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Abstract

Numerous single image deraining algorithms have been

recently proposed. However, these algorithms are mainly

evaluated using certain type of synthetic images, assuming

a specific rain model, plus a few real images. It is thus

unclear how these algorithms would perform on rainy im-

ages acquired “in the wild” and how we could gauge the

progress in the field. This paper aims to bridge this gap.

We present a comprehensive study and evaluation of exist-

ing single image deraining algorithms, using a new large-

scale benchmark consisting of both synthetic and real-

world rainy images of various rain types. This dataset high-

lights diverse rain models (rain streak, rain drop, rain and

mist), as well as a rich variety of evaluation criteria (full-

and no-reference objective, subjective, and task-specific)

Our evaluation and analysis indicate the performance gap

between synthetic rainy images and real-world images and

allow us to better identify the strengths and limitations of

each method as well as future research directions.

1. Introduction

Images captured in rainy days suffer from noticeable

degradation of scene visibility. The goal of single image de-

raining algorithms is to generate sharp images from a rainy

image input. Image deraining can potentially benefit both

the human visual perception quality of images, and many

computer vision applications, such as outdoor surveillance

systems and intelligent vehicles.

The recent years have witnessed significant progress in

single image deraining. The progress in this field can be

attributed to various natural image priors [1, 2, 3, 4, 5] and

deep convolutional neural network (CNN)-based models [6,

7, 8]. However, a fair comprehensive study of the problem,

the existing algorithms, and the performance metrics have

been absent so far, which is the goal of this paper.

∗The first two authors contributed equally.
†indicates corresponding author.

1.1. Rainy Image Formulation Models

As a complicated atmospheric process, rain could cause

several different types of visibility degradations, due to a

magnitude of environmental factors including raindrop size,

rain density, and wind velocity [9]. When a rainy image is

taken, the visual effects of rain on that digital image further

hinges on many camera parameters, such as exposure time,

depth of field, and resolution [10]. Most existing deraining

works assume one rain model (usually rain streak), which

might have oversimplified the problem. We group existing

rain models in literature into three major categories: rain

streak, raindrop, as well as rain and mist.

A rain streak image Rs can be modeled as a linear super-

imposition of the clean background scene B and the sparse,

line-shape rain streak component S:

Rs = B+ S. (1)

Rain streaks S accumulated throughout the scene reduce the

visibility of the background B. This is the most common

model assumed by the majority of deraining algorithms.

Adherent raindrops [11] that fall and flow on camera

lenses or a window glasses can obstruct and/or blur the

background scenes. The raindrop degraded image Rd can

be modeled as the combination of the clean background B,

and the blurry or obstruction effect of the raindrops D in

scattered, small-sized local coherent regions:

Rd = (1−M)⊙B+D. (2)

M is a binary mask and ⊙ means element-wise multiplica-

tion. In the mask, a pixel x is part of a raindrop region if

M(x) = 1, and otherwise belongs to the background.

Further, rainy images often contain both rain and mist

in real cases [12]. In addition, distant rain streaks accumu-

lated throughout the scene reduce the visibility in a manner

more similarly to fog, creating a mist-like phenomenon in

the image background. Concerning this, we can define the

rain and mist model for the captured image Rm, based on
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Figure 1. Example images from the MPID dataset. The proposed dataset contains both synthetic and real-wold rainy images of rain streak,

raindrops, and rain & mist. In addition, we also annotate two sets of real-world images with object bounding boxes from autonomous

driving and video surveillance scenarios.

a composition of the rain streak model and the atmospheric

scattering haze model [13]:

Rm = B⊙ t+A (1− t) + S, (3)

where S is the rain streak component; t and A are the

transmission map and atmospheric light that determines the

fog/mist component, respectively.

