
Spherical Regression:

Learning Viewpoints, Surface Normals and 3D Rotations on n-Spheres

Shuai Liao Efstratios Gavves Cees G. M. Snoek

QUVA Lab, University of Amsterdam

Abstract

Many computer vision challenges require continuous

outputs, but tend to be solved by discrete classification. The

reason is classification’s natural containment within a prob-

ability n-simplex, as defined by the popular softmax activa-

tion function. Regular regression lacks such a closed geom-

etry, leading to unstable training and convergence to sub-

optimal local minima. Starting from this insight we revisit

regression in convolutional neural networks. We observe

many continuous output problems in computer vision are

naturally contained in closed geometrical manifolds, like

the Euler angles in viewpoint estimation or the normals in

surface normal estimation. A natural framework for posing

such continuous output problems are n-spheres, which are

naturally closed geometric manifolds defined in the R
(n+1)

space. By introducing a spherical exponential mapping on

n-spheres at the regression output, we obtain well-behaved

gradients, leading to stable training. We show how our

spherical regression can be utilized for several computer

vision challenges, specifically viewpoint estimation, sur-

face normal estimation and 3D rotation estimation. For all

these problems our experiments demonstrate the benefit of

spherical regression. All paper resources are available at

https://github.com/leoshine/Spherical Regression.

1. Introduction

Computer vision challenges requiring continuous out-

puts are abundant. Viewpoint estimation [28, 29, 33, 35],

object tracking [12, 17, 18, 34], and surface normal estima-

tion [1, 8, 30, 39] are just three examples. Despite the con-

tinuous nature of these problems, regression based solutions

that seem a natural fit are not very popular. Instead, classi-

fication based approaches are more reliable in practice and,

thus, dominate the literature [20, 24, 33, 34, 35]. This leads

us to an interesting paradox: while several challenges are

of continuous nature, their present-day solutions tend to be

discrete.

In this work we start from this paradox and investigate

why regression lags behind. When juxtaposing the mechan-

X

Y

Z

φ

x

y

z
[!" , !$, !%]

x

y

z

θ

y’
x’

z’

q = a + bi + cj + dk

S1: cos2φ + sin2φ = 1

S2: !"
& + !$

& + !%
& = 1

x

y

φ

(cosφ, sinφ)

X

Y

Z

θ

(a) 2D rotation

(b) Surface normal vector

(c) 3D rotation S3 : a2 + b2 + c2 + d2 = 1

Figure 1. Many computer vision problems can be converted

into a n-sphere problem. n-spheres are naturally closed geomet-

ric manifolds defined in the R
(n+1) space. Examples are a) view-

point estimation, b) surface normal estimation, and c) 3D rotation

estimation. This paper proposes a general regression framework

that can be applied on all these n-sphere problems.

ics of classification and regression we observe that classifi-

cation is naturally contained within a probability n-simplex

geometry defined by the popular softmax activation func-

tion. The gradients propagated backwards to the model are

constrained and enable stable training and convergence. In

contrast, regression is not contained by any closed geome-

try. Hence, the gradients propagated backwards are not con-

strained, potentially leading to unstable training or conver-

gence to suboptimal local minima. Although classification

solutions for continuous problems suffer from discretization

9759

errors in annotations and predictions, they typically lead to

more reliable learning [20, 24].

Founded on the relation between classification, regres-

sion and closed geometric manifolds, we revisit regression

in deep networks. Specifically, we observe many continu-

ous output problems in computer vision are naturally con-

tained in closed geometrical manifolds defined by the prob-

lem at hand. For instance, in viewpoint estimation, angles

cannot go beyond the [−π, π] range. Or, in surface nor-

mal estimation the ℓ2 norm of the surface normals must

sum up to 1 to form unit vectors that indicate directional-

ity. It turns out that a natural framework for posing such

continuous output problems are the n-spheres Sn [7, 10],

which are naturally closed geometric manifolds defined in

the R
(n+1) space. We, therefore, rethink regression in con-

tinuous spaces in the context of n-spheres, when permitted

by the application. It turns out that if we introduce a pro-

posed spherical exponential mapping on n-spheres at the re-

gression output we obtain regression gradients that are con-

strained and well-behaving, similar to classification-based

learning. We refer to regression using the proposed spher-

ical exponential mappings on Sn spheres as Sn spherical

regression.

In this work we make the following contributions. First,

we link the framework of n-spheres to continuous output

computer vision tasks. By doing so, they are amenable

to the properties of the n-spheres formulation, leading to

spherical regression. Second, we propose a novel nonlin-

earity, the spherical exponential activation function, specif-

ically designed for regressing on Sn spheres. We show the

activation function improves the results obtained by regular

regression. Third, we show how the general spherical re-

gression framework can be utilized for particular computer

vision challenges. Specifically, we show how to recast ex-

isting methods for viewpoint estimation, surface normal es-

timation and 3D rotation estimation to the proposed spheri-

cal regression framework. Our experiments demonstrate the

benefit of spherical regression for these problems.

We now first describe in Section 2 the motivation be-

hind the deep learning mechanics of classification and re-

gression. Based on the insights derived, we describe in Sec-

tion 3 the general framework for spherical regression on

Sn spheres. We then explain how to specialize the gen-

eral frameworks for particular applications, see Fig. 1. We

describe the related work for these tasks in Section 4. In

Section 5, we evaluate spherical regression for the three

applications.

