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Abstract

Siamese network based trackers formulate tracking as

convolutional feature cross-correlation between a target

template and a search region. However, Siamese track-

ers still have an accuracy gap compared with state-of-the-

art algorithms and they cannot take advantage of features

from deep networks, such as ResNet-50 or deeper. In this

work we prove the core reason comes from the lack of strict

translation invariance. By comprehensive theoretical anal-

ysis and experimental validations, we break this restriction

through a simple yet effective spatial aware sampling strat-

egy and successfully train a ResNet-driven Siamese tracker

with significant performance gain. Moreover, we propose

a new model architecture to perform layer-wise and depth-

wise aggregations, which not only further improves the ac-

curacy but also reduces the model size. We conduct exten-

sive ablation studies to demonstrate the effectiveness of the

proposed tracker, which obtains currently the best results

on five large tracking benchmarks, including OTB2015,

VOT2018, UAV123, LaSOT, and TrackingNet.

1. Introduction

Visual object tracking has received increasing attention

over the last decades and has remained a very active re-

search direction. It has a large range of applications in di-

verse fields like visual surveillance [49], human-computer

interactions [27], and augmented reality [50]. Although

much progress has been made recently, it has still been com-

monly recognized as a very challenging task due to numer-

ous factors such as illumination variation, occlusion, and

background clutters, to name a few [48].

Recently, the Siamese network based trackers [42, 1,

16, 44, 43, 25, 45, 54, 46] have drawn much attention in

∗The first three authors contributed equally. Work done at SenseTime.

Project page: http://bo-li.info/SiamRPN++.

the community. These Siamese trackers formulate the vi-

sual object tracking problem as learning a general simi-

larity map by cross-correlation between the feature repre-

sentations learned for the target template and the search

region. To ensure tracking efficiency, the offline learned

Siamese similarity function is often fixed during the run-

ning time [42, 1, 16]. The CFNet tracker [43] and DSiam

tracker [12] update the tracking model via a running aver-

age template and a fast transformation module, respectively.

The SiamRNN tracker [25] introduces the region proposal

network [25] after the Siamese network and performs joint

classification and regression for tracking. The DaSiamRPN

tracker [54] further introduces a distractor-aware module

and improves the discrimination power of the model.

Although the above Siamese trackers have obtained out-

standing tracking performance, especially for the well-

balanced accuracy and speed, even the best performed

Siamese trackers, such as SiamPRN, the accuracy still has a

notable gap with the state-of-the-arts [5] on tracking bench-

marks like OTB2015 [48]. We observe that all these track-

ers have built their network upon architecture similar to

AlexNet [24] and tried several times to train a Siamese

tracker with more sophisticated architecture like ResNet

[15] yet with no performance gain. Inspired by this obser-

vation, we perform an analysis of existing Siamese trackers

and find the core reason comes from the destroy of the strict

translation invariance. Since the target may appear at any

position in the search region, the learned feature represen-

tation for the target template should stay spatial invariant,

and we further theoretically find that, among modern deep

architectures, only the zero-padding variant of AlexNet sat-

isfies this spatial invariance restriction.

To overcome this restriction and drive the Siamese

tracker with more powerful deep architectures, through ex-

tensive experimental validations, we introduce a simple

yet effective sampling strategy to break the spatial invari-

ance restriction of the Siamese tracker. We successfully
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train a SiamRPN [25] based tracker using the ResNet as

a backbone network and obtain significant performance im-

provements. Benefiting from the ResNet architecture, we

propose a layer-wise feature aggravation structure for the

cross-correlation operation, which helps the tracker to pre-

dict the similarity map from features learned at multiple

levels. By analyzing the Siamese network structure for

cross-correlations, we find that its two network branches are

highly imbalanced in terms of parameter number; therefore

we further propose a depth-wise separable correlation struc-

ture which not only greatly reduces the parameter number

in the target template branch, but also stabilizes the training

procedure of the whole model. In addition, an interesting

phenomena is observed that objects in the same categories

have high response on the same channels while responses of

the rest channels are suppressed. The orthogonal property

may also improve the tracking performance.

To summarize, the main contributions of this work are

listed below in fourfold:

• We provide a deep analysis of Siamese trackers and

prove that when using deep networks the decrease in

accuracy comes from the destroy of the strict transla-

tion invariance.

