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Abstract

Recent years have witnessed the growing interest in vi-

sual quality assessment (VQA) for 360° video. Unfortu-

nately, the existing VQA approaches do not consider the

facts that: 1) Observers only see viewports of 360° video,

rather than patches or whole 360° frames. 2) Within the

viewport, only salient regions can be perceived by observers

with high resolution. Thus, this paper proposes a viewport-

based convolutional neural network (V-CNN) approach for

VQA on 360° video, considering both auxiliary tasks of

viewport proposal and viewport saliency prediction. Our

V-CNN approach is composed of two stages, i.e., viewport

proposal and VQA. In the first stage, the viewport proposal

network (VP-net) is developed to yield several potential

viewports, seen as the first auxiliary task. In the second

stage, a viewport quality network (VQ-net) is designed to

rate the VQA score for each proposed viewport, in which

the saliency map of the viewport is predicted and then uti-

lized in VQA score rating. Consequently, another auxiliary

task of viewport saliency prediction can be achieved. More

importantly, the main task of VQA on 360° video can be

accomplished via integrating the VQA scores of all view-

ports. The experiments validate the effectiveness of our V-

CNN approach in significantly advancing the state-of-the-

art performance of VQA on 360° video. In addition, our

approach achieves comparable performance in two auxil-

iary tasks. The code of our V-CNN approach is available at

https://github.com/Archer-Tatsu/V-CNN .

1. Introduction

Nowadays, 360° video has become part of our daily

life. Typically, people watch 360° video through a head-

mounted display (HMD), resulting in that only the content

within the viewport is visible. They can obtain immer-

sive experience by changing their viewports in the range of

*Mai Xu is the corresponding author of this paper.
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Figure 1. Brief framework of the proposed V-CNN for 360° video

quality assessment with multiple tasks.

360 × 180°. Therefore, 360° video covers the 360 × 180°

content, requiring extremely high resolution for clear rep-

resentation. To deliver high-resolution 360° video over the

bandwidth-limited channel, compression is urgently needed

[4, 37] to save encoding bit-rates, meanwhile causing dra-

matic degradation on visual quality. Moreover, the quality

degradation in the viewport can be more noticeable, since

people only watch a small part of the original frame. It is

thus necessary to study objective visual quality assessment

(VQA) for 360° video, which can be used as the guidance

for processing 360° video.

Recently, there has been increasing interest in assess-

ing the visual quality of 360° image/video [19, 21, 38, 39,

32, 28]. For example, based on peak signal-to-noise ratio

(PSNR), Yu et al. [38] proposed sphere-based PSNR (S-

PSNR) to calculate PSNR by considering uniform sampling

on sphere. They also provide an alternative VQA approach

that calculates PSNR in the ground-truth viewports; how-

ever, it is not practical as the viewport is not available when
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processing 360° video offline. Li et al. [19] proposed a

model with convolutional neural networks (CNNs), which

directly utilizes the data of head and eye movement (HM

and EM) in VQA on 360° video. Based on the HM and EM

data, the patches are extracted for assessing visual quality of

360° video. Unfortunately, the existing practical VQA ap-

proaches for 360° video ignore the fact that the subjects can

only access the viewports, rather than the patches or original

frames. Thus, a viewport-based VQA approach is more rea-

sonable to reflect the subjective quality of 360° video. Note

that when 360° video is compressed offline or broadcasted,

the viewports of multiple subjects need to be predicted.

The procedure of watching 360° video can be divided

into two stages. In the first stage, the subjects control the

HM to select the attractive viewport visible to them, while

the region outside the viewport is invisible. Thus, the posi-

tion of viewport is determined by the HM of the subjects. In

the second stage, the subjects may control the EM to focus

on a small region (normally 2-3 visual degrees) of the view-

port, i.e., salient region that is clearly captured by eyes. Due

to this, it is reasonable to assess the visual quality of 360°

video by taking both potential viewport (HM) and saliency

within viewport (EM) into consideration. Recall that the

region-based CNN (R-CNN) approaches achieve the great

success in object detection [9, 24, 12], with the designs of

region proposal structure. Inspired by these key factors, it

is intuitive to design a viewport-based CNN approach with

viewport proposal for VQA on 360° video.

