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Abstract

Authentication is a task aiming to confirm the truth be-

tween data instances and personal identities. Typical au-

thentication applications include face recognition, person

re-identification, authentication based on mobile devices

and so on. The recently-emerging data-driven authenti-

cation process may encounter undesired biases, i.e., the

models are often trained in one domain (e.g., for people

wearing spring outfits) while required to apply in other

domains (e.g., they change the clothes to summer out-

fits). To address this issue, we propose a novel two-stage

method that disentangles the class/identity from domain-

differences, and we consider multiple types of domain-

difference. In the first stage, we learn disentangled

representations by a one-versus-rest disentangle learning

(OVRDL) mechanism. In the second stage, we improve the

disentanglement by an additive adversarial learning (AAL)

mechanism. Moreover, we discuss the necessity to avoid

a learning dilemma due to disentangling causally related

types of domain-difference. Comprehensive evaluation re-

sults demonstrate the effectiveness and superiority of the

proposed method.

1. Introduction

Authentication considers the problem of whether the

data instances match personal identities. There is a vari-

ety of authentication applications including biometric au-

thentication [4, 22] (e.g. face recognition [41] and finger-

print verification [37]) and person re-identification [2, 43].

However, data-driven authentication process often suffers

from undesired biases, i.e., domain-difference, which refers

to the problem that a model is trained in one domain, but

tested and verified in other domains. For example, in the

field of person re-identification [2], the prediction may be

∗Equal contribution from both authors.

Class Group 1 Class Group 2 Class Group 3

Domain 1 Train Test Test

Domain 2 Test Test Train

Domain 3 Test Train Test

Table 1. An example of the assumptions of our problem.

compromised due to the seasonal outfits changing or the an-

gle variation between a camera and a pedestrian.

Faced with the domain-difference problem between

training and testing data, simply applying data-driven mod-

els may lead to undesired solutions that focus on the bi-

ases of domains, even if the training data is sufficient. To

alleviate the aforementioned problem, this paper addresses

the task of learning for unbiased authentication. For sim-

plicity, we treat authentication as a recognition problem so

that each identity corresponds to a class. We consider that

there are multiple domains and multiple types of domain-

difference, where a specific type of domain-difference may

include multiple domains. For example, for person re-

identification, season and shooting angle are two types of

domain-difference, where season includes four domains:

spring, summer, autumn, and winter, and shooting

angle includes domains such as front, back, side, etc.

To better understand our problem, we present a toy ex-

ample with only one type of domain difference in Table 1.

In the training phase, for each group of classes, we have

their data on only one domain. In other words, different

domains do not share classes. In the testing phase, we

need to do a recognition on data which corresponds to un-

seen 〈class, domain〉 combinations. Mathematically, the

problem we attempt to tackle is related to domain adapta-

tion [25, 8, 28, 32], but different from it, because domain

adaptation allows source and target domains to share classes

but provides no label on target domains. Domain adap-

tation has been extensively studied in the field of transfer

learning [24, 33, 32, 19]. Our problem can be transformed
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Figure 1. The architecture of our framework. Intuitively, our framework is constructed in a multi-task learning flavor. The output of

each task is regarded as an attribute to learn. The attribute-disentanglement pipeline of our work consists of two stages. Stage 1 consists

of multiple branches of networks, and each branch learns by a one-versus-rest disentangling mechanism. Stage 2 aims to make further

improvements, and the key ideas are illustrated in Fig. 3. Best viewed in color.

into a domain adaptation problem if the data of testing do-

mains are allowed to train without class labels. Thus, we

refer to our problem as a generalized cross-domain recogni-

tion (GCDR) problem. Similar problems have also been in-

vestigated in the field of fairness-oriented machine learning

(FML) approaches [7] which concern biases against demo-

graphic groups, such as racial minorities or women. FML

approaches in this setting usually apply transfer learning

methods as solutions as well. In this paper, we also apply

transfer learning methods to learn unbiased representations.

Specifically, to focus on the main issue, we simply apply

symmetric transfer learning methods (see the definition de-

scribed by Weiss et al. [33]).

In this paper, we propose a novel recognition method

that learns disentangled representations to handle domain-

difference to achieve an unbiased recognition. As shown in

Table 1, for a specific group of classes, the classes are dif-

ferent, but the domain is the same. Therefore, it is feasible

to learn an unbiased model that can classify classes while

neglecting the effects imposed by domain-differences. We

also assume that although we have the labels of domains and

domain-difference types, how the domain-differences affect

the data is unknown. For a data instance, its class and do-

main values are treated as its attributes. Our method learns

unbiased representations by disentangling these attributes.