1.2. Our Contribution

Regardless of what rain models to follow, image derain-

ing is a heavily ill-posed problem. Despite many impres-

sive methods published in recent few years, the lack of a

large dataset and algorithm benchmarking makes it difficult

to evaluate the progress made, and how practically useful

those algorithms are. There are several unclear and unsatis-

factory aspects of current deraining algorithm development,

including but not limited to: i) the modeling of rain is over-

simplified, i.e., each method considers and is evaluated with

one type of rain only, e.g., rain streak; ii) most quantitative

results are reported on synthetic images, which often fail to

capture the complexity and characteristics of real rain; iii)

as a result of the last point, the evaluation metrics have been

mostly limited to (the full-reference) PSNR and SSIM for

image restoration purposes. They may become poorly re-

lated when it comes to other task purposes, such as human

perception quality [14] or computer vision utility [15].

In this paper, we aim to systematically evaluate state-

of-the-art single image deraining methods, in a comprehen-

sive and fair setting. To this end, we construct a large-

scale benchmark, called Multi-Purpose Image Deraining

(MPID). An overview of MPID could be found in Table 1,

and image examples are displayed in Figure 1. Compared

with existing synthetic sets, the MPID dataset covers a

much larger diversity of rain models (rain streak, raindrop,

and rain and mist), including both synthetic and real-world
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images for evaluation, and featuring diverse contents and

sources (for real rainy images). In addition, as the first-of-

its-kind efforts in image deraining, we have annotated two

sets of real-world rainy images with object bounding boxes

from autonomous driving and video surveillance scenarios,

respectively, for task-specific evaluation.

Using the MPID benchmark, we evaluate six state-of-

the-art single image deraining algorithms. We adopt a

wide range of full-reference metrics (PSNR and SSIM), no-

reference metrics (NIQE, BLIINDS-II, and SSEQ), as well

as human subjective scores to thoroughly examine the per-

formance of image deraining methods. A human subjec-

tive study is also conducted. Furthermore, as image derain-

ing might be expected as a preprocessing step for mid- and

high-level computer vision tasks, we also evaluate current

algorithms in terms of their impact on subsequent object

detection tasks, as a “task-specific” evaluation criterion. We

reveal the performance gap in various aspects, when these

algorithms are applied on synthetic and real images. By

extensively comparing the state-of-the-art single image de-

raining algorithms on the MPID dataset, we gain insights

into new research directions for image deraining.

2. Related Work

2.1. Overview of Deraining Algorithms

Multi-frame based approaches: Early methods often re-

quire multiple frames to deal with the deraining problem

[4, 16, 17, 18, 19, 5, 20, 11]. Garg and Nayar [21] proposed

a rain streak detection and removal method from a video by

taking the average intensity of the detected rain streaks from

the previous and subsequent frames. [10] further improved

the performance by selecting camera parameters without

appreciably altering the scene appearance. However, those

methods are not applicable to single image deraining.

Prior based algorithms: Many deraining methods capi-

talize on clean image or rain type priors to remove rain

[22, 1, 23, 24, 25]. Kang et al. [2] decomposed an input

image into its low and high frequency components. Then

they separated the rain streak frequencies from the high fre-

quency layer via sparse coding. Zhu et al. [26] introduced a

rain removal method based on the prior that rain streaks typ-

ically span a narrow range of directions. Chen and Hsu [3]

decomposed the background and rain streak layers based

on low-rank priors. Li et al. [27] use patch-based priors

for both the clean background and rain layers in the form

of Gaussian mixture models. All of the above approaches

rely on good (and relatively simple) crafted priors. As a re-

sult, they tend to have unsatisfactory performances on real

images with complicated scenes and rain forms.

Data-driven CNN models: Recently, CNNs have achieved

dominant success for image restoration [28, 29] including

single image deraining [30, 31]. Fu et al. [6] proposed a

deep detail network (DDN) for removing rain from single

images with detailed preserved. Yang et al. [32] presented

a CNN based method to jointly detect and remove rain

streaks, using a multi-stream network to capture the rain

streak component. A density-aware multi-stream densely

connected convolutional neural network was introduced in

[8] for joint rain density estimation and image deraining.

Qian et al. [7] addressed a different problem of removing

raindrops from single images, using visual attention with a

generative adversarial network (GAN). Despite the progress

of deep-learning-based approaches compared with prior-

based rain removal methods, their performance hinge on the

synthetic training data, which may become problematic if

real rainy images show a domain mismatch.