In this paper, we propose a viewport-based CNN (V-

CNN) approach for VQA on 360° video, the framework of

which is briefly shown in Figure 1. This approach consists

of two stages, i.e., viewport proposal and VQA. In the stage

of viewport proposal, several potential viewports are pro-

posed for the next stage, as the result of predicting HM. In

the stage of VQA, after viewport alignment, the saliency

map and VQA score are generated for each proposed view-

port. At last, the final VQA score is averaged over VQA

scores of all viewport proposals. As is shown in Figure 1,

there are three tasks in our V-CNN approach. (1) View-

port proposal: This task is to propose potential viewports

containing attractive content for subjects. (2) Saliency pre-

diction in viewport: This task is to predict saliency map of

each proposed viewport. (3) VQA score rating: This task is

to rate the VQA score of the 360° video based on each pro-

posed viewport with the predicted saliency map. Although

the main task is VQA, our V-CNN approach is able to obtain

comparable results in other two auxiliary tasks, i.e., view-

port proposal and viewport saliency prediction.

The main contributions of this paper are: (1) We propose

a viewport-based approach for VQA on 360° video1, on the

basis of real human behaviors when watching 360° video.

1The code of our V-CNN approach is available at https://

github.com/Archer-Tatsu/V-CNN.

(2) We embed auxiliary tasks to boost VQA, by predict-

ing the HM and EM of subjects. (3) Our approach outper-

forms the state-of-the-art approaches in VQA, and achieves

comparable performance in the auxiliary tasks, i.e., view-

port proposal and viewport saliency prediction.

2. Related Works

VQA on 360° video. In addition to the traditional VQA

approaches for 2D video, the spherical characteristic has

been taken into account in the latest VQA works for 360°

video [28, 32, 38, 39], which advance the metric of PSNR.

For example, considering the nonuniformity of mapping

spherical content to plane, both weighted-to-spherically-

uniform PSNR (WS-PSNR) [28] and area weighted spheri-

cal PSNR (AW-SPSNR) [32] apply weight allocation in cal-

culating PSNR to balance the nonuniform sampling den-

sity. In addition, there are some other VQA approaches

[38, 39] aiming to solve the nonuniform sampling in 360°

video. In [38], Yu et al. proposed S-PSNR that resamples

the original frame with a set of uniformly distributed points

on sphere. In [39], Zakharchenko et al. proposed apply-

ing Craster parabolic projection (CPP) to calculate PSNR,

named CPP-PSNR. The effectiveness of these approaches

[28, 32, 38, 39] has been verified through VQA experiments

on different 360° video datasets [30, 29, 22]. Recently, there

have also emerged several deep learning based approaches

[19, 21] for VQA on 360° video. Li et al. [19] proposed uti-

lizing both HM and EM data in a CNN model for VQA on

360° video. Lim et al. [21] proposed a 360° video VQA ap-

proach with adversarial learning. Both [19] and [21] apply

the same patch-based approach [17] as VQA on 2D video,

and learned to sample and allocate weights on patches for

VQA on 360° video.

Saliency models on 360° video. Recently, there has

been increasing interest in studying attention models for

360° video. Several 360° video datasets [6, 31, 7] were

built, including HM data [6, 31] and even EM data [7].

These datasets enable further research of analysis and even

prediction on human attention. Based on the datasets, the

human attention of watching 360° video was thoroughly

studied [23, 26], by investigating consistency and fixation

bias among subjects. In addition, several works [34, 35, 3]

were proposed to predict the HM and EM of subjects when

watching 360° video. For predicting HM, Cheng et al. [3]

developed a spatial-temporal deep neural network (DNN)

to predict saliency maps of HM on 360° video. In [3],

the original 360° videos are remapped to cubemap pro-

jection, followed by cube padding before being fed to the

network. Most recently, Xu et al. [34] have also pro-

posed predicting viewports on 360° video, achieved by de-

veloping a new framework of deep reinforcement learning

(DRL). For predicting EM, a DNN was developed in [35]

to predict saliency maps of EM on 360° video. In addition,
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some works [20, 1] focused on predicting the scan-paths of

HM/EM in 360° image/video.

However, none of above VQA approaches for 360° video

considers the fact that the subjective visual quality highly

depends on the viewports in 360° video. Additionally, there

is no existing VQA work for 360° video that benefits from

embedding auxiliary tasks. Thus, in this paper, we propose

a viewport-based approach for VQA on 360° video, which

considers predicting the real human behaviors, i.e., HM and

EM, when watching 360° video.