2. Motivation

Deep classification and regression networks. We start

from an input image x of an object with a supervised learn-

ing task in mind, be it classification or regression. Re-

gardless the task, if we use a convolutional neural network

(CNN) we can split it into two subnetworks, the base net-

work and the prediction head, see (eq. 1).

x
H(·)−−−−−−−→

base network
O =








o0
o1
...

on








︸ ︷︷ ︸

Base network

g(·)−−−−−→
activation

P =








p0
p1
...

pn








L(·,·)←−−→
loss

Y

︸ ︷︷ ︸

Prediction head

(1)

The base network considers all the layers from input x

till layer O. It defines a function O = H(x) that returns an

intermediate latent embedding O = [o0, o1, ..., on]
⊤ of the

raw input x. The function comprises a cascade of convo-

lutional layers intertwined with nonlinearities and followed

by fully connected layers, H = hl ◦hl−1 · · · ◦hk ◦ · · · ◦h2 ◦
h1, where hk is the θ-parameterized mapping of k-th layer.

Given an arbitrary input signal x, the latent representation

O is unconstrained, namely x = H(x)→ R
(n+1).

The prediction head contains the last (n+1)-dimensional

layer P before the loss function, which is typically re-

ferred to as the network output. The output is obtained

from an activation function g(·), which generates the out-

put P : pk = g(ok;O) using as input the intermediate raw

embedding O returned by the base network. The activation

function g(·) imposes a structure to the raw embdedding

O according to the task at hand. For instance, for a CNN

trained for image classification out of 1, 000 classes we have

a 1, 000-dimensional output layer P that represents softmax

probabilities. And, for a CNN trained for 2D viewpoint es-

timation we have a 2-dimensional output layer P that repre-

sents the trigonometric functions P = [cosφ, sinφ]. After

the prediction head lies the loss functionL(P ,Y) that com-

putes the distance between the prediction P and the ground

truth Y = [y0, y1, ...]
⊤, be it cross entropy for classification

or sum of squared errors for regression.

The dimensionalities of O and P vary according to the

type of classification or regression that is considered. For

classification P represents the probability of (n + 1) dis-

cretized bins. For regression, P depends on the assumed

output representation dimensionality, e.g., regression 1D

[28], regression 2D [2, 28] or regression 3D [27] and be-

yond can have different output dimensions. Together the

subnetworks comprise a standard deep architecture, which

is trained end-to-end.

Training. During training, the k-th layer parameters are

updated with stochastic gradient descent, θk ← θk − γ ∂L
∂θk

,

where γ is the learning rate. Expanding by the chain rule of

calculus we have that

∂L
∂θk

=
∂L
∂P

∂P

∂O
(

∂O

∂hl−1
. . .

∂hk+1

∂hk

)
∂hk

∂θk
(2)

Training is stable and leads to consistent convergence when

the gradients are constrained, otherwise gradient updates

9760

may cause bouncing effects on the optimization landscape

and may cancel each other out. Next, we examine the be-

havior of the output activation P and the loss functions for

classification and regression.

Classification. For classification the standard output ac-

tivation and loss functions are the softmax and the cross

entropy, that is g(oi;O) = {pi = eoi/
∑

j e
oj , i =

0 · · ·n},L(O,Y) = −
∑

i yilog(pi). The pi and yi are

the posterior probability and the one-hot vector for the i-th
class, and d is the number of classes. Note that softmax

maps the raw latent embedding O ∈ R
(n+1) to a structured

output P , known as n-simplex, where each dimension is

positive and the sum equals to one, i.e.
∑

i pi = 1 and

pi > 0. The partial derivative of the probability output with

respect to the latent activation equals to

∂pj
∂oi

=

{

pj · (1− pj), when j = i

−pi · pj , when j 6= i
(3)

Crucially, we observe that the partial derivative
∂pj

∂oi
does

not directly depend on O. This leads the partial derivative

of the loss function with respect to oi, namely

∂L
∂oi

= −
∑

k

yk
pk
· ∂pk
∂oi

= pi − yi, (4)

to be independent of O itself. As P corresponds to a prob-

ability distribution that lies inside the n-dimensional sim-

plex, it is naturally constrained by its ℓ1 norm, pj < 1.

Thus, the partial derivative ∂L
∂O

depends only on a quantity

that is already constrained.

Regression. In regression usually there is no explicit acti-

vation function in the final layer to enforce some manifold

structure. Instead, the raw latent embedding O is directly

compared with the ground truth. Take the smooth-L1 loss

as an example,

L =

{

0.5|yi − oi|2 if|yi − oi| 6 1

|yi − oi| − 0.5 otherwise.
(5)

The partial derivative of the loss with respect to oi equals to

∂L
∂oi

=

{

−(yi − oi) if|yi − oi| 6 1

−sign(yi − oi) otherwise.
(6)

Unlike classification, where the partial derivatives are con-

strained, for regression we observe that the ∂L
∂oi

directly de-

pends on the raw output O. Hence, if O has high variance,

the unconstrained gradient will have a high variance as well.

Because of the unconstrained gradients training may be un-

stable.

Conclusion. Classification with neural networks leads to

stable training and convergence. The reason is that the par-

tial derivatives ∂L
∂P
· ∂P
∂O

is constrained, and, therefore, the

gradient updates ∂L
∂θk

, are constrained. The gradients are

constrained because the output P itself is constrained by the

ℓ1 norm of the n-simplex,
∑

i pi = 1. Regression with neu-

ral networks may have instabilities and sub-optimal results

during training because gradient updates are unconstrained.

We examine next how we can define a similar closed geo-

metrical manifold also for regression. Specifically, we focus

on regression problems where the target label Y lives in a

constrained n-sphere manifold.