The framework of our method is illustrated in Fig. 1, which

consists of two stages. In stage 1, we propose a one-versus-

rest disentangle learning (OVRDL) mechanism to map each

instance into multiple hidden spaces. In each hidden space,

we disentangle one attribute from others. In stage 2, since

limited combinations of attribute values are included in the

training data, we conduct a data augmentation to randomly

combine attribute labels and concatenate their associated

hidden feature vectors as new data samples. An additive

adversarial learning (AAL) mechanism based on random

concatenations of hidden features is proposed to further im-

prove the disentanglement of stage 1. Intuitively, biases are

removed by minimizing negative side-effects. We extend

the discussion on how to avoid a learning dilemma due to

disentangle causally related attributes. The experimental re-

sults on benchmark and real-world data sets demonstrate the

effectiveness and superiority of our method. We also con-

duct ablation experiments to show the contribution of each

component of our proposed framework.

2. Related Work

To learn unbiased representations from unknown fea-

tures of domain-difference, there are three thrusts of meth-

ods to leverage existing transfer learning methods, which

are also the typical solutions for representation-learning

based FML. In this section, we review them as well as some

other related work, and differentiate them from our work.

Eliminating the marginal-distribution differences The

first family eliminates marginal-distribution differences be-

tween domains. This family of methods includes Transfer

Component Analysis (TCA) [23], Deep Adaptation Net-

work (DAN) [17], Reversing Gradient (RevGrad) [9], Ad-

versarial Discriminative Domain Adaptation (ADDA) [29],

among others. FML methods proposed by Goel et al. [10]

and Zhang et al. [39] also fall into this category. Many

FML methods adopt RevGrad, such as those proposed by

Wadsworth et al. [31] and Beutel et al. [3].

Generating data with unseen 〈class, domain〉 combi-
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nations The second family generates data samples as-

sociated with unseen 〈class, domain〉 combinations, such

as ELEGANT [35], DNA-GAN [34], Multi-Level Varia-

tional Autoencoder (ML-VAE) [5], CausalGAN [14], Res-

GAN [27], SaGAN [40], among others. FML methods Fair-

ness GAN [26] and FairGAN [36] also fall into this cate-

gory. These methods generate synthetic data, then ordinary

models can be trained on both real and the generated data.

Hybrid methods The third family performs both

marginal-distribution-difference elimination and synthetic-

data generation, such as Cross-Domain Representation Dis-

entangler (CDRD) [15], Synthesized Examples for Gener-

alized Zero-Shot Learning (SE-GZSL) [30], Disentangled

Synthesis for Domain Adaptation (DiDA) [6], Attribute-

Based Synthetic Network (ABS-Net) [18], among others.

Madras et al. [20] proposed such a FML framework.

Other related work Such a phenomenon of grouped

classes was also discussed by Bouchacourt et al. [5] and

Zhao [42]. However, they did not provide learning meth-

ods to eliminate domain-differences. It was also discussed

by Heinze-Deml and Meinshausen [12]. However, they as-

sumed classes with various domains are already included in

the training data. Yu et al. [38] also discussed the setting

that classes were not necessarily shared by multiple source

domains. However, their method assumes that all the 〈class,

domain〉 combinations are included in the training data set.

Differences between the existing works and our pro-

posed method Despite the achievements, existing ap-

proaches either do not handle the GCDR problem or can-

not avoid the learning dilemma due to disentangling corre-

lated types of domain-difference. In addition, most of the

generative methods generate samples in the original data

space. However, if an appropriate model-structure is cap-

tured, generating data in the original data space is not nec-

essary, and it may cause additional errors during both data

generation and learning on the generated data. The afore-

mentioned concerns are addressed by our proposed method.

3. Methodology

This section details our proposed network. We first de-

fine notations and problem settings. Consider a data set

D = {(xi, yi,hi)}ni=1 consisting of n independent sam-

ples. For the ith sample, xi ∈ R
d is a feature vector with

d dimensions, yi ∈ Z+ is a categorical class label of the

recognition task, and hi ∈ Z
m
+ is a vector consisting of m

categorical domain attributes. For example, in the colored

MNIST (C-MNIST) recognition (see the image examples in

the Fig. 6 of Lu et al. [18]), xi can be a colored image of

digits with the size of 28× 28, the class label denoted by yi

is a value in {0, 1, . . . , 9}, the background color (denoted

by hi
1) and foreground color (denoted by hi

2) of the image

(a) Training

(b) Testing

Figure 2. An experiment setting of C-MNIST with the background

color as the domain-difference. Best viewed in color.

are the two types of attributes. The different combinations

of background colors and foreground colors can form mul-

tiple domains. For the convenience of the presentation, we

denote ai = (yi,hi) ∈ Z
(m+1)
+ as the generalized attribute

vector of the sample i. We denote aij as the jth element

of ai, and aij ∈ {1, 2, . . . , kj}, where kj is the size of the

set. Throughout the paper, we denote [k] as the index set

{1, 2, . . . , k}.