3. The Proposed V-CNN Approach

3.1. Framework

Since the visual quality of an impaired 360° frame only

depends on the viewports seen by the subjects, it is intuitive

to propose some potential viewports for VQA. In our V-

CNN approach, there are two stages, i.e., viewport proposal

(Stage I) and VQA (Stage II), for assessing full-reference

(FR) VQA score of the t-th impaired sequence frame Ft.

The framework of the V-CNN approach is shown in Figure

2. As is seen in this figure, the input to V-CNN includes the

t-th impaired frame Ft, the t-th reference frame F
ref
t and

the (t−∆t)-th impaired frame Ft−∆t.

At stage I, the potential viewports on the impaired se-

quence frames are proposed, which also performs as the

first auxiliary task of our V-CNN approach. Specifically, we

propose a viewport proposal network (VP-net) to generate

the viewport candidates and their corresponding importance

weights. Then, a viewport softer non maximum suppres-

sion (NMS) is developed to filter the viewport candidates

for proposal, according to the importance weights.

At stage II, the proposed viewports from stage I as well

as their corresponding error maps are first converted from

spherical signals to plane, through our developed viewport

alignment method. Then, we develop a viewport quality

network (VQ-net) to assess the VQA score of each view-

port. In the VQ-net, the saliency map of each viewport

is predicted by a mini-DenseNet, which also performs as

the second auxiliary task of our V-CNN. Given the error

map and the predicted saliency map, the VQA score of each

viewport is rated by a shallow CNN structure. At last, the

final VQA score of the impaired 360° frame is obtained, by

averaging over all VQA scores of the proposed viewports.

This accomplishes the main task of our V-CNN, i,e, FR

VQA on impaired 360° frames. Note that we follow [38] to

yield the final score of FR VQA on an impaired 360° video

sequence, given the corresponding reference sequence.

3.2. Stage I: Viewport proposal

In this stage, we take impaired frame Ft and its tempo-

ral residual (Ft − Ft−∆t) as the inputs. Subsequently, the

VP-net and viewport softer NMS are developed to propose

potential viewports. These viewport proposals can be seen

as the results of the first auxiliary task for modelling general

HM of subjects on 360° video sequence. More details are

presented as follows.

VP-net. The architecture of the VP-net is shown in Fig-

ure 3. Specifically, the inputs of the impaired frame and

temporal residual are resampled with a widely used spher-

ical grid [14], and then concatenated together to flow into

the following layers. Since 360° video sequence is a spher-

ical signal, we apply the spherical CNN [5] in our VP-net

to extract spherical features. Note that there are two types

of convolutional layers in spherical CNN, which implement

convolution on the unit sphere, denoted as S2, and 3D rota-

tion group, denoted as SO(3), respectively. The outputs of

both these two types of layers are feature maps on SO(3).

Additionally, the outputs of the 1st, 3rd and 5th layers are

down-sampled and then concatenated with the outputs of

the 7th to 9th layers, in order to fuse the low-level infor-

mation into the deep layers. After the last spherical con-

volutional layer, the spherical feature maps on the S2 are

obtained, denoted as T, by being converted from SO(3).

Given the spherical features T on the S2, we further ap-

ply the anchor implementation [24] on sphere for viewport

proposal. For each pixel location in T, there exists a cor-

responding anchor location on the sphere. This anchor lo-

cation can be represented as v
a = (φa, θa), where φa and

θa are the longitude and latitude, respectively. Accordingly,

the spherical feature maps T can be regarded as feature vec-

tors at the anchor locations. Since the size of the viewport

is fixed when subjects are watching 360° video, each view-

port can be represented as v = (φ, θ), where φ and θ are

the longitude and latitude of its center, respectively. To be

more specific, for each of the I anchor locations {va
i }

I
i=1,

a viewport candidate is generated by predicting the offset

∆vi = (∆φi,∆θi) to v
a
i and its corresponding importance

weight ŵi. This is achieved via two convolutional layers

with kernel size of 1. Subsequently, a softmax function is

applied to the importance weights. Finally, I viewport can-

didates can be obtained by

vi = v
a
i +∆vi = (φa

i +∆φi, θ
a
i +∆θi) , i ∈ [1, I]. (1)

Viewport softer NMS. Here, We develop a viewport

softer NMS for filtering viewport candidates, which is sum-

marized in Algorithm 1. Note that our viewport softer NMS

is modified and simplified from the traditional softer NMS

on 2D regions [13]. Specifically, among a set of viewport

candidates V, the viewport with the maximum importance

weight is found. Then, this viewport as well as all view-

port candidates within a threshold great-circle distance [16]

of dth, are weightily merged according to their importance

weights. Similarly, the corresponding importance weights

are also merged. These viewport candidates are then ex-

cluded from V. Finally, after our viewport softer NMS, the
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Figure 3. Architecture of the VP-net.