3. Spherical regression

The n-sphere, denoted with Sn, is the surface bound-

ary of an (n + 1)-dimensional ball in the Euclidean

space. Mathematically, the n-sphere is defined as Sn =
{
x ∈ R

n+1 : ‖x‖ = r
}

and is constrained by the ℓ2 norm,

namely
∑

i x
2
i = 1. Fig. 1 gives examples of simple n-

spheres, where S1 is the circle and S2 the surface of a 3D

ball. Where the n-simplex constrains classification by the

ℓ1 simplex norm, we next present how to constrain regres-

sion by the ℓ2 norm of an n-sphere.

3.1. Constraining regression with n­spheres

To encourage stability in training regression neural net-

works on Sn spheres, one reasonable objective is to ensure

the gradients are constrained. To constrain the gradient ∂L
∂O

,

we propose to insert an additional activation function in re-

gression after the raw embedding layer O. The activation

function should have the following properties.

I The output of the activation, P = {pk}, must live on

n-sphere, namely its ℓ2 norm
∑

k=1 p
2
k = 1 must be

constant, e.g., cos2φ + sin2φ = 1. This is necessary

for spherical targets.

II Similar to classification, the gradient ∂L
∂O

must not di-

rectly depend on the input signal. That is, ∂L
∂O

must

not depend directly on the raw latent embedding O ∈
R

(n+1).

To satisfy property I, we pick our activation function

such that it produces normalized values. We opt for the ℓ2
normalization form: pj = g(oj ;O) =

f(oj)√∑
k f(ok)2

, where

f(·) corresponds to any univariate mapping. The partial

derivative of the output with respect to the latent O then

becomes:

∂pj
∂oi

=

∂

[

f(oj)√∑
k f(ok)2

]

∂oi

=







(
df(oi)
doi
· 1
A

)

· (1− pi
2), when j = i

(
df(oi)
doi
· 1
A

)

· (−pi · pj), when j 6= i
(7)

9761

where A =
√∑

k f(ok)
2 is the normalization factor.

Still,
∂pj

∂oi
is potentially depending on the raw latent em-

bedding O through the partial function derivatives
df(oj)
doi

and the normalization factor A. To satisfy property II and

make ∂pi

∂oj
independent from the raw output O, and thus

constrained, we must make sure that
(

df(oj)
doj

· 1
A

)

becomes

independent of O. In practice, there are a limited num-

ber of choices for f(·) to satisfy this constraint. Inspired

by the softmax activation function, we resort to the ex-

ponential map f(oi) = eoi , where
df(oi)
doi

= f(oi) and
∂f(oi)
∂oi

· 1
A
= f(oi)

A
= pi. Thus Eq. 7 is simplified as

∂pj
∂oi

=

{

pi · (1− p2i), when j = i

−p2i · pj , when j 6= i
(8)

removing all dependency on O.

Since our activation function has a similar form as soft-

max, which is also known as normalized exponential func-

tion, we refer to our activation function as Spherical Expo-

nential Function. It maps inputs from R
n+1 to the positive

domain of the n-Sphere, i.e. Sexp(·) : Rn+1 → S
n
+:

pj = Sexp(oj ;O) =
eoj

√∑

k(e
ok)2

(9)

Converting Eq. 8 into matrix provides Jacobian as JSexp
=

(I − P ⊗ P) · diag(P) where ⊗ denotes outer product

(see supplementary material for details). Notice that if we

only do ℓ2 normalization without exponential, the Jacobian

is given as JSflat
= (I−P ⊗P) · 1

||O|| , which is influenced

by the magnitude of O in gradient, which is unconstrained.

Unfortunately, the exponential map in Sexp(·) restricts

the output to be in the positive range only, whereas our tar-

get can be either positive or negative. To enable regression

on the full range on n-sphere coordinates we rewrite each

dimension into two parts: pi = sign(pi) · |pi|. We then use

the output from the spherical exponential function to learn

the absolute values |pi|, i = 0, 1, ..., n only. At the same

time, we rely on a separate classification branch to predict

the sign values, sign(pi), i = 1, ..., d of the output. The

overall network is shown in Fig. 2:

Conclusion. Given the spherical exponential mapping for

g(·), the gradient ∂P
∂O

is detached from O, and P is con-

strained by the n-Sphere. Thus, to make the parameter gra-

dients also constrained, we just need to pick a suitable loss

function. It turns out that there are no significant constraints

for the loss function. Given ground truth Y , we can set the

loss to be the negative dot product L = −〈|P |, |Y |〉. Since

both P and Y are on sphere with ℓ2 norm equal to 1 (i.e.

||P ||2 = ||Y ||2 = 1), this is equivalent to optimize with co-

sine proximity loss or L2 loss 1. In this case, the gradients

1For cosine proximity loss: L = −
〈|P |,|Y |〉

||P ||2·||Y ||2
= −〈|P |, |Y |〉.

(∙, ∙)

Image

CNN

o0
o1

on

|p0|
|p1|

|pn|

|y0|

|y1|

|yn|

Sexp

sign(P)
[+ +⋯+]

[+ +⋯−]

[− −⋯−]

Classification

Regression

Figure 2. Regressing on n-spheres with targets Y = [y0, ..., yn],
i.e.

∑
i
y2
i = 1. The model processes the input image and first

returns a raw latent embedding O = [o0, ..., on] ∈ R
(n+1). Then,

a regression branch using the proposed spherical exponential acc-

tivation Sexp maps O to a structured output |P | = [|p0|, ..., |pn|].
A classification branch is also used to learn the sign labels of P .

Prediction is made by P = sign(P) · |P |.

are ∂L
∂pi

= −sign(pi)|yi| and only relate to P . We could

also treat the individual outputs {p21, p22 ...} as probabilities

with a cross-entropy loss on continuous labels y2i , in which

case we would have that H(Y 2,P 2) =
∑

i y
2
i log

1
p2

i

. We

conclude that the Spherical Regression using the spherical

exponential mapping allows for constrained parameter up-

dates and, thus, we expect it to lead to stable training and

convergence. We verify this experimentally on three differ-

ent applications and datasets.

