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Abstract

We propose a 3D object detection method for au-

tonomous driving by fully exploiting the sparse and dense,

semantic and geometry information in stereo imagery. Our

method, called Stereo R-CNN, extends Faster R-CNN for

stereo inputs to simultaneously detect and associate ob-

ject in left and right images. We add extra branches after

stereo Region Proposal Network (RPN) to predict sparse

keypoints, viewpoints, and object dimensions, which are

combined with 2D left-right boxes to calculate a coarse1

3D object bounding box. We then recover the accurate

3D bounding box by a region-based photometric alignment

using left and right RoIs. Our method does not require

depth input and 3D position supervision, however, outper-

forms all existing fully supervised image-based methods.

Experiments on the challenging KITTI dataset show that

our method outperforms the state-of-the-art stereo-based

method by around 30% AP on both 3D detection and 3D

localization tasks. Code will be made publicly available.

1. Introduction

3D object detection serves as an essential basis of vi-

sual perception, motion prediction, and planning for au-

tonomous driving. Currently, most of the 3D object detec-

tion methods [5, 23, 31, 13, 18] heavily rely on LiDAR data

for providing accurate depth information in autonomous

driving scenarios. However, LiDAR has the disadvantage of

high cost, relatively short perception range (∼100 m), and

sparse information (32, 64 lines comparing to >720p im-

ages). On the other hand, monocular camera provides alter-

native low-cost solutions[3, 21, 27] for 3D object detection.

The depth information can be predicted by semantic prop-

erties in scenes and object size, etc. However, the inferred

depth cannot guarantee the accuracy, especially for unseen

scenes. To this end, we propose a stereo-vision based 3D

object detection method. Comparing with monocular cam-

era, stereo camera provides more precise depth information

1We use the coarse 3D box to represent one with accurate 2D projection

but not necessarily with accurate 3D position.

by left-right photometric alignment. Comparing with Li-

DAR, stereo camera is low-cost while achieving compara-

ble depth accuracy for objects with non-trivial disparities.

The perception range of stereo camera depends on the fo-

cal length and the baseline. Therefore, stereo vision has the

potential ability to provide larger-range perception by com-

bining different stereo modules with different focal length

and baselines.

In this work, we study the sparse and dense constraints

for 3D objects by fully exploiting the semantic and geom-

etry information in stereo imagery and propose an accu-

rate Stereo R-CNN based 3D object detection method. Our

method simultaneously detects and associates objects for

left and right images using the proposed Stereo R-CNN.

The network architecture can be overviewed in Fig.1, which

can be divided into three main parts. The first one is a Stereo

RPN module (Sect. 3.1) which outputs corresponding left

and right RoI proposals. After applying RoIAlign [8] on

left and right feature maps respectively, we concatenate left-

right RoI features to classify object categories and regress

accurate 2D stereo boxes, viewpoint, and dimensions in the

stereo regression (Sect. 3.2) branch. A keypoint (Sect. 3.2)

branch is employed to predict object keypoints using only

left RoI feature. These outputs form the sparse constraints

(2D boxes, keypoints) for the 3D box estimation (Sect. 4),

where we formulate the projection relations between 3D

box corners with 2D left-right boxes and keypoints.

The crucial component that ensures our 3D localization

performance is the dense 3D box alignment (Sect. 5). We

consider 3D object localization as a learning-aided geom-

etry problem rather than an end-to-end regression prob-

lem. Instead of directly using the depth input [4, 27] which

does not explicitly utilize the object property, we treat the

object RoI as an entirety rather than independent pixels.

For regular-shaped objects, the depth relation between each

pixel and the 3D center can be inferred given the coarse

3D bounding box. We warp dense pixels in the left RoI

to the right image according to their depth relations with

the 3D object center to find the best center depth that min-

imizes the entire photometric error. The entire object RoI

thereby forms the dense constraint for 3D object depth esti-
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Figure 1. Network architecture of the proposed Stereo R-CNN (Sect. 3) which outputs stereo boxes, keypoints, dimensions, and the

viewpoint angle, followed by the 3D box estimation (Sect. 4) and the dense 3D box alignment module (Sect. 5).

mation. The 3D box is further rectified using 3D box esti-

mator (Sect. 4) according to the aligned depth and 2D mea-

surements.