Algorithm 1: Viewport softer NMS.

Input: Sets of viewport candidates V = {v1, . . . ,vI} and the

corresponding predicted importance weights

W = {ŵ1, . . . , ŵI} at all anchor locations, great-circle

distance threshold dth, proposal quantity threshold Kth.

Output: Sets of viewport proposals Vp and the corresponding

predicted importance weights Wp.

1 k ← 1, Vp ← ∅, Wp ← ∅

2 while V 6= ∅ and k ≤ Kth do

3 ι← argmax{ι|ŵι∈W} ŵι

4 I
′ ← {ι′|d(vι′ ,vι) < dth,vι′ ∈ V}, where d(vι′ ,vι) is

the great-circle distance between vι′ and vι

5 wp

k
←

∑

ι′∈I′
ŵι′

6 v
p

k
←

(
∑

ι′∈I′
ŵι′ · vι′

)

/wp

k

7 V
p ← V

p
⋃

{vp

k
}, Wp ←W

p
⋃

{wp

k
}

8 V← V \ {vι′ |ι
′ ∈ I

′}, W←W \ {ŵι′ |ι
′ ∈ I

′}
9 k ← k + 1

10 end

11 return V
p,Wp

filtered viewports are proposed for the next stage.

3.3. Stage II: VQA

In this stage, the proposed viewports are first projected

to 2D plane by our viewport alignment method. Then, the

VQA score of each aligned viewport is rated by the pro-

posed VQ-net. Finally, the VQA scores of the proposed

viewports at all frames are combined to output the VQA

score of an impaired 360° video sequence. More details are

presented as follows.

Viewport alignment. Assume that the locations of pro-

posed viewports are {vp
k = (φp

k, θ
p
k)}

K
k=1, where K is the

total number of proposed viewports. At the beginning of

stage II, viewport alignment is developed to project the

spherical content of the proposed viewport at v
p
k to the 2D

plane, denoted as Ck. For each pixel in Ck, the alignment

is implemented by bilinear interpolation on the impaired

sequence frame Ft at the corresponding location. Addi-

tionally, the 2D error map of each viewport Cerr
k is also

obtained by the same interpolation on the frame error map

F
err
t (Fref

t − Ft).

To be more specific, in the 2D plane, we denote the width

and height of the viewport as W and H (numbers of pix-

els), respectively. Given a pixel location (x, y) (x ∈ [1,W ],
y ∈ [1, H]) in Ck, the inverse of gnomonic projection [27]

is conducted to find the corresponding spherical location

(φx,y, θx,y). Firstly, the pixel location (x, y) is converted

to (fx, fy), which has the same scale as the unit sphere:

fx=
2x−1−W

W
·tan

aW

2
, fy=−

2y−1−H

H
·tan

aH

2
, (2)

where aW and aH are the angular ranges of the viewport,

corresponding to W and H , respectively. Then, the corre-

sponding spherical location (φx,y, θx,y) is obtained by

φx,y = φ
p
k+arctan

(

fx sin c

ρ cos θp

k
cos c−fy sin θ

p

k
sin c

)

, (3)

θx,y = arcsin
(

cos c sin θpk +
fy sin c cos θp

k

ρ

)

, (4)

where

ρ =
√

f2
x + f2

y , c = arctan ρ. (5)

Next, the corresponding pixel locations of (φx,y, θx,y) on

the Ft and F
err
t are determined by the projection type of

the frame. Taking the equirectangular projection (ERP) as

an example, the corresponding pixel location (px,y, qx,y) of

(φx,y, θx,y) can be obtained by:

px,y=

(

φx,y

360°
+
1

2

)

WF+
1

2
, qx,y=

(

1

2
−

θx,y

180°

)

HF+
1

2
, (6)

where WF and HF are the width and height of the 360°

sequence frame, respectively. Finally, the pixel values at
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(x, y) in Ck and C
err
k are obtained by bilinear interpolation

at (px,y, qx,y) in Ft and F
err
t , yielding the 2D content of

proposed viewports.