• We present a simple yet effective sampling strategy to

break the spatial invariance restriction which success-

fully trains Siamese tracker driven by a ResNet archi-

tecture.

• We propose a layer wise feature aggregation struc-

ture for the cross-correlation operation, which helps

the tracker to predict the similarity map from features

learned at multiple levels.

• We propose a depth-wise separable correlation struc-

ture to enhance the cross-correlation to produce multi-

ple similarity maps associated with different semantic

meanings.

Based on the above theoretical analysis and technical

contributions, we have developed a highly effective and

efficient visual tracking model which establishs a new

state-of-the-art in terms of tracking accuracy, while run-

ning efficiently at 35 FPS. The proposed tracker, referred

as SiamRPN++, consistently obtains the best tracking re-

sults on five of the largest tracking benchmarks, including

OTB2015 [48], VOT2018 [22], UAV123 [32], LaSOT [10],

and TrackingNet [31]. Furthermore, we propose a fast vari-

ant of our tracker using MobileNet[19] backbone that main-

tains competitive performance, while running at 70 FPS.

To facilitate further studies on the visual tracking direction,

we will release the source code and trained models of the

SiamRPN++ tracker.

2. Related Work

In this section, we briefly introduce recent trackers, with

a special focus on the Siamese trackers [42, 1]. Besides, we

also describe the recent developments of deep architectures.

Visual tracking has witnessed a rapid boost in the last

decade due to the construction of new benchmark datasets

[47, 48, 20, 22, 10, 31] and improved methodologies [17,

53, 6, 7, 18, 33, 9, 5, 45, 54, 51]. The standardized bench-

marks [47, 48, 10] provide fair testbeds for comparisons

with different algorithms. The annually held tracking chal-

lenges [23, 20, 21, 22] are consistently pushing forward

the tracking performance. With these advancements, many

promising tracking algorithms have been proposed. The

seminal work by Bolme et al. [3] introduces the Convo-

lution Theorem from the signal processing field into vi-

sual tracking and transforms the object template match-

ing problem into a correlation operation in the frequency

domain. Own to this transformation, the correlation fil-

ter based trackers gain not only highly efficient running

speed, but also increase accuracy if proper features are used

[17, 52, 53, 8, 6]. With the wide adoption of deep learning

models in visual tracking, tracking algorithms based on cor-

relation filter with deep feature representations [9, 5] have

obtained the state-of-the-art accuracy in popular tracking

benchmarks [47, 48] and challenge [23, 20, 21].

Recently, the Siamese network based trackers have re-

ceived significant attentions for their well-balanced track-

ing accuracy and efficiency [42, 1, 16, 44, 43, 13, 25, 45,

54, 46]. These trackers formulate visual tracking as a cross-

correlation problem and are expected to better leverage the

merits of deep networks from end-to-end learning. In or-

der to produce a similarity map from cross-correlation of

the two branches, they train a Y-shaped neural network that

joins two network branches, one for the object template

and the other for the search region. Additionally, these

two branches can remain fixed during the tracking phase

[42, 1, 16, 45, 25, 54] or updated online to adapt the appear-

ance changes of the target [44, 43, 13]. The currently state-

of-the-art Siamese trackers [25, 54] enhance the tracking

performance by a region proposal network after the Siamese

network and produce very promising results. However, on

the OTB benchmark [48], their tracking accuracy still leaves

a relatively large gap with state-of-the-art deep trackers like

ECO [5] and MDNet [33].

With the proposal of modern deep architecture AlexNet

by Krizhevsky et al. [24] in 2012, the studies of the net-

work architectures are rapidly growing and many sophis-

ticated deep architectures are proposed, such as VGGNet

[38], GoogleNet [39], ResNet [15] and MobileNet [19].

These deep architectures not only provide deeper under-

standing on the design of neural networks, but also push

forwards the state-of-the-arts of many computer vision tasks

like object detection [34], image segmentation [4], and hu-
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man pose estimation [40]. In deep visual trackers, the net-

work architecture usually contains no more than five con-

stitutional layers tailored from AlexNet or VGGNet. This

phenomenon is explained that shallow features mostly con-

tribute to the accurate localization of the object [35]. In

this work, we argue that the performance of Siamese track-

ers can significantly get boosted using deeper models if the

model is properly trained with the whole Siamese network.