We summarize our main contributions as follows:

• A Stereo R-CNN approach which simultaneously de-

tects and associates object in stereo images.

• A 3D box estimator which exploits the keypoint and

stereo boxes constraints.

• A dense region-based photometric alignment method

that ensures our 3D object localization accuracy.

• Evaluation on the KITTI dataset shows we outperform

all state-of-the-art image-based methods and are even

comparable with a LiDAR-based method [16].

2. Related Work

We briefly review recent works of 3D object detection

based on the LiDAR data, monocular image and stereo im-

ages respectively.

LiDAR-based 3D Object Detection. Most of the state-

of-the-art 3D object detection methods rely on LiDAR to

provide accurate 3D information, while process raw LiDAR

input in different representations. [5, 16, 28, 18, 13] project

the point cloud into 2D bird’s eye view or front view rep-

resentations and feed them into the structured convolution

network, where [5, 18, 13] exploit fusing multiple LiDAR

representations with the RGB image to obtain more dense

information. [6, 26, 15, 20, 31] utilize structured voxel grid

representation to quantize the raw point cloud data, then use

either 2D or 3D CNN to detect 3D object, while[20] takes

multiple frames as input and generates 3D detection, track-

ing and motion forecasting simultaneously. Additionally,

instead of quantizing the point cloud, [23] directly takes raw

point cloud as input to localize 3D object based on the frus-

tum region reasoned from 2D detection and PointNet [24].

Monocular-based 3D Object Detection. [3] focuses on

3D object proposals generation using ground-plane assump-

tion, shape prior, contextual feature and instance segmenta-

tion from the monocular image. [21] proposes to estimate

3D box using the geometry relations between 2D box edges

and 3D box corners. [30, 1, 22] explicitly utilize sparse in-

formation by predicting series of keypoints of regular-shape

vehicles. The 3D object pose can be constrained by wire-

frame template fitting. [27] proposes an end-to-end multi-

level fusion approach to detect 3D object by concatenating

the RGB image and the monocular-generated depth map.

Recently an inverse-graphics framework [14] is proposed

to predict both the 3D object pose and instance-level seg-

mentation by graphic rendering and comparing. However,

monocular-based methods unavoidably suffer from the lack

of accurate depth information.

Stereo-based 3D Object Detection. There are surpris-

ingly only a few works exploit utilizing stereo vision for

3D object detection. 3DOP [4] focuses on generating 3D

proposals by encoding object size prior, ground-plane prior

and depth information (e.g., free space, point cloud den-

sity) into an energy function. 3D Proposals are then used

to regress the object pose and 2D boxes using the R-CNN

approach. [17] extends the Structure from Motion (SfM)

approach to the dynamic object case and continuously track

the 3D object and ego-camera pose by fusing both spatial

and temporal information. However, none of the above ap-

proaches takes advantage of dense object constraints in raw

stereo images.
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Figure 2. Different targets assignment for RPN classification and

regression.

3. Stereo R-CNN Network

In this section, we describe the Stereo R-CNN network

architecture. Compared with the single frame detector such

as Faster R-CNN [25], Stereo R-CNN can simultaneously

detect and associate 2D bounding boxes for left and right

images with minor modifications. We use weight-share

ResNet-101 [9] and FPN [19] as our backbone network to

extract consistent features on left and right images. Benefit

from our training target design Fig. 2, there is no additional

computation for data association.

3.1. Stereo RPN

Region Proposal Network (RPN) [25] is a sliding-

window based foreground detector. After feature extrac-

tion, a 3× 3 convolution layer is utilized to reduce channel,

followed by two sibling fully-connected layer to classify

objectness and regress box offsets for each input location

which is anchored with pre-define multiple-scale boxes.

Similar with FPN [19], we modify origin RPN for pyra-

mid features by evaluating anchors on multiple-scale fea-

ture maps. The difference is we concatenate left and right

feature maps at each scale, then we feed the concatenated

features into the stereo RPN network.