3.2. Specializing to S1, S2 and S3

Next, we show how to specialize the general n-sphere

formulation for different regression applications that reside

on specific n-spheres.

S1 case: Euler angles estimation. Euler angles are used

to describe the orientation of a rigid body with respect to a

fixed coordinate system. They are defined by 3 angles, de-

scribing 3 consecutive rotations around fixed axes. Specif-

ically, each of the angles φ ∈ [0, 2π] can be represented

by a point on a unit circle with 2D coordinate [cosφ, sinφ],
see Fig. 1. Since cos2φ + sin2φ = 1, estimating these

coordinates is an S1 sphere problem. Consequently, our

prediction head has two components: i) a regression branch

with spherical exponential activations for absolute values

|P | = [|cosφ|, |sinφ|] and, ii) a classification branch to

learn all possible sign combinations between sign(cosφ)
and sign(sinφ), that is a 4-class classification problem:

sign(P) ∈ {(+,+), (+,−), (−,+), (−,−)}. We could

also predict the signs independently and have fewer possi-

ble outputs, however, this would deprive the classifier from

the opportunity to learn possible correlations.

During training time, we jointly minimize the regres-

sion loss (cosine proximity) and the sign classification loss

For L2 loss: L = ||P − Y ||22 = ||P ||22 + ||Y ||22 − 2〈|P |, |Y |〉 =

2− 2〈|P |, |Y |〉.

9762

(cross-entropy). For the inference, we do the final predic-

tion by merging the absolute values and sign labels together:

{

cosφ = sign(cosφ) · |cosφ|
sinφ = sign(sinφ) · |sinφ|

(10)

Beyond Euler angles, other 2D rotations can be learned in

the same fashion.

S2 case: Surface normal estimation. A surface normal is

the direction that is perpendicular to the tangent plane of the

point on the surface of objects in a 3D scene, see Fig. 1.(b).

It can be represented by a unit 3D vector v = [Nx, Ny, Nz]
for which N2

x + N2
y + N2

z = 1. Thus, a surface normal

lies on the surface of a unit 3D ball, i.e. an S2 sphere. Sur-

face normal estimation from RGB images makes pixel-wise

predictions of surface normals of the input scene.

It is worth noticing that all surface normals computed by

a 2D image should always be pointing outwards from the

image plane, that is Nz < 0, since only these surfaces are

visible to the camera. This halves the prediction space to

a semi-sphere of S2. Again, when designing the spherical

regressor for surface normals, we have a regression branch

to learn the absolute normal values [|Nx|, |Ny|, |Nz|] and a

classification branch for learning all combinations of signs

for Nx and Ny . The total number of possible sign classes

is 4, similar to Euler angle estimation. The training and

inference is similar to Euler angles as well. Other S2 prob-

lems include learning the direction of motion in 2D/3D flow

fields, geographical locations on the Earth sphere and so on.

S3 case: 3D rotation estimation. Rotational transforma-

tions are relevant in many computer vision tasks, for exam-

ple, orientation estimation, generalized viewpoint and pose

estimation beyond Euler angles or camera relocation. Rota-

tional transformations can be expressed as orthogonal ma-

trices of size n with determinant +1 (rotation matrices). We

can think of the set of all possible rotation matrices to form

a group that acts as an operator on vectors. This group is

better known as the special orthogonal Lie group SO(n)
[14]. Specifically, the SO(2) represents the set of all 2D

rotation transformations, whereas SO(3) represents the set

of all possible 3D rotations.

We have already shown that 2D rotations can be mapped

to a regression on an S1 sphere, thus the set SO(2) of all

2D rotations is topologically equivalent to the S1 sphere.

Interestingly, the topology of 3D rotations is not as straight-

forward [14], namely there is no n-sphere that is equivalent

to SO(3). Instead, as shown in Fig. 1.(c) a 3D rotation

SO(3) can be thought of as first choosing a rotation axis v

and then rotating by an angle θ. This approach leads to the

well known S3 representation of quaternions [15], which is

the closest equivalent to the 3D rotation [31].

A unit quaternion is equal to q = a+bi+cj+dk, where

a2 + b2 + c2 + d2 = 1. As q and −q give the same rotation,

RGB Image Surface Normal Image

(c) S3: 3D rotations (ModelNet10-SO3)

X

Y

a
zi

m
u

th

elevation

In-plane rotation

(a) S1: Viewpoint (Pascal3D+)

(b) S2: Surface Normal (NYU v2)

Z

Figure 3. We assess spherical regression on 3 computer vision

tasks. (a) S1: Viewpoint estimation on Pascal3D+ [38], which

needs to predict 3 Euler angles: azimuth, elevation and in-plane

rotation. (b) S2: Surface normal estimation on NYU v2 [32],

where pixel-wised dense surface normal prediction is required. (c)

S3: 3D rotation on our newly proposed ModelNet10-SO3, where

given one rendered view of a CAD model, we predict the underly-

ing 3D rotation that aligns it back to standard pose.

we restrict ourselves to a > 0, which again halves the out-

put space. We, therefore, need to predict the signs of only 3

imaginary components {b, c, d} to a total of 8 (23) classes.

The design of the prediction heads and the loss functions are

similar to the case of surface normal prediction on S2, only

now having 8 sign classes. Given the axis-angle representa-

tion (θ, v) of SO(3), we can, therefore, rewrite a quaternion

into q = (cos θ
2 , sin

θ
2v). Constraining a > 0 is equivalent

to restricting the rotation angle θ ∈ [0, π]. Furthermore,

predicting the 8 sign categories is equivalent to predicting

to which of the 8 quadrants of the 3D rotation space the v

belongs.