3. Siamese Tracking with Very Deep Networks

The most important finding of this work is that the per-

formance of the Siamese network based tracking algorithm

can be significantly boosted if it is armed with much deeper

networks. However, simply training a Siamese tracker by

directly using deeper networks like ResNet does not obtain

the expected performance improvement. We find the under-

lying reason largely involves the intrinsic restrictions of the

Siamese trackers, Therefore, before the introduction of the

proposed SiamRPN++ model, we first give a deeper analy-

sis on the Siamese networks for tracking.

3.1. Analysis on Siamese Networks for Tracking

The Siamese network based tracking algorithms [42, 1]

formulate visual tracking as a cross-correlation problem and

learn a tracking similarity map from deep models with a

Siamese network structure, one branch for learning the fea-

ture presentation of the target, and the other one for the

search area. The target patch is usually given in the first

frame of the sequence and can be viewed as an exemplar z.

The goal is to find the most similar patch (instance) from

following frame x in a semantic embedding space φ(·):

f(z,x) = φ(z) ∗ φ(x) + b, (1)

where b is used to model the offset of the similarity value.

This simple matching function naturally implies two in-

trinsic restrictions in designing a Siamese tracker.

• The contracting part and the feature extractor used in

Siamese trackers have an intrinsic restriction for strict

translation invariance, f(z,x[△τj ]) = f(z,x)[△τj ],
where [△τj ] is the translation shift sub window opera-

tor, which ensures the efficient training and inference.
• The contracting part has an intrinsic restriction for

structure symmetry, i.e. f(z,x′) = f(x′, z), which is

appropriate for the similarity learning.

After detailed analysis, we find the core reason for pre-

venting Siamese tracker using deep network is related to

these two aspects. Concretely speaking, one reason is that

padding in deep networks will destroy the strict translation

invariance. The other one is that RPN requires asymmetri-

cal features for classification and regression. We will intro-

duce spatial aware sampling strategy to overcome the first

problem, and discuss the second problem in Sect. 3.4.
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Figure 1. Visualization of prior probabilities of positive samples

when using different random translations. The distributions be-

come more uniform after random translations within ±32 pixels.
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Figure 2. The impacts of the random translation on VOT dataset.

Strict translation invariance only exists in no padding

network such as modified AlexNet [1]. Previous Siamese

based Networks [1, 44, 43, 25, 54] are designed to be shal-

low to satisfy this restriction. However, if the employed

networks are replaced by modern networks like ResNet or

MobileNet, padding is inevitable to make the network go-

ing deeper, which destroys the strict translation invariance

restriction. Our hypothesis is that the violation of this re-

striction will lead to a spatial bias.

We test our hypothesis by simulation experiments on a

network with padding. Shift is defined as the max range of

translation generated by a uniform distribution in data aug-

mentation. Our simulation experiments are performed as

follows. First, targets are placed in the center with differ-

ent shift ranges (0, 16 and 32) in three sepreate training ex-

periments. After convergence, we aggregate the heatmaps

generated on test dataset and then visualize the results in

Fig. 1. In the first simulation with zero shift, the probabil-

ities on the border area are degraded to zero. It shows that

a strong center bias is learned despite of the appearances of

test targets. The other two simulations show that increasing

shift ranges will gradually prevent model collapse into this

trivial solution. The quantitative results illustrate that the

aggregated heatmap of 32-shift is closer to the location dis-

tribution of test objects. It proves that this sampling strategy

effectively alleviate the break of strict translation invariance

property caused by the networks with padding.

To avoid putting a strong center bias on objects, we train

SiamRPN with a ResNet-50 backbone by the spatial aware

sampling strategy via sampling the target by a uniform dis-

tribution on the search image. As shown in Fig. 2, the

performance with zero shift reduced to 0.14 on VOT2018,

a suitable shift (±64 pixels) is vital for training a deep

Siamese tracker.
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Figure 3. Illustration of our proposed framework. Given a target template and search region, the network ouputs a dense prediction by

fusion the outputs from multiple Siamese Region Proposal (SiamRPN) blocks. Each SiamRPN block is shown on right.