The key design enables our simultaneous object detec-

tion and association is the different ground-truth (GT) box

assignment for objectness classifier and stereo box regres-

sor. As illustrated in Fig. 2, we assign the union of left and

right GT boxes (referred as union GT box) as the target for

objectness classification. An anchor is assigned a positive

label if its Intersection-over-Union (IoU) ratio with one of

union GT boxes is above 0.7, and a negative label if its IoU

with any of union boxes is below 0.3. Benefit from this de-

sign, the positive anchors tend to contain both left and right

object regions. We calculate offsets of positive anchors re-

specting to the left and right GT boxes contained in the tar-

get union GT box, then assign offsets to the left and right

regression respectively. There are six regressing terms for

the stereo regressor: [∆u,∆w,∆u′,∆w′,∆v,∆h], where

we use u, v to denote the horizontal and vertical coordinates

of the 2D box center in image space, w, h for width and

height of the box, and the superscript (·)′ for correspond-

ing terms in the right image. Note that we use same v, h
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Figure 3. Relations between object orientation θ, azimuth β and

viewpoint θ + β. Only same viewpoints lead to same projections.

offsets ∆v,∆h for the left and right boxes because we use

rectified stereo images. Therefore we have six output chan-

nels for stereo RPN regressor instead of four in the origin

RPN implementation. Since the left and right proposals are

generated from the same anchor and share the objectness

score, they can be associated naturally one by one. We uti-

lize Non-Maximum Suppression (NMS) on left and right

RoIs separately to reduce redundancy, then choose top 2000

candidates from entries which are kept in both left and right

NMS for training. For testing, we choose only top 300 can-

didates.

3.2. Stereo R­CNN

Stereo Regression. After stereo RPN, we have corre-

sponding left-right proposal pairs. We apply RoI Align [8]

on the left and right feature maps respectively at appropri-

ate pyramid level. The left and right RoI features are con-

catenated and fed into two sequential fully-connected layers

(each followed by a ReLU layer) to extract semantic infor-

mation. We use four sub-branches to predict object class,

stereo bounding boxes, dimension, and viewpoint angle re-

spectively. The box regression terms are same as defined in

Sect. 3.1. Note that the viewpoint angle is not equal to the

object orientation which is unobservable from cropped im-

age RoI. An example is illustrated in Fig. 3, where we use

θ to denote the vehicle orientation respecting to the cam-

era frame, and β to denote the object azimuth respecting

to the camera center. Three vehicles have different orienta-

tions, however, the projection of them are exactly the same

on cropped RoI images. We therefore regress the viewpoint

angle α defined as: α = θ + β. To avoid the discontinu-

ity, the training targets are [sinα, cosα] pair instead of the

raw angle value. With stereo boxes and object dimension,

the depth information can be recovered intuitively, and the

vehicle orientation can also be solved by decoupling the re-

lations between the viewpoint angle with the 3D position.

When sampling the RoIs, we consider a left-right RoI

pair as foreground if the maximum IoU between the left
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Figure 4. Illustration of 3D semantic keypoints, the 2D perspective

keypoint, and boundary keypoints.

RoI with left GT boxes is higher than 0.5, meanwhile the

IoU between right RoI with the corresponding right GT box

is also higher than 0.5. A left-right RoI pair is considered as

background if the maximum IoU for either the left RoI or

the right RoI lies in the [0.1, 0.5) interval. For foreground

RoI pairs, we assign regression targets by calculating off-

sets between the left RoI with the left GT box, and offsets

between the right RoI with the corresponding right GT box.

We still use the same ∆v,∆h for left and right RoIs. For

dimension prediction, we simply regress the offset between

the ground-truth dimension with a pre-set dimension prior.

Keypoint Prediction. Besides stereo boxes and view-

point angle, we notice that the 3D box corner which pro-

jected in the box middle can provide more rigorous con-

straints to the 3D box estimation. As Fig. 4 presents, we de-

fine four 3D semantic keypoints which indicate four corners

at the bottom of the 3D bounding box. There is only one 3D

semantic keypoint can be visibly projected to the box mid-

dle (instead of left or right edges). We define the projection

of this semantic keypoint as perspective keypoint. We show

how the perspective keypoint contributes to the 3D box es-

timation in Sect. 4 and Table. 5. We also predict two bound-

ary keypoints which serve as simple alternatives to instance

mask for regular-shaped objects. Only the region between

two boundary keypoints belongs to the current object and

will be used for the further dense alignment (See Sect. 5).