VQ-net. The architecture of the VQ-net is shown in Fig-

ure 4. Both the content Ck and error map C
err
k of each

proposed viewport are fed into the VQ-net. These 2 inputs

are concatenated after going through 2 convolutional layers,

respectively. Then, a mini-DenseNet with 3 dense blocks, 3

transpose convolutional layers and a softmax activation are

developed to predict the saliency map M̂k of each proposed

viewport. These saliency maps can be seen as the results

of the second auxiliary task for modelling EM of subjects

in viewports of 360° video. Next, M̂k is up-sampled and

then used to weight the input error map C
err
k by Hadamard

product. Subsequently, the weighted error map is fed into a

shallow CNN structure with 3 convolutional layers, 2 max

pooling layers, a global average pooling layer and 2 fully

connected layers. Consequently, the VQA score sk of each

proposed viewport can be obtained.

Final VQA score of 360° video. Given the predicted

VQA scores {sk}
K
k=1 of the proposed viewports, the over-

all VQA score of one impaired frame (denoted as s̃) can be

obtained as the weighted average, according to the impor-

tance weights {wp
k}

K
k=1 of the proposed viewports:

s̃ =

∑K
k=1 w

p
k · sk

∑K
k=1 w

p
k

. (7)

At last, the VQA score of the input impaired 360° video

sequence can be obtained by averaging VQA scores of all

frames. This is the final output of our V-CNN, as an FR

VQA approach on 360° video.

3.4. Training implementation

Now, we focus on the training implementation of our V-

CNN approach, in which the VP-net and VQ-net are two

CNN models to be trained.

Training VP-net. When watching 360° video, the HM

positions of subjects are also the centers of the correspond-

ing viewports. Hence, we use the HM of subjects as the su-

pervision of the predicted importance weights ŵi and view-

port offsets ∆vi in the training of VP-net. Assume that

{vh
j =

(

φh
j , θ

h
j

)

}Jj=1 are the ground truth HM positions of

J subjects. Then, for the i-th anchor location v
a
i , the impor-

tance weight wi can be defined by the following Gaussian

distribution and normalization:

w̃i =

J
∑

j=1

exp

{

−
d2(va

i ,v
h
j )

2σ2

}

, wi =
w̃i

∑I
i=1 w̃i

. (8)

In (8), σ is the standard deviation; I is the quantity of an-

chor locations; d(va
i ,v

h
j ) is the great-circle distance [16]

between v
a
i and v

h
j . According to (8), importance weights

Table 1. Values of some key hyper-parameters.

Stage I

Great-circle distance threshold dth = 13.75°

Proposal quantity threshold Kth = 20
Standard deviation in (8) σ = 18.33°

Initial learning rate 1× 10−3

Weight decay 5× 10−5

Coefficient for Lw in (12) λw = 1
Coefficient for Lv in (12) λv = 5

Stage II

Viewport size (number of pixels) W,H = 540, 600
Angular range aW , aH = 71°, 74°

Initial learning rate 1× 10−3

Weight decay 5× 10−5

Coefficient for LMk
in (15) λM = 10

Coefficient for Lsk in (15) λs = 1× 103

Viewport
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Figure 4. Architecture of the VQ-net.

over all anchor locations can be regraded as the probability

distribution that whether the corresponding viewport can be

watched by subjects. Hence, we use the Kullback-Leibler

(KL) divergence as the loss function for predicting the im-

portance weights. To be more specific, we measure the

KL divergence DKL between the distribution of importance

weights {wi}
I
i=1 and their predicted values {ŵi}

I
i=1 at all I

anchor locations as follows,

Lw = DKL({wi}
I
i=1‖{ŵi}

I
i=1) =

I
∑

i=1

wi log

(

wi

ŵi

)

. (9)

At each anchor location v
a
i , the ground truth viewport offset

∆v
g
i is defined as the difference between v

a
i and its closest

HM position:

∆v
g
i = argmin

{vh
j
}J
j=1

d(va
i ,v

h
j )− v

a
i . (10)

Then, a smooth L1 loss [9], denoted as Lsmooth
1 , is applied

for the predicted viewport offset at each anchor location:

Lv =

I
∑

i=1

wi · L
smooth
1 (∆vi,∆v

g
i ). (11)

Note that in (11), the importance weights {wi}
I
i=1 are uti-

lized to weight Lsmooth
1 of different anchor locations, such

that the loss Lv is more sensitive to the loss at more impor-

tant anchor locations. Finally, the loss function for training

the VP-net is a combination of Lw and Lv:

LI = λwLw + λvLv. (12)

Training VQ-net. For training the VQ-net, both the

outputs of the saliency map and VQA score need to be
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Table 2. Comparison on VQA performance between our and other approaches, over all test sequences.