2.2. Datasets

Several datasets were used to measure and compare the

performance of image deraining algorithms. Li et al. [27]

introduced a set of 12 images using photo-realistic render-

ing techniques. Zhang et al. [33] synthesized a set of train-

ing and testing images with rain streak, using the same way

in [27]. The training set consists of 700 images and the

testing set consists of 100 images. In addition, [33] also

collects a dataset of 50 real-world rainy images downloaded

from the web for qualitative visual comparison. [7] released

a set of clean and rain-drop corrupted image pairs, using a

special lens equipment. However, existing datasets are ei-

ther too small in scale and limited to one rain type (streak or

drop), or lack sufficient real-world images for diverse eval-

uations. Besides, none of them has any semantic annotation

nor consider any subsequent task performance.

3. New Benchmark: Multi-Purpose Image De-

raining (MPID)

We present a new benchmark as a comprehensive plat-

form, for evaluating single image deraining algorithms from

a variety of perspectives. Our evaluation angles range from

traditional PSNR/SSIM, to no-reference perception-driven

metrics and human subjective quality, to “task-driven met-

rics” [15, 34] indicating how well a target computer vi-

sion task can be performed on the derained images. Fitting

those purposes, we generate/collect images in large scale,

from both synthesis and real world sources, covering di-

verse real-life scenes, and annotate them when needed. The

new benchmark, dubbed Multi-Purpose Image Deraining

(MPID), is introduced below in details. An overview of

MPID can be found in Table 1.

3.1. Training Sets: Three Synthesis Models

Following the three rain models in Section 1.1, we cre-

ate three training sets, named Rain streak (T), Rain drop

(T) and Rain and mist (T) sets (T short for “training”), re-

spectively. All three sets are synthesized in controlled set-
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Table 1. Overview of the proposed MPID dataset.

Training Set

Subset Number of Images Real/synthetic Annotations Metrics

Rain streak (T) 2400 (pairs) synthetic No /
Raindrop (T) 861 (pairs) synthetic No /
Rain and mist (T) 700 (pairs) synthetic No /

Testing Set

Subset Number of Images Real/synthetic Annotations Metrics

Rain streak (S) 200 (pairs) synthetic No PSNR, SSIM, NIQE, BLIINDS-II, SSEQ

Rain streak (R) 50 real No NIQE, BLIINDS-II, SSEQ

Raindrop (S) 149 (pairs) synthetic No PSNR, SSIM, NIQE, BLIINDS-II, SSEQ

Raindrop (R) 58 real No NIQE, BLIINDS-II, SSEQ

Rain and mist (S) 70 (pairs) synthetic No PSNR, SSIM, NIQE, BLIINDS-II, SSEQ

Rain and mist (R) 30 real No NIQE, BLIINDS-II, SSEQ

Task-Driven Evaluation Set

Subset Number of Images Real/synthetic Annotations Metrics

RID 2496 real Yes (bounding boxes) mAP

RIS 2048 real Yes (bounding boxes) mAP

tings from clean images.1. All clean images used are col-

lected from the web, and we specifically pick those outdoor

rain-free, haze-free photos taken in cloudy daylight, so that

the synthesized rainy images look more realistic in terms of

lighting condition (for example, there will be no rainy photo

in a sunny daylight background).

The Rain streak (T) set contains 2,400 pairs of clean and

rainy images, where the rainy images are generated from the

clean ones using (1), with the identical protocol and hyper-

parameters to [27, 33]. The Rain drop (T) set was borrowed

from [7]’s released training set consisting of 861 pairs of

clean and rain-drop corrupted images, upon their authors’

consent. The Rain and mist (T) set is synthesized by first

adding haze using the atmospheric scattering model: for

each clean image, we estimate depth using the algorithm in

[35, 36] as recommended by [37], set different atmospheric

lights A by choosing each channel uniformly randomly be-

tween [0.7, 1.0], and select β uniformly at random between

[0.6, 1.8]. Then from the synthesized hazy version, we fur-

ther add rain streaks in the same way as Rain streak (T). We

end up with 700 pairs for the Rain and mist (T) set.