In practice, samples of the data set D are usually incom-

plete. For the example shown in Fig. 2, one can observe

images of digit 5 with the red background, and digit 2 with

green background, while one wants to make predictions on

images of 5 with the green background. Formally, we define

the GCDR problem as follows.

Problem 1. (Generalized Cross-Domain Recognition

(GCDR)) Given a data set D = {(xi,ai)}ni=1, let DΩ be

the partially observed training set. The goal of our learn-

ing problem is to train a model over examples with partially

observed combinations of attribute values, and then gener-

alize this model to the testing set DΩ̄ with missing combi-

nations of attribute values.

Denote the sets of combinations of attribute values for

the training and testing sets as CΩ = {[ai1, . . . , a
i
(m+1)] :

i ∈ Ω} and CΩ̄ = {[ai1, . . . , a
i
(m+1)] : i ∈ Ω̄}, re-

spectively. We have the constraint that the two sets have

no intersection, i.e., CΩ
⋂

CΩ̄ = ∅. In addition, for the

training set, for each jth type of domain-difference, de-

note the class group corresponding to its rth domain as

Gr
j = {yi : hi

j = r, r ∈ [kj ], i ∈ Ω}. We have the con-

straint that different domains do not share classes, i.e., for

each jth type of domain-difference, Gr
j

⋂

Gr′

j = ∅ for all

r, r′ ∈ [kj ] and r 6= r′.

The structure of our framework is based on the ABS-

Net [18], and further novelly extends with these contri-

butions: (1) a one-versus-rest disentangle learning mech-

anism, (2) an AAL mechanism to further improve disentan-

gle performances, (3) an extended strategy to cease some

disentangling processes to avoid a learning dilemma due to

disentangling causally related attributes, which will be in-

troduced in the following.
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3.1. One­Versus­Rest Disentangle Learning

Our chief goal is to disentangle the class from all the

types of domain-difference. Moreover, as an auxiliary, we

also aim to disentangle each type of domain-difference from

the class and other types of domain-difference. As men-

tioned previously, if we regard the class and all the types

of domain-difference as attributes, we aim to disentangle

each attribute from others. Therefore, we can develop a

one-versus-rest strategy for each attribute to achieve two

purposes: (1) to learn each attribute itself, and (2) to dis-

entangle it from others.

Specifically, for each attribute j ∈ [m+ 1], we learn the

mapping from the raw-data space to a hidden space: x → fj
(here we omit the indices of sample order). In the hidden

space, the two purposes above can be externalized as fol-

lows. (1) Samples associated with different categorical val-

ues of attribute j can be well separated, i.e., P (aj | fj) = 1.

(2) The distribution of samples is independent with that of

any other attribute j′, i.e., P (aj′ | fj) = P (aj′), which can

be achieved by an adversarial learning process.

As shown in Fig. 1, in stage 1, we construct a network

to achieve the aforementioned purposes. For the feature

vector x of a raw instance, it is transformed by an input-

feature transformation network P into a hidden feature

vector fc which is further transformed by attribute-feature

learning networks G1, . . . , Gm+1 into attribute feature vec-

tors f1, . . . , fm+1, respectively. For each attribute j, we ex-

pect the hidden space associated with the attribute feature

vector fj to achieve the two purposes above.

To achieve the aforementioned purposes, we develop a

one-versus-rest disentangle learning (OVRDL) mechanism

for each attribute. For each attribute j, we construct (m+1)
discriminative networks, Dj1, . . . , Dj(m+1). Each discrim-

inative network is trying to discriminate between different

categorical values of the associated attribute. We expect

that the “diagonal network” Djj learns directly and can

correctly predict aj , while the “non-diagonal” networks,

{Djj′}j′ 6=j , learn adversarially and cannot correctly pre-

dict aj′ . Following the adversarial learning mechanism

proposed by Alexia [13], a brief version of the adversarial

learning for the “non-diagonal” networks can be regarded

as the following two alternative steps [13].