Approaches
Attributes Evaluation on VQA-ODV [19]

For 360° video Full reference Deep learning Re-trained* PLCC SROCC KROCC RMSE MAE

S-PSNR X X 0.6929 0.6976 0.4981 8.5407 6.6810

WS-PSNR X X 0.6721 0.6839 0.4860 8.7707 6.9089

CPP-PSNR X X 0.6812 0.6896 0.4912 8.6718 6.7932

BP-QAVR X X X X 0.6588 0.6801 0.4780 8.9112 7.0823

Li et al. X X X X 0.7821 0.7953 0.5902 7.3817 5.7793

VR-IQA-NET X X 0.3713 0.3379 0.2260 10.9984 9.1016

DeepQA X X X 0.6936 0.7296 0.5213 8.5325 6.7720

WaDIQaM-FR X X 0.6207 0.6162 0.4206 9.2868 7.4574

V-CNN (Ours) X X X X 0.8740 0.8962 0.7137 5.7551 4.4893

* The training code of the deep learning approaches checked in this column is available. Thus, they are re-trained on the same

training set as our approach before evaluation. Other approaches are evaluated with the pre-trained model provided by the authors.

supervised for each input viewport. For the supervision

of saliency prediction, we first follow [15] to generate the

ground truth saliency map Mk using the EM points of sub-

jects within the k-th input viewport. Then, the loss of

saliency prediction is calculated for the k-th input viewport

by the following KL divergence,

LMk
=DKL(Mk‖M̂k)=

∑

(x′,y′)

Mk(x
′, y′)log

{

Mk(x
′, y′)

M̂k(x′, y′)

}

,

(13)

where Mk(x
′, y′) and M̂k(x

′, y′) refer to the saliency val-

ues at location (x′, y′) of Mk and M̂k, respectively. For the

supervision of VQA, the following loss is applied for the

k-th input viewport:

Lsk = (s− sk)
2

, (14)

where sk is the VQA score rated by the VQ-net. In addi-

tion, s is the ground truth of difference mean opinion score

(DMOS) rated by subjects. Note that it is impractical to

obtain the DMOS value of each input viewport. Therefore,

in (14), the DMOS value of the 360° sequence is used as

the ground truth for supervising the VQA scores of view-

ports. Finally, the loss function for training the VQ-net is a

combination of LMk
and Lsk for the k-th input viewport:

LII
k = λMLMk

+ λsLsk . (15)

Training protocol. In training both VP-net and VQ-net,

the parameters are updated using the stochastic gradient de-

scent algorithm with the Adam optimizer. Weight decay is

also applied for regularization. Table 1 lists the values of

some key hyper-parameters in our approach. Among them,

the proposal quantity threshold Kth is set to 20, according

to the recommended number of subjects in subjective VQA

on 360° video [33]. Since the typical resolution of view-

port in HMD is 1080×1200 with 110×113° angular range

[8], the standard deviation σ in (8) is set to 18.33◦, such

that the range of 3σ can correspond to the angular range of

viewport. However, in stage II, the width W and height H

of the input viewports are set as half of the resolution of

HMD, corresponding to an angular range around 71× 74°.

It is because the subjects hardly fix their eyes beyond this

range [23]. Moreover, other hyper-parameters are obtained

by tuning over the training set.

4. Experimental results

4.1. Experiment settings

In this section, we present the experimental results to val-

idate the performance of the proposed V-CNN approach in

the main task of VQA on 360° video and in the auxiliary

tasks of viewport proposal and viewport saliency predic-

tion. In our experiments, we evaluate the performance in

the dataset of VQA-ODV proposed in [19]. Note that the

VQA-ODV [19] is the largest VQA dataset for 360° video,

which includes the DMOS, HM and EM data of 200+ sub-

jects in watching 540 impaired sequences and 60 reference

sequences. We follow the standard training/test set split

provided in [19]. That is, our V-CNN model is trained on

432 impaired sequences, and the remaining 108 impaired

sequences form the test set. It is worth mentioning that the

DMOS values of the VQA-ODV [19] are all reversed in this

paper, so that the larger values of DMOS indicate better vi-

sual quality.