4. Related work

Viewpoint Estimation. In general, viewpoint estimation

focuses on recovering the 3 Euler angles, namely, azimuth,

elevation and in-plane rotation (see Fig. 3-(a)). Tulsiani

9763

and Malik [35] discretize continuous Euler angles into mul-

tiple bins and convert viewpoint estimation into a classifi-

cation problem. Su et al. [33] propose a finer-grained dis-

cretization that divides the Euler angles into 360 bins. How-

ever, training for all possible outputs requires an enormous

amount of examples that can only be addressed by synthetic

renderings.

Albeit more natural, regression-based viewpoint esti-

mation is less popular. Because of the periodical nature

of angles, most approaches do not regress directly on the

linear space of angles, a, e, t ∈ [−π, π]. The reason is

that ignoring the angle periodicity leads to bad modeling,

as the 1◦ and 359◦ angles are assumed to be the furthest

apart. Instead, trigonometric representations are preferred,

with [2, 28, 29] proposing to represent angles by [cosφ,

sinφ]. They then learn a regression function h : x 7→
[cosφ, sinφ], without, however, enforcing the vectors to lie

on S1. In comparison to viewpoint classification, regres-

sion gives continuous and fine-grained angles. In practice,

however, training regression for viewpoint estimation is not

as easy. Complex loss functions are typically crafted, e.g.,

smooth L1 loss [24], without reaching the accuracy levels

of classification-based alternatives.

In this paper, we continue the line of work on regression

based viewpoint estimation. Built upon the S1 representa-

tions [cosφ, sinφ] of Euler angles [2, 28, 29], we assess our

spherical regression for viewpoint prediction.

Surface Normal Estimation. Surface normal estimation is

typically viewed as a 2.5D representation problem, one that

carries information for the geometry of the scene, includ-

ing layout, shape and even depth. The surface normal is a

3-dim vector that points outside the tangent plane of the sur-

face. In the surface normal estimation task, given an image

of a scene, a pixel-wise prediction of the surface normal is

required [1, 8, 11, 21, 30, 32, 36, 39] (see Fig. 3-(b)).

Fouhey et al. [11] infer the surface normal by discover-

ing discriminative and geometrically 3D primitives from 2D

images. Building on contextual and segment-based cues,

Ladicky et al. [21] build their surface normal regressor from

local image features. They both use hand crafted features.

Eigen and Fergus [8] propose a multi-scale CNN architec-

ture adapted to predicting depth, surface normals and se-

mantic labels. While the network outputs are ℓ2 normal-

ized, the gradients are not constrained. Bansal et al. [1]

introduce a skip-network model optimized by the standard

sum of squared errors regression loss, without enforcing

any structure to the output. Zhang et al. [39] propose to

predict normals with deconvolution layers and rely on large

scale synthetic data for training. Similar to [8], they also en-

force an ℓ2 norm on the output but have unconstrained gra-

dients. Recently, Qi et al. [30] proposed two-stream CNNs

that jointly predict depth and surface normals from a single

image and also rely on the sum of squared errors loss for

training.

In our work we propose a spherical exponential mapping

for performing spherical regression. This new mapping can

be directly applied to any of the surface normal estimation

methods that rely on a regression loss on n-spheres and im-

prove their accuracy, as we show in the experiments.

3D Rotation Estimation. 3D Rotations are a component

of several tasks in computer vision and robotics, including

viewpoint and pose estimation or camera relocation. The

rotation matrix for 3D rotation is a 3 × 3 orthogonal ma-

trix (determinant= 1). Direct regression on the rotation

matrix via neural networks is difficult, as the output lies in

the R
9 (3 × 3) space. Moreover, regressing a rotation ma-

trix directly cannot guarantee its orthogonality. Recently,

Falorsi et al. [9] take a first step toward regressing 3D rota-

tion matrices. Instead of predicting the 9 elements of rota-

tion matrix directly, they pose the 3D rotation as an S2×S2

representation problem reducing the number of elements to

regress on to a total of 6.

Viewpoint [2, 5, 24, 24, 26, 33, 35] and pose [27, 28]

consider the relative 3D rotation between object and cam-

era. With 3 consecutive rotation angles, see Fig. 3 (a),

Euler Angles can uniquely recover the rotation matrix. As

such a decomposition is easy to be interpreted and able to

cover most of the viewpoint distribution, it has been widely

adopted. However, this approach leads to the gimbal lock

problem [16], where the degrees of freedom for the rota-

tions are reduced.

Mahendran et al. [22] studied an axis-angle representa-

tion for viewpoint estimation by first choosing a rotation

axis and then rotating along it by an angle θ. To constrain

the angle θ ∈ [0, π) and the axis vi ∈ [−1, 1], they propose

a π · tanh non-linearity. Also, instead of a standard regres-

sion loss, e.g. cosine proximity or sum of squared errors

loss, they propose a geodesic loss which directly optimizes

the 3D rotations in SO(3). Do et al. [6] consider the Lie-

algebra SO(3) representation to learn the 3D rotation of the

6 DoF pose of an object. It is represented as [x, y, z] ∈ R3,

and can be mapped to a rotation matrix via the Rodrigues

rotation formula [3]. They conclude that an ℓ1 regression

loss yields better results.

Last, both Kendall et al. [19] and Mahendran et al. [22]

consider quaternion for camera re-localization and view-

point estimation. As quaternions allow for easy interpo-

lation and computations on the S3 sphere, they are also

widely used in graphics [4,31] and robotics [25]. Although

Do et al. [6] argue that quaternion is over-parameterized, we

see this as an advantage that gives us more freedom to learn

rotations directly on the n-sphere.