We predict the keypoint as proposed in Mask R-CNN

[8]. Only the left feature map is used for keypoint predic-

tion. We feed the 14 × 14 RoI aligned feature maps to six

sequential 256-d 3 × 3 convolution layers as illustrated in

Fig. 1, each followed by a ReLU layer. A 2× 2 deconvolu-

tion layer is used to upsample the output scale to 28 × 28.

We notice that only u coordinate of the keypoints provide

additional information besides the 2D box. To relax the

task, we sum the height channel in the 6 × 28 × 28 out-

put to produce 6 × 28 prediction. As a result, each col-

umn in the RoI feature will be aggregated and contribute

to the keypoint prediction. The first four channels repre-

sent the probability that each of four semantic keypoints is

projected to the corresponding u location. The other two

channels represent the probability of each u lies in the left

and right boundary respectively. Note that only one of four

3D keypoints can be visibly projected to the 2D box middle,

thereby softmax is applied to the 4×28 output to encourage

that one exclusive semantic keypoint is projected to a single

location. This strategy avoids the probable confusion of per-

spective keypoint type (corresponding to which of semantic

keypoints). For the left and right boundary keypoints, we

apply softmax on the 1× 28 outputs respectively.

During training, we minimize the cross-entropy loss over

4 × 28 softmax output for perspective keypoint prediction.

Only a single location in the 4× 28 output is labeled as per-

spective keypoint target. We omit the case where no 3D se-

mantic keypoint is visibly projected in the box middle (e.g.,

truncation and orthographic projection cases). For bound-

ary keypoints, we minimize the cross-entropy loss over two

1 × 28 softmax outputs independently. Each foreground

RoI will be assigned the left and right boundary keypoints

according to the occlusion relations between GT boxes.

4. 3D Box Estimation

In this section, we solve a coarse 3D bounding box

by utilizing the sparse keypoint and 2D box information.

States of the 3D bounding box can be represented by x =
{x, y, z, θ}, which denotes the 3D center position and hor-

izontal orientation respectively. Given the left-right 2D

boxes, perspective keypoint, and regressed dimensions, the

3D box can be solved by minimize the reprojection error

of 2D boxes and the keypoint. As detailed in Fig. 5, we

extract seven measurements from stereo boxes and perspec-

tive keypoints: z = {ul, vt, ur, vb, u
′

l, u
′

r, up}, which rep-

resent left, top, right, bottom edges of the left 2D box, left,

right edges of the right 2D box, and the u coordinate of the

perspective keypoint. Each measurement is normalized by

camera intrinsic for simplifying representation. Given the

perspective keypoint, the correspondences between 3D box

corners and 2D box edges can be inferred (See dotted lines

in Fig. 5). Inspired from [17], we formulate the 3D-2D re-

lations by projection transformations. In such a viewpoint

in Fig. 5:

vt = (y − h
2
)/(z − w

2
sinθ − l

2
cosθ),

ul = (x− w
2
cosθ − l

2
sinθ)/(z + w

2
sinθ − l

2
cosθ),

up = (x+ w
2
cosθ − l

2
sinθ)/(z − w

2
sinθ − l

2
cosθ),

. . .

u′

r = (x− b+ w
2
cosθ + l

2
sinθ)/(z − w

2
sinθ + l

2
cosθ).

(1)

We use b to denote the baseline length of the stereo cam-

era, and w, h, l for regressed dimensions. There are to-
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Figure 5. Sparse constraints for the 3D box estimation (Sect. 4).

tal seven equations corresponding to seven measurements,

where the sign of {w
2
, l
2
} should be changed appropriately

based on the corresponding 3D box corner. Truncated edges

are dropped on above seven equations. These multivariate

equations are solved via Gauss-Newton method. Different

from [17] using single 2D box and size prior to solve the

3D position and orientation, we recover the 3D depth infor-

mation more robustly by jointly utilizing the stereo boxes

and regressed dimensions. In some cases where less than

two side-surfaces can be completely observed and no per-

spective keypoint up (e.g., truncation, orthographic projec-

tion), the orientation and dimensions are unobservable from

pure geometry constraints. We use the viewpoint angle α
to compensate the unobservable states (See Fig. 3 for the

illustration):

α = θ + arctan(−x
z
). (2)

Solved from 2D boxes and the perspective keypoint, the

coarse 3D box has accurate projection and is well aligned

with the image, which enables our further dense alignment.