Step 1: fix Gj , and for each j′ 6= j, optimize Djj′ to let the

outputs approximate ãj′ which is the one-hot-coded vector

of the target aj′ ;
Step 2: fix Djj′s for all j′ 6= j, and optimize Gj to let the

outputs approximate (1− ãj′).
Finally, we establish the OVRDL mechanism in stage 1.

For learning each attribute, we optimize by

min
G0,{Gj},{Djj}

∑

i∈Ω

wjLat(Djj(Gj(G0(x
i))), ãi

j), (1)

where Lat is the loss function for the attribute learning, ãij

is the one-hot encoded vector of aij , and wj is the weight for

the jth attribute, j ∈ [m + 1]. For discriminating domains

for each type of domain-difference, we optimize by

min
{D

jj′
}

∑

i∈Ω

∑

j′ 6=j

w̃jj′Lad(Djj′(Gj(G0(x
i))), ãi

j′), (2)

where Lad is the loss function for the adversarial learning,

and w̃jj′ is the weight for the (j, j′) pair, j, j′ ∈ [m+1]. To

re-enforce attribute learning during the adversarial learning,

we optimize by

min
G0

∑

i∈Ω

w̃jjLad(Djj(Gj(G0(x
i))), ãi

j). (3)

Finally, for eliminating all types of domain-difference, we

optimize by

min
G0,{Gj}

∑

i∈Ω

∑

j′ 6=j

w̃jj′Lad(Djj′(Gj(G0(x
i))), z̃i

j′), (4)

where z̃
i
j′ = 1− ỹi

j′ .

The activation function chosen for the last layer of the

discriminative networks is a softmax function. We choose

the cross-entropy loss as Lat, and the mean square error as

Lad (referring to LSGAN [21]). Eq. (1), (2), (3) and (4)

are alternatively optimized. For each mini-batch, Eq. (1)

and (2) run one step, while Eq. (3) and (4) run five steps.

For inference by only stage 1, we stack P,G1 and D11

to predict the class label yi for each sample i. Although dis-

entangling the class from all the types of domain-difference

can be accomplished only by the first branch of the network,

i.e., the networks directly connected to G1, we think that

such a modeling strategy does not leverage sufficient super-

vised information to improve the representation ability of

P . Later on in Section 4 we demonstrate that this results in

a drastic decrease of accuracy by our ablation study.

We show that our optimization scheme can improve

Equality of Odds, which is a fairness measure defined by

Hardt et al. [11]. It means that a predictor Ŷ and a domain

variable Z are conditionally independent given the true la-

bel Y , i.e., P (Ŷ | Z, Y ) = P (Ŷ | Y ).

Theorem 1. For the GCDR problem and the defined model,

our optimization scheme defined by Eq. (1) ∼ Eq. (4) can

improve the equality of odds defined by Hardt et al. [11].

Proof. The proof is in the supplementary material.

3.2. Additive Adversarial Learning

To further improve the disentangle performance, we pro-

pose an additive adversarial learning (AAL) mechanism

taking advantage of the attribute-combinations that are not

seen in the training data. The attribute-combinations are

generated by a data-augmentation procedure. We expect the

AAL mechanism to have the following property: when the
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module “sees” the unseen 〈class, domain〉 combinations, bi-

ases are removed by minimizing negative side-effects.

First, we describe the data-augmentation procedure. For

each ith generated data instance, the feature vector is a com-

bination of (m+ 1) feature vectors, f̃ i1, . . . , f̃
i
(m+1), and the

associated attribute vector is [ãi1, . . . , ã
i
(m+1)]. For each at-

tribute j ∈ [m + 1], f̃ ij = f lj and ãij = alj , where f lj and

alj are the lth attribute feature vector and attribute value for

attribute j, respectively, and l ∈ Z+ is a random index of

training instances. For different attributes, the random in-

dices can be different. For example, assuming m = 1,

for two samples, ([f11 , f
1
2 ], [a

1
1, a

1
2]) and ([f21 , f

2
2 ], [a

2
1, a

2
2]),

a generated data sample can be ([f11 , f
2
2 ], [a

1
1, a

2
2]). The

screening strategy of Lu et al. [18] is applied.