3.2. ResNetdriven Siamese Tracking

Based on the above analyses, the influence of center bias

can be eliminated. Once we eliminate the learning bias to

the center location, any off-the-shelf networks (e.g., Mo-

bileNet, ResNet) can be utilized to perform visual tracking

after transfer learning. Moreover, we can adaptively con-

struct the network topology and unveil the performance of

deep network for visual tracking.

In this subsection, we will discuss how to transfer a

deep network into our tracking algorithms. In particular,

we conduct our experiments mainly focusing on ResNet-50

[15]. The original ResNet has a large stride of 32 pixels,

which is not suitable for dense Siamese network prediction.

As shown in Fig.3, we reduce the effective strides at the

last two block from 16 pixels and 32 pixels to 8 pixels by

modifying the conv4 and conv5 block to have unit spatial

stride, and also increase its receptive field by dilated convo-

lutions [28]. An extra 1 × 1 convolution layer is appended

to each of block outputs to reduce the channel to 256.

Since the paddings of all layers are kept, the spatial

size of the template feature increases to 15, which imposes

a heavy computational burden on the correlation module.

Thus we crop the center 7 × 7 regions [43] as the template

feature where each feature cell can still capture the entire

target region.

Following [25], we use a combination of cross correla-

tion layers and fully convolutional layers to assemble a head

module for calculating classification scores (denoted by S)

and bounding box regressor (denoted by B). The Siamese

RPN blocks are denoted by P .

Furthermore, we find that carefully fine-tuning ResNet

will boost the performance. By setting learning rate of

ResNet extractor with 10 times smaller than RPN parts,

the feature representation can be more suitable for track-

ing tasks. Different from traditional Siamese approaches,

the parameters of the deep network are jointly trained in an

end-to-end fashion. To the best of our knowledge, we are

the first to achieve an end-to-end learning on a deep Siamese

Network (> 20 layers) for visual tracking.

3.3. Layerwise Aggregation

After utilizing deep network like ResNet-50, aggregating

different deep layers becomes possible. Intuitively, visual

tracking requires rich representations that span levels from

low to high, scales from small to large, and resolutions from

fine to coarse. Even with the depth of features in a convo-

lutional network, a layer in isolation is not enough: com-

pounding and aggregating these representations improve in-

ference of recognition and localization.

In the previous works which only use shallow networks

like AlexNet, multi-level features cannot provide very dif-

ferent representations. However, different layers in ResNet

are much more meaningful considering that the receptive

field varies a lot. Features from earlier layers will mainly

focus on low level information such as color, shape, are es-

sential for localization, while lacking of semantic informa-

tion; Features from latter layers have rich semantic informa-

tion that can be beneficial during some challenge scenarios

like motion blur, huge deformation. The use of this rich

hierarchical information is hypothesized to help tracking.

In our network, multi-branch features are extracted to

collaboratively infer the target localization. As for ResNet-

50, we explore multi-level features extracted from the last

three residual block for our layer-wise aggregation. We re-

fer these outputs as F3(z), F4(z), and F5(z), respectively.

As shown in Fig. 3, the outputs of conv3, conv4, conv5 are

fed into three Siamese RPN module individually.

Since the output sizes of the three RPN modules have the

same spatial resolution, weighted sum is adopted directly on

the RPN output. A weighted-fusion layer combines all the

outputs.

Sall =

5∑

l=3

αi ∗ Sl, Ball =

5∑

l=3

βi ∗ Bl. (2)
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Figure 4. Illustrations of different cross correlation layers. (a)

Cross Correlation (XCorr) layer predicts a single channel sim-

ilarity map between target template and search patches in

SiamFC [1]. (b) Up-Channel Cross Correlation (UP-XCorr) layer

outputs a multi-channel correlation features by cascading a heavy

convolutional layer with several independent XCorr layers in

SiamRPN [25]. (c) Depth-wise Cross Correlation (DW-XCorr)

layer predicts multi-channel correlation features between a tem-

plate and search patches.

The combination weights are separated for classification

and regression since their domains are different. The weight

is end-to-end optimized offline together with the network.

In contrast to previous works, our approach does not

explicitly combine convolutional features, but learn classi-

fiers and regressions separately. Note that with the depth

of the backbone network significantly increased, we can

achieve substantial gains from the sufficient diversity of

visual-semantic hierarchies.