5. Dense 3D Box Alignment

The left and right bounding boxes provide object-level

disparity information such that we can solve the 3D bound-

ing box roughly. However, the stereo boxes are regressed

by aggregating the high-level information in a 7 × 7 RoI

feature maps. The pixel-level information (e.g., corners,

edges) contained in original image is lost due to multiple

convolution filters. To achieve sub-pixel matching accu-

racy, we retrieve the raw image to exploit the pixel-level

high-resolution information. Note that our task is differ-

ent with pixel-wise disparity estimation problem where the

result might encounter either discontinuity at ill-posed re-

gions (SGM [10]), or oversmooth at edge areas (CNN based

methods [29, 12, 2]). We only solve the disparity of the

3D bounding box center while using the dense object patch,

i.e., we use plenty of pixel measurements to solve one single

variable.

Treating the object as a regular-shaped cube, we know

the depth relation between each pixel with the center of 3D

bounding box solved from Sect. 4. To exclude the pixel

belonging to the background or other objects, we define a

valid RoI as the region is between the left-right boundary

keypoints and lies in the bottom halves of the 3D box since

the bottom halves of vehicles fits the 3D box more tightly

(See Fig. 1). For a pixel located at the normalized coordi-

nate (ui, vi) in the valid RoI of the left image, the photo-

metric error can be defined as:

ei =
∥

∥

∥
Il(ui, vi)− Ir(ui −

b
z+∆zi

, vi)
∥

∥

∥
, (3)

where we use Il, Ir to denote the 3-channels RGB vector of

left and right image respectively; ∆zi = zi − z the depth

differences of pixel i with the 3D box center; and b the base-

line length. z is the only objective variable we want to solve.

We use bilinear interpolation to get sub-pixel value on the

right image. The total matching cost is defined as the Sum

of Squared Difference (SSD) over all pixels in the valid RoI:

E =
∑N

i=0
ei. (4)

The center depth z can be solved by minimizing the total

matching cost E, we can enumerate the depth efficiently to

find a depth that minimizes the cost. We initially enumerate

50 depth values around the initial value with 0.5-meter in-

terval to get a rough depth and finally enumerate 20 depth

values around the rough depth with 0.05-meter interval to

get the accurately aligned depth. Afterwards, we rectify

the entire 3D box using our 3D box estimator by fixing the

aligned depth (See Table. 6). Consider the object RoI as a

geometric-constraint entirety, our dense alignment method

naturally avoids the discontinuity and ill-posed problems in

stereo depth estimation, and is robust to intensity variations

and brightness dominant since each pixel in the valid RoI

will contribute to the object depth estimation. Note that this

method is efficient and can be a light-weight plug-in mod-

ule for any image-based 3D detection to achieve depth rec-

tifying. Although the 3D object does not fit the 3D cube

rigorously, relative depth errors caused by the shape varia-

tion are much more trivial than the global depth. Therefore

our geometry-constraint dense alignment provides accurate

depth estimation of object center.

6. Implementation Details

Network. As implemented in [25], we use five scale an-

chors of {32, 64, 128, 126, 512} with three ratios {0.5, 1,

2}. The original image is resized to 600 pixels in the shorter

side. For Stereo RPN, we have 1024 input channels in the

final classification and regression layer instead of 512 layers

in the implementation [19] due to the concatenation of the

left and right feature maps. Similarly, we have 512 input

channels in the R-CNN regress head. The inference time

of Stereo R-CNN for one stereo pair is around 0.28s on the

Titan Xp GPU.
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AP2d (IoU=0.7)

AR (300 Proposals) Left Right Stereo

Method Left Right Stereo Easy Mode Hard Easy Mode Hard Easy Mode Hard

Faster R-CNN[25] 86.08 - - 98.57 89.01 71.54 - - - - - -

Stereo R-CNNmean 85.50 85.56 74.60 90.58 88.42 71.24 90.59 88.47 71.28 90.53 88.24 71.12

Stereo R-CNNconcat 86.20 86.27 75.51 98.73 88.48 71.26 98.71 88.50 71.28 98.53 88.27 71.14

Table 1. Average recall (AR) (in %) of RPN and Average precision (AP) (in %) of 2D detection, evaluated on the KITTI validation

set. We compare two fusion methods for Stereo-RCNN with Faster R-CNN using the same backbone network, hyper-parameters, and

augmentation. The Average Recall is evaluated on the moderate set.