Next, we derive the AAL mechanism. The nr generated

data samples are separated into two collections: Ωs = {i ∈
[nr]: the attribute-value combination [ãi1, . . . , ã

i
(m+1)] has

been seen in the training data}, and Ωu = {i ∈ [nr]: the

attribute-value combination [ãi1, . . . , ã
i
(m+1)] has not been

seen in the training data}. Based on these two collections,

we illustrate our key idea of AAL by Fig. 3. Assume there

are only two attributes: digit and background color, which

are for the learning of two branches of the network, respec-

tively. We assume that the disentanglement of stage 1 is

already close to the optimum. Then for the seen attribute-

value combinations, for each attribute j, we learn a trans-

formation network Tj to predict ãj only. We assume that

this learning process let the networks fit the data of seen

combinations, e.g., a digit five with red background can

be precisely recognized as “5” for digit and “red” for the

background. Then for an unseen combination, a digit five

and green background, we let the network to output “5” for

digit and “green” for the background. Under the assumption

above, if the output color is not “green”, we believe the error

is from the red information of the first branch. Therefore we

back-propagate the loss from the second output to the first

branch to eliminate the background information within. Fi-

nally, the bias in the first branch can be removed.

As shown in the second part of stage 2 in Fig. 1, for each

generated data sample, the feature vectors, f̃ i1, . . . , f̃
i
(m+1),

are transformed into additive feature vectors s1, . . . , s(m+1)

by additive space transformation networks T1, . . . , T(m+1),

respectively. The additive feature vectors s1, . . . , s(m+1)

are added as a summative feature vector u which is sent to

recognition networks R1, . . . , R(m+1). For attribute-value

combinations seen in the training data, for each attribute

j ∈ [m + 1], the loss from Rj is back propagated only to

Tj , i.e., we optimize the following problem:

min
Rj ,Tj

∑

i∈Ωs

w′
jLr

(

Rj

(

m∑

j′=1

Tj′(f̃
i
j′)

)

, ãi
j

)

, (5)

where Lr is the recognition loss function, and w′
j is the

Figure 3. Key ideas of our AAL mechanism. Dotted lines represent

the directions of backpropagation. Best viewed in color.

weight for the attribute j ∈ [m + 1]. On the other hand,

for attribute-value combinations unseen in the training data,

for each attribute j ∈ [m + 1], the loss from Rj is back

propagated to TSj
, where Sj = {j′ ∈ [m+ 1] : j′ 6= j}:

min
Rj ,TSj

∑

i∈Ωu

w′
jLr

(

Rj

(

m∑

j′=1

Tj′(f̃
i
j′)

)

, ãi
j

)

. (6)

The additive learning mechanism holds two good prop-

erties: (1) the discriminative information in each dimension

can be expressed in an additive form which is decompos-

able, and (2) each dimension of sj for all j ∈ [m + 1] has

the same meaning, which allows us to incorporate sparse

penalties to let each group of dimensions of the additive

feature vectors correspond to a single attribute.

Same as in stage 1, we choose softmax activation func-

tions and cross-entropy loss for the last layers. For infer-

ence, we stack P,G1, T1 and R1 to predict the class label.

3.3. Discussion on Causal Extension

We further consider alleviating a dilemma of disentan-

gling when some attributes are correlated. For the most ex-

treme case, if two attributes are identical, it is not possible

that we cannot recognize one attribute based on a feature

vector but can recognize another. Therefore, intuitively, we

should not disentangle correlated attributes. However, “cor-

relation” is a broad, imprecise concept. If we do not dis-

entangle for all the correlated attributes, we may encounter

insufficient disentanglement. We consider a specific type of

correlation: causal relationships. We theoretically demon-

strate in Theorem 2 that for any attribute j, if another at-

tribute j′ causes it, then learning a feature vector fj to rec-

ognize attribute j while disentangling it from attribute j′

may hurt the recognition for attribute j. This is because if

fj is independent with attribute j′, since attribute j′ causes

attribute j, the correlation between fj and attribute j is lim-
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ited. Therefore, if the prior information of causal relation-

ships between attributes is given, we should cease some dis-

entangling processes to avoid the learning dilemma.

Specifically, for stage 1, we can use a prior matrix Λ ∈
{0, 1}(m+1)×(m+1) to handle causalities between attributes.

For all j, j′ ∈ [m + 1] and j′ 6= j, we multiply the weight

w̃jj′ in Eq. (2) and Eq. (4) by Λjj′ . Based on Theorem 2,

we set Λjj′ = 0 if attribute j′ causes attribute j, and set

Λjj′ = 1 otherwise. For stage 2, for the indices collection

Sj in Eq. (6), we can delete the indices of attributes that are

caused by attribute j, for each j ∈ [m+ 1].