3.2. Testing Sets: From Synthetic To Real

Corresponding to three training sets, we generate three

synthetic testing set in the same way: denoted as Rain streak

(S), Rain drop (S), and Rain and mist (S) (S short for “syn-

thetic testing”), consisting of 200, 149, and 70 pairs, re-

spectively. On each testing set, we evaluate the restoration

performance of deraining algorithms, using classical PSNR

and SSIM metrics. Further, to predict the derained image’s

perceptual quality to human viewers, we introduce the us-

age of three no-reference IQA models: Naturalness Image

Quality Evaluator (NIQE) [38], spatial-spectral entropy-

based quality (SSEQ) [39], and blind image integrity no-

tator using DCT statistics (BLIINDS-II) [40], to comple-

ment the shortness of PSNR/SSIM. NIQE is a well-known

1Note that for Rain drop (T), the data generation used physical simula-

tion [7] , i.e., with/without lens, rather than algorithm simulation.

no-reference image quality score to indicate the perceived

“naturalness” of an image: a smaller score indicates better

perceptual quality. The score of SSEQ and BLIINDS-II that

we used range from 0 (worst) to 100 (best).2

Besides the three above synthetic test sets, we col-

lect three sets of real-world images, that fall into each of

three defined rain categories, to evaluate the deraining algo-

rithms’ real-world generalization. The three sets, denoted

as Rain streak (R), Raindrop (R), and Rain and mist (R) (R

short for “real-world testing”), are collected from the Inter-

net and are carefully inspected to ensure that images in each

set fit the pre-defined rain type well. Due to the unavailabil-

ity of ground truth clean images in real world, we evaluate

NIQE, SSEQ, and BLIINDS-II on the three real-world sets.

In addition, we also pick a small set of real-world images

for human subjective rating of derained results.

3.3. TaskDriven Evaluation Sets

As pointed out by several recent works [41, 15, 42, 43],

the performance of high-level computer vision tasks, such

as object detection and recognition, will deteriorate in the

presence of various sensory and environmental degrada-

tions. While deraining could be used as pre-processing for

many computer vision tasks executed in the rainy condi-

tions, there has been no systematical study on deraining

algorithms’ impact on those target tasks. We consider the

resulting task performance after deraining as an indirect in-

dicator of the deraining quality. Such a “task-driven” eval-

uation way has received little attention and can have great

implications for outdoor applications.

To conduct such task-driven evaluations, realistic anno-

tated datasets are necessary. To our best knowledge, there

has been no dataset available serving the purpose of evaluat-

2Note that in [39] and [40], a smaller SSEQ/BLIINDS-II score indi-

cates better perceptual quality. We reverse the two scores (100 minus) to

make their trends look consistent to full-reference metrics: in our tables

the bigger the two values, the better the perceptual quality. We did not do

the same to NIQE, because NIQE has no bounded maximum value.
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Table 2. Object Statistics in RID and RIS sets.
Categories Car Person Bus Bicycle Motorcycle

RID Set 7332 1135 613 268 968

Categories Car Person Bus Truck Motorcycle

RIS Set 11415 2687 488 673 275

ing deraining algorithms in task-driven ways. We therefore

collect two sets by our own: a Rain in Driving (RID) set

collected from car-mounted cameras when driving in rainy

weathers, and a Rain in surveillance (RIS) set collected

from networked traffic surveillance cameras in rainy days.

For either set, we annotate object bounding boxes, and

evaluate object detection performance after applying de-

raining. A summary with object statistics on both RID and

RIS sets can be found in Table 2. The two sets differ in

many ways: rain type, image quality, object size and an-

gle, and so on. They are representative of real application

scenarios where deraining may be desired.

Rain in Driving (RID) Set This set contains 2,495 real

rainy images from high-resolution driving videos. As we

observe, its rain effect is closest to “raindrops” on camera

lens. They were captured in diverse real traffic locations and

scenes during multiple drives. We label bounding boxes for

selected traffic objects: car, person, bus, bicycle, and mo-

torcycle, that commonly appear on the roads of all images.