Then, the performance of VQA can be evaluated by mea-

suring the agreement between the subjective and objective

quality scores2 on the test set. To this end, the correla-

tion between the DMOS values and objective scores of each

VQA approach is measured for all test sequences, in terms

of Pearson linear correlation coefficient (PLCC), Spearman

rank-order correlation coefficient (SROCC), Kendall rank-

order correlation coefficient (KROCC), root-mean-square

error (RMSE) and mean absolute error (MAE). We fol-

low [25] to apply a logistic function for fitting the objec-

tive VQA scores to their corresponding DMOS values, such

that the fitted scores of all VQA approaches are in the same

scale as DMOS. Then, PLCC, SROCC, KROCC, RMSE

and MAE are calculated for all pairs of the DMOS values

and the fitted objective scores. Note that the larger values

2Here, objective scores are the predicted results of VQA approaches.
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Figure 5. Scatter plots for the pairs of DMOS values and objective VQA scores of different approaches, over all test sequences.

of PLCC, SROCC and KROCC indicate higher correlation,

while the smaller values of RMSE and MAE mean less error

of using the objective scores to predict their corresponding

DMOS values.

4.2. Evaluation on VQA

Here, we compare the performance between our V-CNN

approach and other state-of-the-art approaches for VQA

on 360° video, including S-PSNR [38], WS-PSNR [28],

CPP-PSNR [39], BP-QAVR [36], VR-IQA-NET [21] and

Li [19]. Among them, S-PSNR, WS-PSNR and CPP-

PSNR are PSNR-related VQA approaches for 360° video,

approved in the standard [37] of the moving picture ex-

perts group (MPEG); BP-QAVR, VR-IQA-NET and Li are

DNN-based VQA approaches for 360° video. Additionally,

we compare two latest DNN-based FR approaches for 2D

image: DeepQA [17] and WaDIQaM-FR [2]. For more de-

tails about the attributes of these approaches, see Table 2.

Scatter plots. Figure 5 shows the scatter plots of the

objective VQA scores versus the DMOS values over all

108 impaired sequences in the test set. The logistic fit-

ting curves are also shown in this figure. In addition, the

color of the scatter points represents the absolute errors to

the fitting curves. Generally speaking, the intensive scatter

points close to the fitting curves are of little error, indicating

the high correlation between the objective VQA scores and

their corresponding DMOS values. It can be obviously seen

from Figure 5 that the VQA scores of our V-CNN approach

have much higher correlation with the DMOS values, com-

pared with all other VQA approaches. Therefore, we can

conclude that our V-CNN approach performs much better

than other approaches.

Quantitative results. Table 2 tabulates the results of

PLCC, SROCC, KROCC, RMSE and MAE for our V-CNN

approach and 8 other state-of-the-art approaches. The re-

sults of this table are obtained over all test sequences. We

can see from Table 2 that our V-CNN approach performs

significantly better than all other approaches in terms of 5

metrics. To be more specific, our approach achieves at least

0.09, 0.10, 0.12, 1.62 and 1.28 improvements in PLCC,

SROCC, KROCC, RMSE and MAE, respectively.

4.3. Ablation study

Ablation on viewport proposal. We investigate the

influence of viewport proposal in our V-CNN approach

through the following ablation experiments. The experi-

ments include four types of viewports: (1) the ground truth

viewports, (2) viewports proposed by our VP-net, (3) view-

ports at random locations and (4) re-sized frame (regarded

as whole video frame but no viewport). Figure 6(a) shows

the ablation results on viewports. It can be seen from Figure

6(a) that the performance of VQA is significantly degraded,

when the V-CNN approach uses the random viewports or

does not incorporate any viewport. In addition, the perfor-

mance of our V-CNN approach almost remains unchanged,

when replacing proposed viewports with the ground-truth

viewports. This indicates the effectiveness of the viewport

proposal for VQA on 360° video.

Ablation on saliency prediction. We further conduct

the ablation experiments to analyze the impact of view-

port saliency prediction on VQA. In our experiments, we

train the V-CNN with different loss weights on saliency

prediction, i.e., λM = 0, 100, 101, 102, 103 in (15). Note

that larger λM means more influence of saliency prediction

on VQA task. Figure 6(b) shows the VQA performance

at different values of λM. We can see that the V-CNN

without saliency prediction (i.e., λM = 0) performs worst.