Despite the elegance and completeness of the aforemen-

tioned works, modelling 3D rotations is hard and methods

specialized for the task at hand, instead, typically reach bet-

ter accuracies. Unlike most of the aforementioned works,

9764

Table 1. S1: Viewpoint estimation with Euler angles. Compari-

son with state-of-the-art on Pascal3D+. Adding our S1
exp spherical

regression on top of the backbone network of [28] leads to best ac-

curacy. We report a class-wise comparison in supplementary.

MedErr↓ Acc@π
6 ↑

Mahendran et al. [22] 16.6 N/A

Tulsiani and Malik [35] 13.6 80.8

Mousavian et al. [26] 11.1 81.0

Su et al. [33] 11.7 82.0

Penedones et al. [28]† 11.6 83.6

Prokudin et al. [29] 12.2 83.8

Grabner et al. [13] 10.9 83.9

Mahendran et al. [23] 10.1 85.9

This paper: [28]†+ S1
exp 9.2 88.2

† Based on our implementation.

we learn to regress on the Euclidean space directly. Further-

more, we present a framework for regressing on n-spheres

with constrained gradients, leading to more stable training

and good accuracy, as we show experimentally.

5. Experiments

5.1. S1: Viewpoint estimation with Euler angles

Setup. First, we evaluate spherical regression on S1 view-

point estimation on Pascal3D+ [38]. Pascal3D+ contains 12

rigid object categories with bounding boxes and noisy rota-

tion matrix annotations, obtained after manually aligning

3D models to the 2D object in the image. We follow [23,

26, 29, 33, 35] and estimate the 3 Euler angles, namely the

azimuth, elevation and in-plane rotation, given the ground

truth object location. A viewpoint prediction is correct

when the geodesic distance ∆(Rgt, Rpr) =
||logRT

gtRpr||F√
2

between the predicted rotation matrix Rpr (constructed

from the predicted Euler angles) and the ground truth ro-

tation matrix Rgt is smaller than a threshold θ [35]. The

evaluation metric is the accuracy Acc@π/6 given threshold

θ = π/6. We use ResNet101 as our backbone architecture,

with a wider penultimate fully connected layer in the predic-

tion head that is shared by the regression branch and classi-

fication branch (see supplementary material for details). As

many of the annotations are concentrated around the x-axis,

we found that rotating all annotations by 45◦ during train-

ing (and rotating back at test time) leads to more balanced

distribution of annotations and better learning. For train-

ing data, we also use the synthetic data provided by [33],

without additional data augmentations like in [22, 23].

Results. We report comparisons with the state-of-the-art

in Table 1. Note that our spherical exponential mapping

can be easily used by any of the regression-based methods

Table 2. S2: Surface normal estimation Comparison with state-

of-the-art on NYU v2. Adding our S2
exp spherical regression on

top of the backbone network of Zhang et al. [39] leads to best

accuracy.

Mean↓ Median↓ 11.25◦↑ 22.5◦↑ 30.0◦↑

Fouhey et al. [11] § 37.7 34.1 14.0 32.7 44.1

Ladicky et al. [21] § 35.5 25.5 24.0 45.6 55.9

Wang et al. [36] § 28.8 17.9 35.2 57.1 65.5

Eigen and Fergus [8] 22.3 15.3 38.6 64.0 73.9

Zhang et al. [39] 21.7 14.8 39.4 66.3 76.1

This paper: [39] + S2
exp 19.7 12.5 45.8 72.1 80.6

§ Copied from [8].

with S1 representation [cosφ, sinφ] [2, 28]. In this experi-

ment we combine it with Penedones et al. [28], who tried to

directly regress 2D representation [cosφ, sinφ] of angels,

obtaining a significant improvement in accuracy over other

regression and classification baselines. That said, during

experiments we observed that classification-based methods

are more amenable to large data sets, most probably be-

cause of their increased number of parameters. As expected,

the continuous outputs by the spherical regression are bet-

ter suited for finer and finer evaluations , that is Acc@π/12
and Acc@π/24 (supplementary material). We conclude that

spherical regression is successful for viewpoint estimation

with Euler angles.

5.2. S2: Surface normal estimation

Setup. Next, we evaluate spherical regression for S2 sur-

face normal estimation on the NYU Depth v2 [32]. The

NYU Depth v2 dataset contains 1,449 video frames of in-

door scenes associated with Microsoft Kinect depth data.

We use the ground truth surface normals provided by [32].

We consider all valid pixels across the whole test set during

evaluation [39]. The evaluation metrics are the (Mean and

Median), as well as the accuracy based metric, namely the

percentage of correct predictions at given threshold 11 .24 ◦,

22 .5 ◦ and 30 ◦). We implement our S2
exp spherical regres-

sion based on the network proposed by Zhang et al. [39],

which is built on top of VGG-16 convolutional layers, and

a symmetric stack of deconvolution layers with skip con-

nections for decoding. As in viewpoint estimation, we also

rotate the ground truth around the z-axis by 45◦ to yield

better results. We follow the same training setup as [39],

that is we first pre-train on the selected 568K synthetic data

provided by [39] for 8 epochs, and fine-tune on NYU v2 for

60 epochs.

Results. We report results in Table 2. Replacing regu-

lar regression in [39] with spherical regression on S2 im-

proves the estimation of the surface normals considerably.

We found the improvement is attentuated by the fact that

for surface normal estimation we perform one regression

9765

Table 3. S3: 3D Rotation estimation with quaternions. Com-

parison on newly established ModelNet10-SO3. Adding our S3
exp

spherical regression on top of an AlexNet or VGG16 backbone

network leads to best accuracy.