3.4. Depthwise Cross Correlation

The cross correlation module is the core operation to em-

bed two branches information. SiamFC [1] utilizes a Cross-

Correlation layer to obtain a single channel response map

for target localization. In SiamRPN [25], Cross-Correlation

is extended to embed much higher level information such as

anchors, by adding a huge convolutional layer to scale the

channels (UP-Xcorr). The heavy up-channel module makes

seriously imbalance of parameter distribution (i.e. the RPN

module contains 20M parameters while the feature extrac-

tor only contains 4M parameters in [25]), which makes the

training optimization hard in SiamRPN.

In this subsection, we present a lightweight cross cor-

relation layer, named Depthwise Cross Correlation (DW-

1
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8
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2
2

2
th

2
2

6
th

Figure 5. Channels of depthwise correlation output in conv4.

There are totally 256 channels in conv4, however, only few of

them have high response during tracking. Therefore we choose

148th, 222th, 226th channels as demonstration, which are 2nd,

3rd, 4th rows in the figure. The first row contains six correspond-

ing search regions from OTB dataset [48]. Different channels rep-

resent different semantics, the 148th channel has high response on

cars, while has low response on persons and faces. The 222th and

226th channel have high response on persons and faces, respec-

tively.

XCorr), to achieve efficient information association. The

DW-XCorr layer contains 10 times fewer parameters than

the UP-XCorr used in SiamRPN while the performance is

on par with it.

To achieve this, a conv-bn block is adopted to adjust fea-

tures from each residual blocks to suit tracking task. Cru-

cially, the bounding box prediction and anchor based clas-

sification both are asymmetrical, which is different from

SiamFC (See Sect. 3.1). In order to encode the difference,

the template branch and search branch pass two non-shared

convolutional layers. Then two feature maps with the same

number of channels do the correlation operation channel by

channel. Another conv-bn-relu block is appended to fuse

different channel outputs. Finally, the last convolution layer

for the output of classification or regression is appended.

By replacing cross-correlation to depthwise correlation,

we can greatly reduce the computational cost and the mem-

ory usage. In this way, the numbers of parameters on the

template and the search branches are balanced, resulting the

training procedure more stable.

Furthermore, an interesting phenomena is illustrated in

Fig.5. The objects in the same category have high response

on same channels (car in 148th channel, person in 222th
channel, and face in 226th channel), while responses of the

rest channels are suppressed. This property can be compre-

hended as the channel-wise features produced by the depth-

wise cross correlation are nearly orthogonal and each chan-

nel represents some semantic information. We also analyze

the heatmaps when using the up-channel cross correlation

and the reponse maps are less interpretable.
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4. Experimental Results

4.1. Training Dataset and Evaluation

Training. The backbone network of our architecture [15]

is pre-trained on ImageNet [37] for image labeling, which

has proven to be a very good initialization to other

tasks [14, 28]. We train the network on the training

sets of COCO [26], ImageNet DET [37], ImageNet VID,

and YouTube-BoundingBoxes Dataset [36] and to learn a

generic notion of how to measure the similarities between

general objects for visual tracking. In both training and test-

ing, we use single scale images with 127 pixels for template

patches and 255 pixels for searching regions.

Evaluation. We focus on the short-term single object track-

ing on OTB2015 [48], VOT2018 [22] and UAV123 [32].

We use VOT2018-LT [22] to evaulate the long-term setting.

In the long-term tracking, the object may leave the field of

view or become fully occluded for a long period, which are

more challenging than short-term tracking. We also analyze

the generalization of our method on LaSOT [10] and Track-

ingNet [31], two of the recent largest benchmarks for single

object tracking.

4.2. Implementation Details

Network Architecture. In experiments, we follow [54]

for the training and inference settings. We attach two sib-

ling convolutional layers to the stride-reduced ResNet-50

(Sect. 3.2) to perform proposal classification and bounding

box regression with 5 anchors. Three randomly initialized

1 × 1 convolutional layers are attached to conv3, conv4,

conv5 for reducing the feature dimension to 256.