Theorem 2. For all attribute j ∈ [m+ 1], for an arbitrary

feature vector fj , denote the true label of fj as aj ∈ Z+.

Then for attributes j, j′ ∈ [m+1] and j 6= j′, if attribute j′

causes attribute j, we cannot reach both the learning goals

P (aj | fj) = 1 and P (aj′ | fj) = P (aj′) perfectly. How-

ever, if attribute j causes attribute j′, it is possible to reach

both the learning goals perfectly. The proof can be found in

the supplementary material.

Proof. The proof is in the supplementary material.

4. Experiments

In this section, we evaluate the proposed method.

Both synthetic and real-world data sets are used for

evaluations. Our implementation uses Keras with

Tensorflow [1] backends, which can be found at

https://github.com/langlrsw/AAL-unbiased-authentication.

We consider a recognition task in the presence of sev-

eral types of domain-difference. For each type of domain-

difference, different domains do not share classes in the

training set, and the training and testing sets do not share

combinations of 〈class, domain〉. Comprehensive evalua-

tions are conducted on three data sets: (1) the C-MNIST

data set [18] with 10 classes and m = 2 types of domain-

difference, (2) the re-organized CelebA data set [16] with

211 classes and m = 1 type of domain-difference, and (3)

our developed authentication data set based on mobile sen-

sors with 29 classes and m = 1 type of domain-difference.

For each data set, the re-organization will be described in

detail in the corresponding section, and 10% data of the

testing set were randomly selected for validation. The eval-

uations follow the GCDR setting defined in Problem 1.

Methods for Comparison As discussed in Section 2,

there are three thrusts of methods to leverage existing trans-

fer learning methods to handle domain-difference. For the

first thrust that eliminates the marginal distribution differ-

ences, we chose RevGrad [9], which also serves as the so-

lution of the FML methods of Beutel et al. [3]. For the sec-

ond thrust that generates data with unseen 〈class, domain〉
combinations, we chose ELEGANT [35] which only uses

domain labels and ML-VAE [5] which only uses class la-

bels. For the third thrust that uses hybrid solutions, we

chose ABS-Net [18] which is the base method of ours with-

out an adversarial mechanism, and CDRD [15] and SE-

GZSL [30], which can be treated as advanced instantiated

algorithms under the FML framework of Madras et al. [20].

Finally, we compare the direct learning strategy that stacks

P,G1, and D11 as the whole network.

Evaluation Metrics We investigate prediction perfor-

mances for both multi-label and multi-class types of recog-

nition. Therefore, for the multi-label type, we use aver-

age AUC (aAUC) which is defined as the mean value of

the area under the ROC curve for each class, the average

false acceptance rate (aFAR), and the average false rejec-

tion rate (aFRR). Because the number of negative samples

is far greater than that of positive samples for each class, we

report aAUC and (aFAR + aFRR)/2. For the multi-class

type, we report top-1 accuracy (ACC@1).

Implementation Details For all experiments, G1, . . . , Gm

and {Tj} are built by a single hidden layer with hyper-

bolic tangent as the activation function, respectively. Hid-

den units are flattened before being fed into attribute-feature

learning networks. {Djj′} and {Rj} are built by general-

ized linear layers. A Convolutional Neural Network (CNN)

with two convolutional layers is used as the input feature

transformation network P for image data sets. A fully-

connected neural network with one hidden layer P is used

for vector based data sets. The weights {wj}, {w̃jj′}, and

{w′
j} are set as follows. We set w1 = w′

1 = 1 and w̃j1 = 1
for each j ∈ [m+ 1]. Other weights are equally set to 0.1.

4.1. Handwritten Digital Experiments

We re-construct the C-MNIST data set originally built

by Lu et al. [18] for performance evaluation. For origi-

nal gray images of MNIST, 10 different colors are added

as background colors (b-colors) and other 10 different col-

ors are added as foreground colors (f-colors), which results

in a new C-MNIST that consists of 70k colored RGB digi-

tal images with resolution of 28 × 28 (60k for training and

10k for testing) from 1k possible combinations (10 digits ×
10 b-colors × 10 f-colors). Examples from C-MNIST are

shown in Fig. 6 of Lu et al. [18].

In this paper, we set the digit recognition as the primary

learning task. The background and foreground colors can

be treated as two types of domain-difference. It is evident

that the background colors are independent with the digits.