APbv (IoU=0.5) APbv (IoU=0.7) AP3d (IoU=0.5) AP3d (IoU=0.7)

Method Sensor Easy Mode Hard Easy Mode Hard Easy Mode Hard Easy Mode Hard

Mono3D[3] Mono 30.50 22.39 19.16 5.22 5.19 4.13 25.19 18.20 15.52 2.53 2.31 2.31

Deep3DBox[21] Mono 30.02 23.77 18.83 9.99 7.71 5.30 27.04 20.55 15.88 5.85 4.10 3.84

Multi-Fusion[27] Mono 55.02 36.73 31.27 22.03 13.63 11.60 47.88 29.48 26.44 10.53 5.69 5.39

VeloFCN[16] LiDAR 79.68 63.82 62.80 40.14 32.08 30.47 67.92 57.57 52.56 15.20 13.66 15.98

Multi-Fusion[27] Stereo - 53.56 - - 19.54 - - 47.42 - - 9.80 -

3DOP[4] Stereo 55.04 41.25 34.55 12.63 9.49 7.59 46.04 34.63 30.09 6.55 5.07 4.10

Ours Stereo 87.13 74.11 58.93 68.50 48.30 41.47 85.84 66.28 57.24 54.11 36.69 31.07

Table 2. Average precision of bird’s eye view (APbv) and 3D boxes (AP3d) comparison, evaluated on the KITTI validation set.

Training. We define the multi-task loss as:

L = wp
clsL

p
cls + wp

regL
p
reg + wr

clsL
r
cls + wr

boxL
r
box

+wr
αL

r
α + wr

dimLr
dim ++wr

keyL
r
key,

(5)

where we use (·)p, (·)r for representing RPN and R-CNN

respectively, and the subscript box, α, dim, key for the loss

of stereo boxes, viewpoint, dimension, and keypotin respec-

tively. Each loss is weighted by their uncertainty follow-

ing [11]. We flip and exchange the left and right image,

meanwhile mirror the the viewpoint angle and keypoints re-

spectively to form a new stereo imagery. The origin dataset

is thereby doubled with different training targets. During

training, we keep 1 stereo pair and 512 sampled RoIs in

each mini-batch. We train the network using SGD with a

weight decay of 0.0005 and a momentum of 0.9. The learn-

ing rate is initially set to 0.001 and reduced by 0.1 for every

5 epochs. We train 20 epochs with 2 days in total.

7. Experiments

We evaluate our method on the challenging KITTI object

detection benchmark [7]. Following [4], we split 7481 train-

ing images into training set and validation set with roughly

the same amount. To fully evaluate the performance of our

Stereo R-CNN based approach, we conduct experiments us-

ing the 2D stereo recall, 2D detection, stereo association,

3D detection, and 3D localization metrics by comparing

with state-of-the-art and self-ablation. Objects are divided

into three difficulty regimes: easy, moderate and hard, ac-

cording to their 2D box height, occlusion and truncation

levels following the KITTI setting.

Stereo Recall and Stereo Detection. Our Stereo R-CNN

aims to simultaneously detect and associate object for the

left and right image. Besides evaluating the 2D Average Re-

call (AR) and 2D Average Precision (AP2d) on both the left

and right images, we also define the stereo AR and stereo

AP metrics, where only querying stereo boxes fulfill the fol-

lowing conditions can be considered as the True Positives

(TPs):

1. The maximum IoU of the left box with left GT boxes

is higher than the given threshold;

2. The maximum IoU of the right box with right GT

boxes is higher than the given threshold;

3. The selected left and right GT boxes belong to the

same object.

The stereo AR and stereo AP metrics jointly evaluate the

2D detection and association performance together. As Ta-

ble. 1 shows, our Stereo R-CNN has similar proposal recall

and detection precision on the single image comparing with

Faster R-CNN, while producing high-quality data associa-

tion in left and right image without additional computation.