Hence, we can conclude that saliency prediction is effec-
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Figure 6. Results of the ablation experiments.

tive for VQA in our V-CNN approach. On the other hand,

the VQA performance slightly reduces, when the V-CNN is

trained with smaller or larger λM than 101. This implies

that the under- or over-weighted loss on saliency prediction

degrades the performance of VQA in our V-CNN approach.

In addition, Figure 6(b) also plots the VQA performance

when replacing the predicted saliency by its ground truth.

As can be seen in this figure, the ground truth saliency leads

to a slight reduction on VQA performance, in comparison

with that with predicted saliency. It is probably because

the Mini-DenseNet of VQ-net learns the shared features for

both saliency prediction and VQA, as a typical characteris-

tic of multi-task learning. In summary, the ablation exper-

iments show the saliency prediction has positive impact on

our V-CNN approach for VQA.

4.4. Evaluation on auxiliary tasks

In our V-CNN approach, the auxiliary tasks of viewport

proposal and viewport saliency prediction can be used to

to model the HM and EM of subjects on 360° video, re-

spectively. Here, we verify the performance of our V-CNN

approach in these two auxiliary tasks.

Evaluation on viewport proposal. The center of each

proposed viewport can be seen as an HM position. We thus

evaluate the performance of viewport proposal by generat-

ing the heat maps of HM, the same as that in [34]. Then,

the accuracy of predicting HM heat maps is measured in

three metrics: normalized scanpath saliency (NSS), corre-

lation coefficient (CC) and KL divergence. The larger val-

ues of NSS/CC and smaller value of KL divergence mean

higher accuracy of HM prediction. For comparison, we

evaluate the performance of 4 state-of-the-art HM predic-

tion approaches for 360° video, i.e., Cheng [3], DHP [34],

GBVS360 [18] and BMS360 [18]. The experimental results

Table 3. Performance comparison on the auxiliary tasks.

(a) Results of HM modelling

Approaches NSS CC KL

Cheng et al. 1.96 0.35 2.50

DHP 1.98 0.37 2.41

GBVS360 1.16 0.22 2.31

BMS360 1.85 0.34 1.88

V-CNN (Ours) 2.65 0.63 2.38

(b) Results of EM modelling

Approaches NSS CC KL

DeepVS 1.10 0.36 1.95

BMS 0.89 0.26 1.42

GBVS 0.81 0.30 1.34

PQFT 0.73 0.19 1.60

V-CNN (Ours) 0.97 0.37 1.33

are shown in Table 3(a). It can be seen from this table that

the NSS and CC results of our V-CNN approach are higher

than those of all compared approaches, verifying the effec-

tiveness of our V-CNN approach in the first auxiliary task

of viewport proposal.

Evaluation on viewport saliency prediction. We fur-

ther validate the performance of our V-CNN approach in the

auxiliary task of viewport saliency prediction, via compar-

ing with 4 state-of-the-art saliency prediction approaches:

BMS [40], GBVS [11], PQFT [10] and DeepVS [15]. Sim-

ilarly, the metrics of NSS, CC and KL are evaluated. The

experimental results are reported in Table 3(b). As is shown

in this table, our V-CNN approach achieves the best per-

formance in the metrics of CC and KL. Therefore, we can

conclude that our V-CNN approach is also effective in the

second auxiliary task of viewport saliency prediction.

5. Conclusion

In this paper, we have proposed a V-CNN approach that

advances VQA on 360° video by exploring the potential

viewports and predicting viewport saliency. Our approach

is in accordance with the human’s way of watching 360°

video, since the observers can only see viewports. Our V-

CNN approach consists of two stages, i.e., viewport pro-

posal and VQA. In the first stage, the VP-net was developed

with a viewport softer NMS for proposing potential view-

ports. In this stage, the first auxiliary task of viewport pro-

posal is achieved. In the second stage, we designed a VQ-

net to rate the VQA score of each proposed viewport. In the

VQ-net, the saliency map of each proposed viewport is pre-

dicted, as the second auxiliary task; then it is used for VQA

of the viewport. Subsequently, the main task of VQA on

360° video is accomplished by integrating the VQA scores

of all proposed viewports. Finally, the experimental results

verified that the V-CNN approach significantly outperforms

8 other state-of-the-art approaches in VQA on 360° video,

and that it also performs well in the auxiliary tasks of view-

port proposal and viewport saliency prediction.
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