Optimization. SiamRPN++ is trained with stochastic gra-

dient descent (SGD). We use synchronized SGD over 8

GPUs with a total of 128 pairs per minibatch (16 pairs per

GPU), which takes 12 hours to converge. We use a warmup

learning rate of 0.001 for first 5 epoches to train the RPN

braches. For the last 15 epoches, the whole network is

end-to-end trained with learning rate exponentially decayed

from 0.005 to 0.0005. Weight decay of 0.0005 and momen-

tum of 0.9 are used. The training loss is the sum of classifi-

cation loss and the standard smooth L1 loss for regression.

4.3. Ablation Experiments

Backbone Architecture. The choice of feature extractor is

crucial as the number of parameters and types of layers di-

rectly affect memory, speed, and performance of the tracker.

We compare different network architectures for the visual

tracking. Fig. 6 shows the performance of using AlexNet,

ResNet-18, ResNet-34, ResNet-50, and MobileNet-v2 as

backbones. We report performance by Area Under Curve

(AUC) of success plot on OTB2015 with respect to the top1

accuracy on ImageNet. We observe that our SiamRPN++

can benefit from deeper ConvNets.

56 57 58
0.66

0.67

0.68

0.69

0.70

A
U

C

AlexNet

66 68 70 72 74 76 78
Top 1 Acc (%)

Res34

Res50

MobileNetv2Res18

Top1 Acc vs AUC on OTB2015

Figure 6. The Top-1 accuracy on ImageNet vs. AUC score on

OTB2015.

BackBone L3 L4 L5 Finetune Corr VOT2018 OTB2015

AlexNet
UP 0.332 0.658

DW 0.355 0.666

ResNet-50
✓ ✓ ✓ UP 0.371 0.664

✓ ✓ ✓ ✓ UP 0.390 0.684

ResNet-50

✓ ✓ DW 0.331 0.669

✓ ✓ DW 0.374 0.678

✓ ✓ DW 0.320 0.646

✓ ✓ ✓ DW 0.346 0.677

✓ ✓ ✓ DW 0.336 0.674

✓ ✓ ✓ DW 0.383 0.683

ResNet-50
✓ ✓ ✓ DW 0.395 0.673

✓ ✓ ✓ ✓ DW 0.414 0.696

Table 1. Ablation study of the proposed tracker on VOT2018

and OTB2015. L3, L4, L5 represent conv3,conv4,conv5, respec-

tively. Finetune represents whether the backbone is trained offline.

Up/DW means Up channel correlation and depthwise correlation.

Table 1 also illustrates that by replacing AlexNet to

ResNet-50, the performance improves a lot on VOT2018

dataset. Besides, our experiments shows that finetuning the

backbone part is critical, which yields a great improvement

on tracking performance.

Layer-wise Feature Aggregation. To investigate the im-

pact of layer-wise feature aggregation, first we train three

variants with single RPN on ResNet-50. We empirically

found that conv4 alone can achieve a competitive perfor-

mance with 0.374 in EAO, while deeper layer and shal-

lower layer perform with 4% drops. Through combining

two branches, conv4 and conv5 gains improvement, how-

ever no improvement is observed on the other two combi-

nations. Even though, the robustness has increased 10%,

which is the key vulnerability of our tracker. It means that

our tracker still has room for improvement. After aggregat-

ing all three layers, both accuracy and robustness steadily

improve, with gains between 3.1% and 1.3% for VOT and

OTB. In total, layer-wise feature aggregation yields a 0.414
EAO score on VOT2018, which is 4.0% higher than that of

the single layer baseline.

Depthwise Correlation. We compare the original Up-

Channel Cross Correlation layer with the proposed Depth-

wise Cross Correlation layer. As shown in the Table 1, the

proposed depthwise correlation gains 2.3% improvement

on VOT2018 and 0.8% improvement on OTB2015, which

4287



DLSTpp DaSiamRPN SA Siam R CPT DeepSTRCF DRT RCO UPDT SiamRPN MFT LADCF Ours

EAO ↑ 0.325 0.326 0.337 0.339 0.345 0.356 0.376 0.378 0.383 0.385 0.389 0.414

Accuracy ↑ 0.543 0.569 0.566 0.506 0.523 0.519 0.507 0.536 0.586 0.505 0.503 0.600

Robustness ↓ 0.224 0.337 0.258 0.239 0.215 0.201 0.155 0.184 0.276 0.140 0.159 0.234

AO ↑ 0.495 0.398 0.429 0.379 0.436 0.426 0.384 0.454 0.472 0.393 0.421 0.498

Table 2. Comparison with the state-of-the-art in terms of expected average overlap (EAO), robustness, and accuracy on the VOT2018.
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Precision plots of OPE on OTB2015

(b) Precision Plot

Figure 7. Success and precision plots show a comparison of our

tracker with state-of-the-art trackers on the OTB2015 dataset.

demonstrates the importance of depthwise correlation. This

is partly beacause a balanced parameter distribution of the

two branches makes the learning process more stable, and

converges better.