Although the stereo AR is slightly less than left AR in RPN,

we observe almost the same left, right, and stereo APs af-

ter R-CNN, which indicates the consistent detection perfor-

mance on the left and right image and nearly all true posi-

tive boxes in the left image have corresponding true-positive

right boxes. We also test two strategies for left-right feature

fusion: element-wise mean and channel concatenation. As

reported in Table. 1, the channel concatenation shows bet-

ter performance since it keeps all the information. Accurate
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Figure 6. Qualitative results. From top to bottom: detections on left image, right image, and bird’s eye view image.

stereo detection and association provide sufficient box-level

constraints for the 3D box estimation (Sect. 4).

3D Detection and 3D Localization. We evaluate our 3D

detection and 3D localization performance using Average

Precision for bird’s eye view (APbv) and 3D box (AP3d).

Results are shown in Table. 2, where our method outper-

forms state-of-the-art monocular-based methods [3, 21, 27]

and stereo-method [4] by large margins. Specifically, we

outperform 3DOP [4] over 30% for both APbv and AP3d

across easy and moderate sets. For the hard set, we achieve

∼25% improvements. Although Multi-Fusion [27] ob-

tains significant improvements with stereo input, it still

reports much lower APbv and AP3d than our geometric

method in the moderate set. Since comparing our approach

with LiDAR-based approaches is unfair, we only list one

LiDAR-based method VeloFCN [16] for reference, where

we outperform it by ∼10% APbv and AP3d using IoU = 0.5

in the moderate set. We also report evaluation results on the

KITTI testing set in Table. 3. The detailed performance can

be found online. 2

Note that the KITTI 3D detection benchmark is diffi-

cult for image-based method, for which the 3D performance

tends to decrease as objects distance increases. This phe-

nomenon can be observed intuitively in Fig. 7, although our

method achieves sub-pixel disparity estimation (less than

0.5 pixel), the depth error becomes larger as the object dis-

tance increase due to the inversely proportional relation be-

tween disparity and depth. For objects with explicit dis-

parity, we achieve high accurate depth estimation based on

rigorous geometric constraints. That explains why a higher

IoU threshold, an easier regime the object belongs, we ob-

tain more improvements compared with other methods.

Benefits of the Keypoint. We utilize the 3D box estima-

2http://www.cvlibs.net/datasets/kitti/eval_

object.php?obj_benchmark=3d
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Figure 7. Relations between the disparity and the depth error with

the object distance (best viewed in color). For each distance range

(±5 m), we collect the error statistics for detections with 2D IoU

≥ 0.7.

APbv (IoU=0.7) AP3d (IoU=0.7)

Method Easy Mode Hard Easy Mode Hard

Ours 61.67 43.87 36.44 49.23 34.05 28.39

Table 3. 3D detection and localization AP on the KITTI test set.

tor (Sect. 4) to calculate the coarse 3D box and rectify the

actual 3D box after the dense alignment. An accurate 3D

box estimator is thereby important for the final 3D detec-

tion. To study benefits of the keypoint for 3D box estima-

tor, we evaluate the 3D detection and 3D localization per-

formance without using the keypoint, where we use the re-

gressed viewpoint to determine the relations between 3D

box corners and 2D box edges, and employ Eq. 2 to con-

straint the 3D orientation for all objects. As reported in Ta-

ble. 5, the usage of the keypoint improve both APbv and

AP3D across all difficulty regimes by non-trivial margins.

As the keypoint provides pixel-level constraints to the 3D

box corner in addition to the 2D box-level measurements, it

ensures more accurate localization performance.

Benefits of the Dense Alignment. This experiment

shows how significant improvements the dense alignment

brings. We evaluate the 3D performance of the coarse 3D

box (w/o Alignment), for which the depth information is
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APbv (IoU=0.5) APbv (IoU=0.7) AP3d (IoU=0.5) AP3d (IoU=0.7)

Flip Uncert AP0.7
2d Easy Mode Hard Easy Mode Hard Easy Mode Hard Easy Mode Hard

79.03 76.82 64.75 54.72 54.38 36.45 29.74 75.05 60.83 47.69 32.30 21.52 17.61

X 79.78 78.24 65.94 56.01 60.93 40.33 33.89 76.87 61.45 48.18 40.22 28.74 23.96

X 88.52 84.89 67.02 57.57 60.93 40.91 34.48 78.76 64.99 55.72 47.53 30.36 25.25

X X 88.82 87.13 74.11 58.93 68.50 48.30 41.47 85.84 66.28 57.24 54.11 36.69 31.07

Table 4. Ablation study of using flip augmentations and uncertainty weight, evaluated on KITTI validation set.