However, they have server influence on the prediction accu-

racy because they occupy most of the image area. There-

fore, we use the background color as the domain-difference

that groups the digits. As shown in Fig. 2, in the training

data, digits 0 ∼ 4 are associated with a green b-color, while

5 ∼ 9 are associated with a pink b-color, other data are

dropped. The data with 〈0 ∼ 4, pink b-color〉 and 〈5 ∼ 9,

green b-color〉 combinations are for testing. The foreground
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Methods aAUC (aFAR + aFRR)/2 ACC@1

Direct 78.35 26.70 20.96

RevGrad [9, 3] 80.71 24.45 21.68

CDRD [15, 20] 84.83 35.79 33.49

SE-GZSL [30, 20] 99.79 2.72 94.83

ELEGANT [35] 79.94 24.61 10.68

ML-VAE [5] 77.26 28.06 18.73

ABS-Net [18] 77.69 27.41 15.92

Ours 98.42 6.14 84.27

Table 2. Performances (%) comparison on the C-MNIST data set.

“Direct” means stacking P,G1, and D11 as the whole network.

attribute is also used to disentangle, but we allowed it share

digits in the training data. We have 5970 training instances

and 1003 testing instances in total.

Table 2 summarizes the performance comparisons on C-

MNIST. The results send a clear message that our method

significantly outperforms the direct learning method, which

shows the effectiveness of our method. Furthermore,

our method outperforms other baseline methods signifi-

cantly, except for the SE-GZSL method. We conjecture

that C-MNIST is easy for SE-GZSL because the domain-

difference is the background color which is simple and sta-

ble. However, in real applications, these properties barely

hold, which on the succeeding two real-world data sets we

will show that its performance drops.

We extended the experiments for other background col-

ors and the foreground colors. Please find more details in

the supplementary material.

4.2. Face Recognition

We use aligned, and cropped version of the CelebA data

set [16] and scale all images to 64× 64. We chose the Eye-

glasses attribute as the domain-difference. We select indi-

viduals who have at least 20 images and #(Eyeglasses =
0)/#(Eyeglasses = 1) ∈ [3/7, 7/3], resulting in 211
individuals. Half of the individuals wear glasses during

training and without glasses during testing. The other

half wear no glasses during training and wear glasses dur-

ing testing. Table 3 shows the comparisons conducted on

CelebA. Our method significantly outperforms other meth-

ods in aAUC and (aFAR + aFRR)/2—the multi-label type

of metrics. The SE-GZSL method underperforms, which

suggests its insufficient inconsistency. The result demon-

strates that complex and variable domain-difference types

on real-world data sets are difficult for SE-GZSL to learn.

The CDRD method underperforms in aAUC and (aFAR +
aFRR)/2, but outperforms in ACC@1, because the posi-

tive samples of the majority of individuals have lower pre-

diction scores, but the positive samples of more individuals

have high prediction scores, which shows less satisfactory

authentication performance for the majority of individuals.

Methods aAUC (aFAR + aFRR)/2 ACC@1

Direct 78.54 42.10 11.07

RevGrad [9, 3] 80.12 31.18 10.96

CDRD [15, 20] 80.20 39.90 16.47

SE-GZSL [30, 20] 84.96 26.62 12.76

ELEGANT [35] 75.88 32.02 10.05

ML-VAE [5] 75.29 36.07 7.97

ABS-Net [18] 75.80 34.90 8.09

Ours 87.07 22.19 14.99

Table 3. Performances (%) comparison on the CelebA data set.

No. 1-6 No. 7-12 No. 13-15 No. 16-29

IOS Train Test × Train

Android Test Train Train ×

Table 4. The authentication problem on mobile devices. The num-

bers in the first row indicate groups of subjects. “×” means there

are no data for this condition.

Methods aAUC (aFAR + aFRR)/2 ACC@1

Direct 76.90 28.21 3.56

RevGrad [9, 3] 75.88 32.38 0.38

CDRD [15, 20] 89.17 20.26 46.05

SE-GZSL [30, 20] 78.83 26.12 20.54

ML-VAE [5] 77.16 27.18 4.68

ABS-Net [18] 76.58 28.09 5.13

Ours 93.40 13.59 46.37

Table 5. Performances (%) comparison on the Mobile data set.

4.3. Authentication on Mobile Devices

We also build a data set containing sensor information of

smart-phones from 29 subjects, which records two-second

time-series data from multiple sensors, such as accelerom-

eter, gyroscope, gravimeter, etc. Statistical features from

both time and spectrum domains are extracted with 191 di-

mensions for all the 5144 data instances. The OS types

(IOS/Android) are considered to be the domain-difference.