4.4. Comparison with the stateoftheart

OTB-2015 Dataset. The standardized OTB benchmark

[48] provides a fair testbed on robustness. The Siamese

based tracker formulate the tracking as one-shot detection

task without any online update, thus resulting in inferior

performance on this no-reset setting benchmark. However,

we identify the limited representation from the shallow net-

work as the primary obstacle preventing Siamese based

tracker from surpassing top-performing methods, such as

C-COT variants [9, 5].

We compare our SiamRPN++ tracker on the OTB2015

with the state-of-the-art trackers. Fig. 7 shows that our

SiamRPN++ tracker produces leading result in overlap suc-

cess. Compared with the recent DaSiamRPN [54], our

SiamRPN++ improves 3.8% in overlap and 3.4% in pre-

cision from the considerably increased depth. Represen-

tations extracted from deep ConvNets are less sensitive to

illumination and background clutter. And to the best of our

knowledge, this is the first time that Siamese tracker can

obtain the comparable performance with the state-of-the-art

tracker on OTB2015 dataset.

VOT2018 Dataset. We test our SiamRPN++ tracker on

the lastest VOT-2018 dataset [22] in comparison with 10

state-of-the-art methods. The VOT-2018 public dataset is

one of the most recent datasets for evaluating online model-

free single object trackers, and includes 60 public sequences

with different challenging factors. Following the evalua-

tion protocol of VOT-2018, we adopt the Expected Aver-

age Overlap (EAO), Accuracy(A) and Robustness(R) and

no-reset-based Average Overlap(AO) to compare different
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Figure 8. A comparison of the quality and the speed of state-of-

the-art tracking methods on VOT2018. We visualize the Expected

Average Overlap (EAO) with respect to the Frames-Per-Seconds

(FPS). Note that the FPS axis is in the log scale. Two of our vari-

ants, which replace ResNet-50 backbone with ResNet-18 (Ours-

res18) and MobileNetv2 (Ours-mobile), respectively.

trackers. The detailed comparisons are reported in Table 2.

From Table 2, we observe that the proposed SiamRPN++

method achieves the top-ranked performance on EAO, A

and AO criteria. Especially, our SiamRPN++ tracker out-

performs all existing trackers, including the VOT2018 chal-

lenge winner. Compared with the best tracker in the

VOT2018 challenge (LADCF [22]), the proposed method

achieves a performance gain of 2.5%. In addition, our

tracker achieves a substantial improvement over the chal-

lenge winner (MFT [22]), with a gain of 9.5% in accuracy.

In comparison with the baseline tracker DaSiamRPN,

our approach yields substantial gains of 10.3% on robust-

ness, which is the common vulnerability of the Siamese

Network based tracker against correlation filters method.

Even though, due to the lack of adaptation to the template,

the robustness still has a gap with the state-of-art correlation

filters methods [2] which relies on the online updating.

The One Pass Evaluation (OPE) is also adopted to eval-

uate trackers and the AO values are reported to demon-

strate their performance. From the last row in Table 2,

we can observe that our method achieves comparable per-

formance compared to the DLSTpp [22] and improves the

DaSiamRPN [54] method by an absolute gain of 10.0%.

Accuracy vs. Speed. In Fig. 8, we visualize the EAO

on VOT2018 with respect to the Frames-Per-Second (FPS).

The reported speed is evaluated on a machine with an

NVIDIA Titan Xp GPU, other results are provided by the

VOT2018 official results. From the plot, our SiamRPN++

achieves best performance, while still running at realtime

speed(35 FPS). It is worth noting that two of our variants

achieve nearly the same accuracy as SiamRPN++, while

running at more than 70 FPS, which makes these two vari-

ants highly competitive.
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Figure 9. Long-term tracking performance. The average track-

ing precision-recall curves (left), the corresponding F-score curves

(right). Tracker labels are sorted according to the F-score.
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Figure 10. Evaluation results of trackers on UAV123.