w/o Keypoint w/ Keypoint

Metric Easy Mode Hard Easy Mode Hard

APbv (IoU=0.5) 87.10 67.42 58.41 87.13 74.11 58.93

APbv (IoU=0.7) 59.45 40.44 34.14 68.50 48.30 41.47

AP3d (IoU=0.5) 85.21 65.23 55.75 85.84 66.28 57.24

AP3d (IoU=0.7) 46.58 30.29 25.07 54.11 36.69 31.07

Table 5. Comparing 3D detection and localization AP of w/o and

w/ keypoint, evaluated on KITTI validation set.

Config Set AP0.5
bv AP0.7

bv AP0.5
3d AP0.7

3d

w/o Alignment

Easy 45.59 16.87 41.88 11.37

Mode 33.82 10.40 27.99 7.75

Hard 28.96 10.03 22.80 5.74

w/ Alignment

w/o 3D rectify

Easy 86.15 66.93 83.05 48.95

Mode 73.54 47.35 65.45 32.00

Hard 58.66 36.29 56.50 30.12

w/ Alignment

w/ 3D rectify

Easy 87.13 68.50 85.84 54.11

Mode 74.11 48.30 66.28 36.69

Hard 58.93 41.47 57.24 31.07

Table 6. Improvements of using our dense alignment and 3D box

rectify, evaluated on KITTI validation set.

calculated from box-level disparity and 2D box size. Even

if 1-pixel disparity or 2D box error will cause large distance

error for distant objects. In result, although the coarse 3D

box has a precise projection on the image as we expected, it

is not accurate enough for 3D localization. Detailed statis-

tics can be found in Table. 6. After we recover the object

depth using the dense alignment and simply scaling the x, y
(w/ Alignment, w/o 3D rectify), we obtain major improve-

ments on all the metric. Furthermore, when we using the

box estimator (Sect. 4) to rectify the entire 3D box by fix-

ing the aligned depth, the 3D localization and 3D detection

performance are further improved by several points.

Ablation Study. We employ two strategies to enhance

our model performance. To validate the contributions of

each strategy, we conduct experiments with different com-

binations and evaluate the detection and localization per-

formance. As Table. 4 shows, we use Flip and Uncert to

represent the proposed stereo flip augmentation and the un-

certainty weight for multiple losses [11]. Without bells and

whistles, we already outperform all state-of-the-art image-

based methods. Each strategy further enhances our network

performance by several points. Detailed contributions can

be found in Table. 4. Balancing the multi-task loss using un-

certainty weight yields non-trivial improvements in both 3D

detection and localization tasks. With stereo flip augmen-

tation, the left-right images are flipped and exchanged, and

the training target for the the perspective keypoint and view-

point are also changed respectively. Therefore the train-

ing set is doubled with different inputs and training tar-

gets. Combining two strategies together, our method ob-

tains strongly promising performance in both 3D detection

and 3D localization tasks (Table. 2).

Qualitative Results. We show some quantitative results

in Fig. 6, where we visualize corresponding stereo boxes on

the left and right images. The 3D box is projected to the left

and bird’s eye view image respectively. Our joint sparse and

dense constraints ensure the detected box is well aligned on

both image and LiDAR point cloud.

8. Conclusion and Future Work

In this paper, we propose a Stereo R-CNN based 3D

object detection method in autonomous driving scenarios.

Formulating the 3D object localization as a learning-aided

geometry problem, our approach takes the advantage of

both semantic properties and dense constraints of objects.

Without 3D supervision, we outperform all existing image-

based methods by large margins on 3D detection and 3D

localization tasks, and even better than a baseline LiDAR

method [16].

Our 3D object detection framework is flexible and prac-

tical where each module can be extended and further im-

proved. For example, Stereo R-CNN can be extended for

multiple object detection and tracking. We can replace the

boundary keypoints with instance segmentation to provide

more precise valid RoI selection. By learning the object

shape, our 3D detection method can be further applied to

general objects.
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