.i.d. assumption

nor the Gaussianity. Table 1 reports the clustering accuracy

of different algorithms over the Extended Yale B, for

the first 2, 4, 6, 8 and 10 subjects. We can see that when the

number of subjects increases, the performance of the MSE-

Figure 8. Average clustering accuracy of different algorithms a-

gainst various levels of occlusion.

based algorithms (such as SSC0 and LRR) drops rapidly.

This is because MSE criterion simply treats the noise as

i.i.d. Gaussian. By resorting to the MWEE-based criteri-

on derived under the i.p.i.d. noise model, our MWEE-S

outperforms the competing methods for all the cases. No-

tably, MWEE-S obtains 100% clustering accuracy when the

number of subjects is below 10, while only miss-clustering

one image when the number of subjects is 10. It can also

be seen that the recent works S3C [19] and L2-G [28] also

achieved rather good performance on this dataset. However,

S3C adopts more complex regularization functions, while

L2-G applies a post-processing on the representation coef-

ficients. Furthermore, as will be clear soon, they are not

robust under more complex noise scenarios.

Effect of the contiguous block occlusion: We now test

the effectiveness of the proposed MWEE-S in the presence

of contiguous occlusions. For each facial image, we first

randomly select a region, and then substitute it with an unre-

lated image patch. Specifically, the image ‘Baboon’ is used

for the occlusion simulation, which was adopted in [36, 34]

as well. Some examples are given in Fig. 6.

Note that the noise in this scenario can hardly be as-

sumed to be i.i.d., since it is the combination of the illu-

mination and the unrelated image ‘Baboon’, both of which

are highly structural. Fig. 7 plots the clustering accuracy of

different methods against 25% occlusion, over the facial im-

ages of various number of subjects. To alleviate the impact

of random occlusion positions, all the results are averaged

over 10 random runs. We can observe that our MWEE-S

achieves considerably better performance than the competi-

tors, and the gain margin becomes larger when the number

of subjects increases. Compared with the results in Table

1, it can be noticed that the performance drops severely,

for all the competing methods against 25% occlusions. In

contrast, the performance degradation of WMEE-S is much

more graceful. Such phenomenon further demonstrates that

the WMEE criterion designed under the i.p.i.d. can better

characterize the noise behavior.

Effect of the occlusion level: To investigate the impact

of different occlusion levels on the clustering performance,

we vary the occlusion level from 0 to 40%, while fixing the

number of subjects to be 4. Fig. 8 depicts the results of dif-

ferent algorithms. As can be observed, our method achieves

the best clustering performance for all the occlusion level-
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Figure 9. Example frames with tracked features from three videos in Hopkins 155 [31]. Given feature points on multiple rigidly moving

objects tracked in a video (top), motion segmentation aims to separate the feature trajectories according to moving objects (bottom).

Table 2. Clustering error (%) of different algorithms on the

Hopkins155 database.

Methods LSR SSC0 SSC1 LRR LRSC L2-G S3C MWEE-S

2F

Avg. 2.98 6.97 2.18 1.60 3.42 5.54 2.20 1.22
Med. 0.30 0.21 0.00 0.00 0.00 0.00 0.00 0.00
Std. 7.48 12.69 7.24 4.66 8.83 11.18 6.89 4.20

4K

Avg. 3.21 7.05 2.42 2.35 3.35 5.81 2.33 1.77
Med. 0.38 0.21 0.00 0.00 0.00 0.00 0.00 0.00
Std. 7.79 12.82 7.51 7.30 8.76 11.59 6.98 6.12

s. The performance gaps of our scheme over the competing

methods are quite remarkable, especially when the occlu-

sion level is between 10% to 30%.

5.2. Motion segmentation

Motion segmentation aims to segment a video sequence

with multiple rigidly moving objects into several spatiotem-

poral regions, each of which corresponds to one moving ob-

ject in the scene. Fig. 9 shows some examples of three video

sequences, where we only draw two frames with tracked

points for each video. Let F be the number of frames in a

video sequence. Generally, the motion segmentation prob-

lem can be solved by first tracking the spatial positions of

n feature points xf,i ∈ R
2 (f = [1, .., F ], i = [1, .., n])

across the frames of the video, and then clustering the fea-

ture point trajectories according to their underlying motions

[5, 19]. Specifically, the trajectory of the i-th feature point is

formed by stacking its spatial positions in the video, namely

xi = [xT
1,i,x

T
2,i, ..,x

T
F,i]

T ∈ R
2F . (34)

Then all the trajectories of a video can be represented by

a matrix X = [x1,x2, ...,xn]. Since the trajectories of a

rigid motion lie in an affine subspace of R2F of dimension

at most 3 [5], the feature trajectories of K rigid motions lie

in a union of K subspaces of R2F .

We adopt the Hopkins155 database [31] for this exper-

iment, which provides an extensive benchmark for testing

many subspace segmentation methods. The Hopkins155

database consists of 156 video sequences (hence 156 sub-

space clustering tasks), with 2 or 3 motions in each video.

The feature points are extracted and tracked across frames.

On average, each video of 2 motions has 266 trajectories

and 30 frames, while each video of 3 motions has 398 tra-

jectories and 29 frames. Some example frames are given

in Fig. 9, where the feature points from one moving object

are marked in the same color (bottom). For the motion seg-

mentation task, we adopt MWEE-S in (33) tailored for the

affine subspace, and compare it with LSR[24], SSC0 [4],

SSC1 [5], LRR [20], LRSC [9], L2-G [28], S3C[19]. The

difference between SSC0 and SSC1 is that SSC1 uses the

affine constraint ZT1 = 1, while SSC0 does not. For LSR,

we utilize the LSR1 implementation.

The first experiment is conducted on the original 2F -

dimensional data. Since the rank of each linear subspace

is at most 4 [5], we also do the experiment on the 4K-

dimensional data, where K is the number of motions in each

sequence. PCA is adopted for the dimension reduction. The

clustering results are summarized in Table 2, where we re-

port the average, median and standard deviation of the clus-

tering errors. Generally, the clustering error of each method

increases when the data dimension is reduced from 2F to

4K, due to the information loss. However, in both cases,

the proposed method significantly outperforms all the com-

peting algorithms, in terms of both the average clustering

error and standard deviation. This implies that modeling

the noise of trajectories with an i.p.i.d. source, other than

an i.i.d. Gaussian, indeed helps for motion segmentation.

6. Conclusions

This paper has presented a new robust SC approach via

the i.p.i.d. noise modeling. Different from the tradition-

al SC algorithms, our method makes neither the i.i.d. nor

Gaussianity assumptions on the noise. Based on the pro-

posed i.p.i.d. model, we have developed a novel optimiza-

tion criterion MWEE, which can well characterize the in-

herent information of the noise, despite it is structural or

purely random. Such desirable properties make the devel-

oped SC method very robust against various kinds of noise

encountered in practice. In fact, the proposed MWEE crite-

rion can be readily integrated into many learning systems,

which could provide better performance than the state-of-

the-art methods, as will be demonstrated in our future work.
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