Most images are of 1920 × 990 resolution, with a few ex-

ceptions of 4023 × 3024 resolution.

Rain in Surveillance (RIS) Set This set contains 2,048

real rainy images from relatively lower-resolution surveil-

lance video cameras. They were extracted from a total of

154 surveillance cameras in daytime, ensuring diversity in

content (for example, we do not consider frames too close in

time). As we observe, its rain effect is closest to “rain and

mist” (many cameras have mist condensation during rain,

and the low resolution will also cause more foggy effects).

We selected and annotated the most common objects in the

traffic surveillance scenes: car, person, bus, truck, and mo-

torcycle. The vast majority of cameras have the resolution

of 640 × 368, with a few exceptions of 640 × 480.

4. Experimental Comparison

We evaluate six representative state-of-the-art algorithms

on MPID: Gaussian mixture model prior (GMM) [27],

JOint Rain DEtection and Removal (JORDER) [32], Deep

Detail Network (DDN) [6], Conditional Generative Adver-

sarial Network (CGAN) [33], Density-aware Image De-

raining method using a Multistream Dense Network (DID-

MDN) [8], and DeRaindrop [7]. All except GMM are state-

of-the-art CNN-based deraining algorithms.

Evaluation Protocol. The first five models are specifically

developed for removing rain streaks, while the last one tar-

gets at removing rain drops. Therefore, we compare them

for rain streak sets. Since DeRaindrop is the only recent

published method for raindrop removal, to provide more

baselines for its performance, we also re-train and eval-

uate the other five models on the raindrop sets. Finally,

since no published method was targeted for removing rain

and mist together, we create a cascaded pipeline, by first

running each of the five rain streak removal algorithms,

followed by feeding into a pre-trained MSCNN dehazing

network [28]. MSCNN was chosen because recent dehaz-

ing studies [15, 48] endorsed it both to produce the best

human-favorable, artifact-free dehazing results, and to ben-

efit subsequent high-level task in haze most. Such cascaded

pipeline can be tuned from end to end, and we freeze the

MSCNN part during tuning in order to focus on compar-

ing deraining components. All models will be re-trained on

the corresponding MPID training set, when evaluated on a

certain rain type.

4.1. Objective Comparison

We first compare the derained results on the synthetic

images using two full-reference (PSNR and SSIM) and

three no-reference metrics (NIQE, SSEQ, and BLIINDS-

II). As seen from Table 3, the results have high consensus

levels on synthetic data. First, DDN is the obvious winner

on the rain streak (S) set, followed by JORDER; the same

two methods also perform consistently the best on the rain

and mist (S) set. Second, DerainDrop performs the best

on the rain drop (S) set, especially significantly surpass-

ing the others in terms of PSNR and SSIM, showing that

its specific structure indeeds suits this problem. Other rain

streak removal models seem to even hurt PSNR, SSIM and

BLINDS-II, compared to the degraded images.

The effectiveness of the winners can be ascribed to the

two-step strategy of rain detection and removal. We note

that DDN focuses on high frequency details during train-

ing stage, while JORDER also first detects the locations of

rain streak, then removes rain based on the estimated rain

streak regions. Coincidentally, DeRaindrop also uses an at-

tentive generative network to generate raindrops mask first

then derain images capitalizing on the masks. Therefore,

removing background interference and attentively focusing

on rain regions seem to be the main reason of the winners.

We then show the derained results on the real-world im-

ages in Table 4, using three no-reference metrics (NIQE,

SSEQ, and BLIINDS-II). The rain streak (R) and raindrop

(R) sets show consistent results with their synthetic cases:

JORDER and DDN rank top-two on the former, while De-

rainDrop still dominates on the raindrop set. However,

some different tendency is observed on the rain and mist

(R) set: CGAN becomes the dominant winner on those real

images, outperforming both DDN and JORDER with large

margins. As we observed, since CGAN is most free of

physical priors or rain type assumptions, it has the largest

flexibility for re-training to fit different data. Its results is

also most photo-realistic due to the adversarial loss. Addi-

tionally, the result might also suggest a larger domain gap
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Table 3. Average full- and no-reference evaluations results on synthetic rainy images. We use bold and underline to indicate the best and

suboptimal performance, respectively.