MedErr↓Acc@π
6
↑Acc@ π

12
↑Acc@ π

24
↑

AlexNet (Direct+smooth-L1) 46.1 32.5 11.2 2.5

AlexNet + Sflat 33.3 53.5 34.1 13.9

AlexNet + S3
exp 25.3 65.4 48.5 24.4

VGG16 (Direct+smooth-L1) 36.8 46.7 29.4 13.4

VGG16 + Sflat 25.9 63.5 48.7 29.5

VGG16 + S3
exp 20.3 70.9 58.9 38.4

per pixel location. As each one of these regressions could

return unstable gradients, bounding the total sum of losses

with spherical regression is beneficial. Especially for the

finer regression thresholds of 11.25◦, 22.5◦. We conclude

that spherical regression is successful also for surface nor-

mal estimation.

5.3. S3: 3D Rotation estimation with quaternions

Setup. Last, we evaluate S3
exp spherical regression on 3D

rotation estimation on S3 with quaternions. For this eval-

uation we introduce a new dataset, ModelNet10-SO3, com-

posed of images of 3D synthetic renderings. ModelNet10-

SO3 is based on ModelNet10 [37], which contains 4,899

instances from 10 categories of 3D CAD models. In

ModelNet10 the purpose is the classification of 3D shapes

to one of the permissible CAD object categories. With

ModelNet10-SO3 we have a different purpose, we want

to evaluate 3D shape alignment by predicting its 3D rota-

tion matrix w.r.t. the reference position from single image.

We construct ModelNet10-SO3 by uniformly sampling per

CAD model 100 3D rotations on SO(3) for the training set

and 4 3D rotations for the test set. We render each view

with white background, thus the foreground shows the ro-

tated rendering only. We show some examples in Fig. 3-(c).

Relying on Euler angles for ModelNet10-SO3 is not ad-

vised because of the Gimbal lock problem [16]. Instead,

alignment is possible only by predicting the quaternion rep-

resentation of the 3D rotation matrix. For this task, we test

the following 3 regression strategies:

(I) Direct regression with smooth-L1 loss. It may cause

the output to no longer follow unit ℓ2 norm.

(II) Regression with ℓ2 normalization Sflat.
(III) Regression with Sexp (this paper).

We report results based on AlexNet and VGG16 as our

CNN backbones, with a class-specific prediction head. We

borrow the evaluation metric from viewpoint estimation,

namely MedErr and Acc@{π/6, π/12, π/24} so that we

also examine finer-grained predictions.

Figure 4. Variance of the average gradient norm || ∂L
∂O

||. Spher-

ical exponentiation Sexp yields lower variance on mini-batch over

entire train progress.

Results. We report results in Table 3. First, both Sflat

and S3
exp regression on quaternions improve over direct re-

gression baselines. This shows the importance of constrain-

ing the output space to be on sphere when regress spherical

target. Second, putting l2 normalization constraint on out-

put space, S3
exp improves over Sflat with both AlexNet and

VGG16. For AlexNet we obtain about 8 − 12% improve-

ment across all metrics. VGG16 is higher overall, but the

improvement over the baseline is less. This shows that with

the VGG16 we are potentially getting closer to the maxi-

mum possible accuracy attainable for this hard task. That

can be explained by the fact that the shapes have no tex-

ture. Thus, a regular VGG16 is close to what can be en-

coded by a good RGB-based model. Note that estimating

the 3D rotation with a discretization and classification ap-

proach [5, 24, 33, 35] would be impossible because of the

vastness of the output space on SO(3) manifold.

Further, we investigate the variance of the gradients ∂L
∂O

by recording its average ℓ2 norm during training progress.

The results are shown in Fig. 4. We observe the gradi-

ent norm of the spherical exponential mapping has much

lower variance. Spherical exponentiation achieves this be-

havior naturally without interventions, unlike other tricks

(e.g. gradient clipping, gradient reparameterization) which

fix the symptom (gradient instability/vanishing/exploding)

but not the root cause (unconstrained input signals). We

conclude that spherical regression is successful also for the

application of 3D rotation estimation.

6. Conclusion

Spherical regression is a general framework which can

be applied to any continuous output problem that lives in n-

spheres. It obtains regression gradients that are constrained

and well-behaving for several computer vision challenges.

In this work we have investigated three such applications,

specifically viewpoint estimation, surface normal estima-

tion and 3D rotation estimation. Generally, we observe

that spherical regression improves considerably the regres-

sion accuracy in all tasks and different datasets. We con-

clude that spherical regression is a good alternative for tasks

where continuous output prediction are needed.

9766

References

[1] Aayush Bansal, Bryan Russell, and Abhinav Gupta. Marr

revisited: 2d-3d alignment via surface normal prediction. In

CVPR, 2016.

[2] Lucas Beyer, Alexander Hermans, and Bastian Leibe.

Biternion nets: Continuous head pose regression from dis-

crete training labels. In GCVPR, 2015.

[3] R. W. Brockett. Robotic manipulators and the product of

exponentials formula. In Mathematical Theory of Networks

and Systems. 1984.

[4] Erik B Dam, Martin Koch, and Martin Lillholm. Quater-

nions, interpolation and animation. Datalogisk Institut,

Københavns Universitet, 1998.

[5] Gilad Divon and Ayellet Tal. Viewpoint estimation—insights

& model. In ECCV, 2018.

[6] Thanh-Toan Do, Trung Pham, Ming Cai, and Ian Reid.

Real-time monocular object instance 6d pose estimation. In

BMVC, 2018.

[7] Maura Eduarda and David G Henderson. Experiencing ge-

ometry: On plane and sphere. Prentice Hall, 1996.