VOT2018 Long-term Dataset. In the latest VOT2018

challenge, a long-term experiment are newly introduced. It

is composed of 35 long sequences, where targets may leave

the field of view or become fully occluded for a long period.

The performance measures are precision, recall and a com-

bined F-score. We report all these metrics compared with

the state-of-the-art trackers [41, 11] on VOT2018-LT.

As shown in the Fig. 9, after equipping our tracker with

the long term strategy, SiamRPN++ obtains 2.2% gain from

DaSiam LT, and outperforms the best tracker by 1.9% in F-

score. The powerful feature extracted by ResNet improves

both TP and TR by 2% absolutely from our baseline DaSi-

amRPN. Meanwhile, the long term version of SiamRPN++

is still able to run at 21 FPS, which is nearly 8 times faster

than MBMD [22], the winner of VOT2018-LT.

UAV123 Dataset. UAV123 dataset includes 123 se-

quences with average sequence length of 915 frames. Be-

sides the recent trackers in [30], ECO [5], ECO-HC [5],

DaSiamRPN [54], SiamRPN [25] are added on compari-

son. Fig. 10 illustrates the precision and success plots of

the compared trackers. Specifically, our tracker achieves

a success score of 0.613, which outperforms DaSiamRPN

(0.586) and ECO (0.525) with a large margin.

LaSOT Dataset. To further validate the proposed frame-

work on a larger and more challenging dataset, we conduct

experiments on LaSOT [10]. The LaSOT dataset provides

a large-scale, high-quality dense annotations with 1,400

videos in total and 280 videos in the testing set. Fig. 11 re-

ports the overall performances of our SiamRPN++ tracker

on LaSOT testing set. Without bells and whistles, our

SiamRPN++ model is sufficient to achieve state-of-the-art
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Figure 11. Evaluation results of trackers on LaSOT.

CSRDCF
[29]

ECO
[5]

SiamFC
[1]

CFNet
[43]

MDNet
[33]

DaSiamRPN
[54]

Ours

AUC (%) 53.4 55.4 57.1 57.8 60.6 63.8 73.3

P (%) 48.0 49.2 53.3 53.3 56.5 59.1 69.4

Pnorm (%) 62.2 61.8 66.3 65.4 70.5 73.3 80.0

Table 3. State-of-the-art comparison on the TrackingNet test set

in terms of success, precision, and normalized precision.

AUC score of 49.6%. Specifically, SiamRPN++ increases

the normalized distance precision and AUC relatively by

23.7% and 24.9% over MDNet [33], which is the best

tracker reported in the original paper.

TrackingNet Dataset. The recently released Track-

ingNet [31] provides a large amount of data to assess track-

ers in the wild. We evaluate SiamRPN++ on its test

set with 511 videos. Following [31], we use three met-

rics success (AUC), precision (P) and normalized precision

(Pnorm) for evaluation. Table 3 demonstrates the compar-

ison results to trackers with top AUC scores, showing that

SiamRPN++ achieves the best results on all three metrics.

In specific, SiamRPN++ obtains the AUC score of 73.3%,

P score of 69.4% and Pnorm score of 80.0%, outperforming

the second best tracker DaSiamRPN [54] with AUC score

of 63.8%, P score of 59.1% and Pnorm score of 73.4% by

9.5%, 10.3% and 6.6%, respectively.

In summary, it is important to note that all these consis-

tent results show the generalization ability of SiamRPN++.

5. Conclusions

In this paper, we have presented a unified framework, re-

ferred as SiamRPN++, to end-to-end train a deep Siamese

network for visual tracking. We show theoretical and empir-

ical evidence that how to train a deep network on Siamese

tracker. Our network is composed of a multi-layer aggrega-

tion module which assembles the hierarchy of connections

to aggregate different levels of representation and a depth-

wise correlation layer which allows our network to reduce

computation cost and redundant parameters while also lead-

ing to better convergence. Using SiamRPN++, we obtained

state-of-the-art results on the VOT2018 in real-time, show-

ing the effectiveness of SiamRPN++. SiamRPN++ also

acheived state-of-the-art results on large datasets like La-

SOT and TrackingNet showing its generalizability.
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