Degraded GMM [27] JORDER [32] DDN [6] CGAN [33] DID-MDN [8] DeRaindrop [7]

rain streak

PSNR 25.95 26.88 26.26 29.39 21.86 26.80 /
SSIM 0.7565 0.7674 0.8089 0.7854 0.6277 0.8028 /
SSEQ 70.24 67.46 73.70 75.95 70.02 60.05 /
NIQE 5.4529 4.4248 4.2337 3.9834 4.6189 4.8122 /

BLINDS-II 78.89 75.95 84.21 91.71 79.29 67.90 /
raindrops

PSNR 25.40 24.85 27.52 25.23 21.35 24.76 31.57

SSIM 0.8403 0.7808 0.8239 0.8366 0.7306 0.7930 0.9023

SSEQ 78.48 64.73 84.32 77.62 63.15 58.42 72.42

NIQE 3.8126 5.1098 4.3278 4.1462 3.3551 4.1192 5.0047

BLINDS-II 92.50 75.95 88.05 91.95 73.85 64.70 96.45

rain and mist

PSNR 26.84 29.37 30.37 32.98 22.44 28.77 /
SSIM 0.8520 0.8960 0.9262 0.9350 0.7636 0.8430 /
SSEQ 72.37 65.39 70.55 69.80 68.71 65.33 /
NIQE 3.4548 3.2117 2.8595 2.9970 2.8336 3.0871 /

BLINDS-II 82.95 74.90 83.75 85.75 80.20 76.35 /

Table 4. Average no-reference evaluations results of derained results on real rainy images. We use bold and underline to indicate the best

and suboptimal performance except the degraded inputs, respectively.

Degraded GMM [27] JORDER [32] DDN [6] CGAN [33] DID-MDN [8] DeRaindrop [7]

rain streak

SSEQ 65.77 61.63 64.00 63.51 59.32 55.11 /
NIQE 3.5236 3.2117 3.5371 3.5811 3.5374 5.1255 /

BLINDS-II 78.04 75.54 82.62 85.81 78.42 66.65 /
raindrops

SSEQ 78.23 64.77 69.26 67.62 62.18 60.65 79.83

NIQE 3.8229 4.3801 3.6579 3.8290 4.4692 4.5631 3.5953

BLINDS-II 84.46 71.21 80.04 77.75 66.29 66.63 87.13

rain and mist

SSEQ 73.86 59.51 65.18 64.56 70.04 63.85 /
NIQE 3.2602 4.4808 3.3238 3.7261 2.9532 3.2260 /

BLINDS-II 84.00 62.70 78.62 81.67 84.91 76.08 /

between synthetic and real rain and mist data.

4.2. Subjective Comparison

We next conduct a human subjective survey to evaluate

the performance of image deraining algorithms. We follow

a standard setting that fits a Bradley-Terry model [49] to es-

timate the subjective score for each method so that they can

be ranked, with the exactly same routine as described in pre-

vious similar works [15]. We select 10 images from Rain

streak (R), 6 images from Rain drop (R), and 11 images

from Rain and mist (R), taking all possible care to ensure

that they have very diverse contents and quality. Each rain

streak or rain & mist image is processed with each of the

five deraining algorithms (except DerainDrop), and the five

deraining results, together with the original rainy image, are

sent for pairwise comparison to construct the winning ma-

trix. For a rain drop image, the procedure is the same ex-

cept that it will be processed by all six methods. We collect

the pair comparison results of human subject studies from

11 human raters. Despite the relatively small numbers of

raters, we observed good consensus and small inter-person

variances among raters, on same pairs’ comparison results,

which make scores trustworthy.