[8] David Eigen and Rob Fergus. Predicting depth, surface nor-

mals and semantic labels with a common multi-scale convo-

lutional architecture. In ICCV, 2015.

[9] Luca Falorsi, Pim de Haan, Tim R Davidson, Nicola De Cao,

Maurice Weiler, Patrick Forré, and Taco S Cohen. Explo-

rations in homeomorphic variational auto-encoding. arXiv

preprint arXiv:1807.04689, 2018.

[10] Harley Flanders. Differential Forms with Applications to the

Physical Sciences by Harley Flanders, volume 11. Elsevier,

1963.

[11] David F Fouhey, Abhinav Gupta, and Martial Hebert. Data-

driven 3d primitives for single image understanding. In

ICCV, 2013.

[12] Jin Gao, Haibin Ling, Weiming Hu, and Junliang Xing.

Transfer learning based visual tracking with gaussian pro-

cesses regression. In ECCV, 2014.

[13] Alexander Grabner, Peter M Roth, and Vincent Lepetit. 3d

pose estimation and 3d model retrieval for objects in the

wild. In CVPR, 2018.

[14] David Gurarie. Symmetries and laplacians: Introduction to

harmonic analysis, group representations and applications.

Bull. Amer. Math. Soc, 29, 1993.

[15] William Rowan Hamilton. On quaternions; or on a new

system of imaginaries in algebra. The London, Edinburgh,

and Dublin Philosophical Magazine and Journal of Science,

1844.

[16] David Hoag. Apollo guidance and navigation: Considera-

tions of apollo imu gimbal lock. Cambridge: MIT Instru-

mentation Laboratory, 1963.

[17] Seunghoon Hong, Tackgeun You, Suha Kwak, and Bohyung

Han. Online tracking by learning discriminative saliency

map with convolutional neural network. In ICML, 2015.

[18] Zdenek Kalal, Krystian Mikolajczyk, and Jiri Matas.

Tracking-learning-detection. PAMI, 2010.

[19] Alex Kendall and Roberto Cipolla. Geometric loss functions

for camera pose regression with deep learning. In CVPR,

2017.

[20] Lubor Ladicky, Jianbo Shi, and Marc Pollefeys. Pulling

things out of perspective. In CVPR, 2014.

[21] Lubor Ladicky, Bernhard Zeisl, and Marc Pollefeys. Dis-

criminatively trained dense surface normal estimation. In

ECCV, 2014.

[22] Siddharth Mahendran, Haider Ali, and René Vidal. 3d pose

regression using convolutional neural networks. In ICCV,

2017.

[23] Siddharth Mahendran, Haider Ali, and Rene Vidal. A mixed

classification-regression framework for 3d pose estimation

from 2d images. In BMVC, 2018.

[24] Francisco Massa, Renaud Marlet, and Mathieu Aubry. Craft-

ing a multi-task cnn for viewpoint estimation. In BMVC,

2016.

[25] J Michael McCarthy. Introduction to theoretical kinematics.

MIT press, 1990.

[26] Arsalan Mousavian, Dragomir Anguelov, John Flynn, and

Jana Košecká. 3d bounding box estimation using deep learn-

ing and geometry. In CVPR, 2017.

[27] Margarita Osadchy, Yann Le Cun, and Matthew L Miller.

Synergistic face detection and pose estimation with energy-

based models. Journal of Machine Learning Research, 2007.

[28] Hugo Penedones, Ronan Collobert, Francois Fleuret, and

David Grangier. Improving object classification using pose

information. Technical report, Idiap, 2012.

[29] Sergey Prokudin, Peter Gehler, and Sebastian Nowozin.

Deep directional statistics: Pose estimation with uncertainty

quantification. In ECCV, 2018.

[30] Xiaojuan Qi, Renjie Liao, Zhengzhe Liu, Raquel Urtasun,

and Jiaya Jia. Geonet: Geometric neural network for joint

depth and surface normal estimation. In CVPR, 2018.

[31] Ken Shoemake. Animating rotation with quaternion curves.

In SIGGRAPH, 1985.

[32] Nathan Silberman, Derek Hoiem, Pushmeet Kohli, and Rob

Fergus. Indoor segmentation and support inference from

rgbd images. In ECCV, 2012.

[33] Hao Su, Charles R Qi, Yangyan Li, and Leonidas J Guibas.

Render for cnn: Viewpoint estimation in images using cnns

trained with rendered 3d model views. In ICCV, 2015.

[34] Ran Tao, Efstratios Gavves, and Arnold W M Smeulders.

Siamese instance search for tracking. In CVPR, 2016.

[35] Shubham Tulsiani and Jitendra Malik. Viewpoints and key-

points. In CVPR, 2015.

[36] Anran Wang, Jiwen Lu, Gang Wang, Jianfei Cai, and Tat-Jen

Cham. Multi-modal unsupervised feature learning for rgb-d

scene labeling. In ECCV, 2014.

[37] Zhirong Wu, Shuran Song, Aditya Khosla, Fisher Yu, Lin-

guang Zhang, Xiaoou Tang, and Jianxiong Xiao. 3d

shapenets: A deep representation for volumetric shapes. In

CVPR, 2015.

[38] Yu Xiang, Roozbeh Mottaghi, and Silvio Savarese. Beyond

pascal: A benchmark for 3d object detection in the wild. In

WACV, 2014.

[39] Yinda Zhang, Shuran Song, Ersin Yumer, Manolis Savva,

Joon-Young Lee, Hailin Jin, and Thomas Funkhouser.

Physically-based rendering for indoor scene understanding

using convolutional neural networks. In CVPR, 2017.

9767