We select 12 subjects that have used both types of the phone

system and then construct a biased learning task as shown

in Table 4. The ELEGANT method is not suitable for non-

image data and therefore is removed. The results are re-

ported in Table 5, in which our method significantly outper-

forms other methods in aAUC and (aFAR + aFRR)/2. The

SE-GZSL method also underperforms for this difficult type

of domain-difference as well. The CDRD method still un-

derperforms in the multi-label type of metrics, especially in

(aFAR + aFRR)/2.

4.4. Ablative Study

We conduct a series of ablation experiments on the C-

MNIST data set in the aforementioned setting to demon-
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Methods aAUC (aFAR + aFRR)/2 ACC@1

Stage 1+2 98.42 6.14 84.27

Stage 1 95.91 10.20 70.56

Single-Branch 78.87 26.70 24.47

Shared-Ds 87.27 18.72 46.75

No-Adv-Stage-1 92.47 14.81 46.97

No-Adv-At-All 77.69 27.41 15.92

Direct 78.35 26.70 20.96

Table 6. Results of the ablation study.

strate how the OVRDL (stage 1) and AAL (stage 2) mecha-

nisms contribute to the performance. Specifically, we com-

pare the performance of the following four model variants.

Single-Branch. Only the first branch of networks in stage

1 is left. Stage 2 is therefore removed because it works with

a multi-branch stage 1.

Shared-Ds. D1j = . . . = Dmj , for all j ∈ [m+ 1].
No-Adv-Stage-1. The networks {Djj′}j 6=j′ in stage 1 are

removed.

No-Adv-At-All. Based on No-Adv-Stage-1, in stage 2,

losses are back-propagated to all the networks as normal. It

is the ABS-Net [18] method.

The results are presented in Table 6. It is notable that

Single-Branch’s performances drastically decrease compar-

ing with other methods containing adversarial learning. The

performances of Single-Branch are similar to those of the

related approaches listed in Table 2. Such phenomenon sug-

gests that building a single-branch model to handle domain-

differences is not sufficient and that it is worthwhile to build

a multi-branch model to learn all the attributes to improve

the representation ability of P . Such a multi-branch struc-

ture is the main difference between our method and the re-

lated approaches, which we believe is of the main structural

contributions of our framework. Besides, Shared-Ds’ per-

formances also decrease considerably. It is worth mention-

ing that, for Shared-Ds, the performances of both stages

are nearly the same. These phenomena demonstrate that

restricting the attribute vectors in the same space harms

their learning of independent representations. Comparing

No-Adv-Stage-1 with Shared-Ds, no adversarial learning

in stage 1 is better than “shared” adversarial learning, which

also demonstrates the importance of independent represen-

tations. These phenomena demonstrate the high effective-

ness of our proposed OVRDL mechanism.

On the other hand, compared stage 1+2 with stage 2, the

improvement gained from stage 2 is significant. For No-

Adv-Stage-1, it is worth mentioning that it can only achieve

aAUC of 75% without stage 2. Moreover, No-Adv-At-All

significantly underperforms compared with No-Adv-Stage-

1 by only changing the back-propagation mechanism of

stage 2. These phenomena demonstrate the high effective-

ness of our proposed AAL mechanism in stage 2.

Figure 4. Improvements of the AAL mechanism in stage 2 during

different training phases of stage 1.

We further investigate the effectiveness of the AAL

mechanism during different training phases of stage 1.

Fig. 4 shows that the AAL mechanism can contribute 25%

absolute performances at the beginning of the training. At

the middle and later phases of training, the improvements

are limited, because AAL aims to eliminate biased factors

in the features further, but such factors are nearly cleansed

to the optimum by stage 1.

5. Conclusion

In this paper, we investigate data biases and a general-

ized cross-domain recognition problem in the field of au-

thentication where domains do not share classes. We recog-

nize the class for unseen 〈class, domain〉 combinations of

data. We propose a two-stage disentangle learning method

to tackle the problem. The stage 1 builds a one-versus-rest

disentangle learning mechanism to disentangle the class and

each type of domain-difference. The stage 2 conducts a

data augmentation and uses a proposed additive adversarial

learning to improve the disentanglement of stage 1 further.

We also discuss how to avoid the dilemma due to disentan-

gling causally related types of domain-difference. The ex-

periments demonstrate that our method significantly outper-

forms existing state-of-the-art methods. We also conduct an

ablation study to demonstrate the effectiveness of the crit-

ical components of our method. Some interesting future

directions of research include developing transfer learning

algorithms flexible to train to increase the number of types

of domain-difference.
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