The subjective scores are reported in Table 5. Note that

we did not normalize the scores: so it is the score rank rather

than the absolute score values that makes sense here. On the

rain streak images, it seems that most human viewers prefer

CGAN first, and then DDN. As shown in the first row of

Figure 2, the derained result generated by CGAN is more

smooth than others. On the raindrop images, it is somehow

to our surprise that DerainDrop is not favored by users; in-

stead, the non-CNN-based GMM method, which showed no

advantage under previous objective metrics, was highly pre-

ferred by users. We conjecture that the patch-based Gaus-

sian mixture prior can treat and remove both rain streaks

and raindrops as “outliers”, and is less sensitive to train-

ing/testing data domain difference. Finally on the rain and

mist images, DID-MDN receives the highest scores, while

CGAN is next to it. This is mainly thanks to incorporating

th rain-density subnetwork or GAN, that can provide more

information of the scene context and hence improve gener-

alization to complex rain conditions.
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Table 5. Average subjective scores of derained results on 10 real images.

rainy GMM [27] JORDER [32] DDN [6] CGAN [33] DID-MDN [8] DeRaindrop [7]

rain streak 0.64 0.80 0.91 1.15 1.26 0.97 –

raindrops 0.80 1.14 0.75 0.83 0.85 0.95 0.80

rain and mist 0.44 1.00 0.70 0.90 1.22 1.40 –

Table 6. Detection results (mAP) on the RID and RIS sets. Detailed results for each class can be found in the supplementary material.

Rainy JORDER [32] DDN [6] CGAN [33] DID-MDN [8] DeRaindrop [7]

RID

FRCNN [44] 16.52 16.97 18.36 23.42 16.11 15.58

YOLO-V3 [45] 27.84 26.72 26.20 23.75 24.62 24.96

SSD-512 [46] 17.71 17.06 16.93 16.71 16.70 16.69

RetinaNet [47] 23.92 21.71 21.60 19.28 20.08 19.73

RIS

FRCNN [44] 22.68 21.41 20.76 18.02 18.93 19.97

YOLO-V3 [45] 23.27 20.45 21.80 18.71 21.50 20.43

SSD-512 [46] 8.19 7.94 8.29 7.10 8.21 8.13

RetinaNet [47] 12.81 10.71 10.39 9.36 10.33 10.85

While we are in the process of recruiting more human

raters to solidify our subject score results more, our re-

sults seem to be consistent so far, and might in turn imply

that off-the-shelf no-reference perceptual metrics (SSEQ,

NIQE, BLINDS-II) do not align well with the real human

perception quality of deraining results. In fact, recent works

[50] already discovered similar misalignments, when apply-

ing standard no-reference metrics to estimating defogging

perceptual quality, and proposed fog-specific metrics. Sim-

ilar efforts have not been found for deraining yet, and we

expect this worthy effort to take place in near future.

4.3. Taskdriven Comparison

We first apply all deraining algorithms except GMM3, to

pre-processing the two task-driven testing sets. Due to their

different rain characteristics, for the RID set, we use de-

raining algorithms trained on the rain and mist case; for the

RIS set, we use deraining algorithms trained on the rain-

drop case. We visually inspected the derained results and

found the rains to be visually attenuated after applying the

selected deraining algorithms. We show some derained re-

sults on the RID and RIS sets in the supplementary material.

We then study object detection performance on the de-

rained sets, using several state-of-the-art object detection

models: Faster R-CNN (FRCNN) [44], YOLO-V3 [45],

SSD-512 [46], and RetinaNet [47]. Finally, we compare

all deraining algorithms via the mean Average Precision

(mAP) results achieved. It is important to note that our pri-

mary goal is not to optimize detection performance in rainy

days, but to use a strong detection model as a fixed, fair

metric on comparing deraining performance from a com-

plementary perspective. In this way, the object detectors

should not be adapted for rainy or derained images, and we

use all authors’ pre-trained models on MS COCO. The un-

derlying hypothesis is: i) an object detector trained on clean

3We did not include GMM for the two sets, because (1) it did not yield

promising results when we tried to apply it to (part of) the two sets; (2) it

runs very slow, given we have two large sets.

natural images will perform the best, when the input is also

from the clean image domain or close; ii) for detection in

rain, the better the rain is removed, the better an object de-

tection model (trained on clean images) will then perform.

Such task-specific evaluation philosophy follows [34, 15].

Table 6 reports the mAP results comparison for different

deraining algorithms, achieved using four different detec-

tion models, on both RID and RIS sets. We find that quite

aligned conclusions could be drawn from the two sets.

Perhaps surprisingly at the first glance, we find that al-

most all existing deraining algorithms will deteriorate

the detection performance compared to directly using

the rainy images4, for YOLO-V3, SSD-512, and Reti-

naNet. Our observation concurs the conclusion of another

recent study (on dehazing) [51]: since those deraining algo-

rithms were not trained/optimized towards the end goal of

object detection, they are unnecessary to help this goal, and

the deraining process itself might have lost discriminative,

semantically meaningful true information.

Both results on RID and RIS sets in Table 6 show that

YOLO-V3 achieves best detection performance, indepen-

dently of deraining algorithms applied. Figure 3 shows de-

tections using YOLO-V3 on the respectives rainy images

and their derained results for all deraining algorithms con-

sidered in this comparison. Since both RID and RIS have

many small objects due to their relative long distance from

the camera, we believe that here YOLO-V3 benefits from

its new multi-scale prediction structure, that is known to im-

prove small object detection dramatically [45]. We further

notice a fairly weak correlation between the mAP results

with the no-reference evaluation results of the derained im-

ages: see supplementary for more details.

4The only exception is FRCNN on the RID set. However, its overall

mAP result is the worst compared to the other three. That implies a strong

domain mismatch, suggesting that FRCNN results might not be as reliable

an indicator for RID deraining performance as the other three.
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(a) Rainy input (b) GMM [27] (c)JORDER [32] (d) DDN [6] (e) CGAN [33] (f) DID-MDN [8] (g) DeRaindrop [7]

Figure 2. Examples of derained results on real images: rain streak (first row), raindrop (second row), and rain and mist (third row).

(a) Rainy input (b) JORDER [32] (c) DDN [6] (d) CGAN [33] (e) DID-MDN [8] (f) DeRaindrop [7] (g) Ground-truths

Figure 3. Visualization of object detection results after applying different deraining algorithms on two images (first two rows) from the

RID dataset and two examples (last two rows) from the RIS dataset.

5. Conclusions and Future Work

This paper proposes a new large-scale benchmark and

presents a thorough survey of state-of-the-art single image

deraining methods. Based on our evaluation and analysis,

we present overall remarks and hypotheses below, which

we hope can shed some light on future deraining research:

• Rain types are diverse and call for specialized mod-

els. Certain models or components are revealed to be

promising for specific rain types, e.g., rain detection

/attention, GANs, and priors like patch-level GMM.

We also advocate a combination of appropriate priors

and data-driven methods.

• There is no single best deraining algorithm for all

rain types. To deal with the real complicated, vary-

ing rains, one might need consider a mixture model of

experts. Another practically useful direction is to de-

velop scene-specific deraining, e.g., for traffic views.

• There is also no single best deraining algorithm under

all metrics. When designing a deraining algorithm,

one needs be clear about its end purpose. Moreover,

classical perceptual metrics themselves might be prob-

lematic to evaluate deraining. Developing new metrics

could be as important as new algorithms.

• Algorithms trained on synthetic paired data may gen-

eralize poorly to real data, especially on complicated

rain types such as rain and mist. Unpaired training [52]

on all real data could be interesting to explore.

• No existing deraining method seems to directly help

detection. That may encourage the community to

develop new robust algorithms to account for high-

level vision problems on real-world rainy images. On

the other hand, to realize the goal of robust detec-

tion in rain does not have to adopt a de-raining pre-

processing; there are other domain adaptation type op-

tions, e.g., [53], which we will discuss in future work.

Acknowledgments. This work is supported in part by the Na-

tional Natural Science Foundation of China (No. 61802403,

U1605252U1736219), Beijing Natural Science Foundation (No.

L182057), and CCF-DiDi GAIA (YF20180101). The work of Z.

Wang is supported by the US National Science Foundation under

Grant 1755701.

3845






