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Abstract

In order to learn to perform activities from demonstra-

tions or descriptions, agents need to distill what the essence

of the given activity is, and how it can be adapted to new

environments. In this work, we address the problem of

environment-aware program generation. Given a visual

demonstration or a description of an activity, we gener-

ate program sketches representing the essential instructions

and propose a model to transform these into full programs

representing the actions needed to perform the activity un-

der the presented environmental constraints. To this end,

we build upon VirtualHome [15] to create a new dataset

VirtualHome-Env, where we collect program sketches to

represent activities and match programs with environments

that can afford them. Furthermore, we construct a knowl-

edge base to sample realistic environments and another

knowledge base to seek out the programs under the sampled

environments. Finally, we propose ResActGraph, a network

that generates a program from a given sketch and an envi-

ronment graph and tracks the changes in the environment

induced by the program.

1. Introduction

We want agents to be able to perform everyday tasks

(such as setting up the table, preparing coffee, or even sit on

the couch and watch TV). An agent should learn to perform

these tasks from high-level descriptions or visual demon-

strations. The challenge is on how to generalize the ac-

quired knowledge to new environments. For instance, if we

want to learn to make coffee, an agent could first watch a

video of someone making coffee in order to extract the se-

quence of steps (program) that need to be executed. How-

ever, when trying to make coffee in an environment that dif-

fers from the environment in which the demonstration took

place, the agent has to adjust the program so that it can be

executed. For instance, the agent could find that the coffee

machine is unplugged, or that it is in the living room instead
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Go to the living room. Sit on the couch and watch TV.

Walk Living room

Environment-aware 

Program (p)

New Environment (e)

Visual Demonstration (ia):

Description (da):

Activity (a): Watch TV

Find TV

Find Couch

Grab Cat

Put Cat

Sit Couch

Watch TV

Sit Couch

Watch TV

(a) 

(b) Changes: Cat on sofa

Activity Sketch (sa)

Figure 1. Overview of the environment-aware program generation.

Our goal is (a) generating a sketch sa distilling the essential steps

of the given demonstration ia or description da and (b) given a

new environment e, generating a program p, adapting the sketch

to e. The program contains the instructions to perform the activity

(blue blocks) as well as instructions to deal with the environment

(red blocks, grabbing the cat to sit).

of in the kitchen, or that someone else is currently using it

and the agent needs to wait. Being able to perform these ad-

justments requires the access to a common-sense database

of knowledge that allows the agent to decide which steps

in the demonstration are essential in the task definition, and

how the program needs to be modified (by adding/removing

steps) in order to accomplish the task in a new environment.

To address the generalization problem we represent ac-

tivities with sketches, representations inspired from work in

programming languages [16, 13]. Sketches are high-level

representations of the steps needed to perform a task but

leaving holes that need to be completed for the sketch to

become executable in a particular environment.

Fig. 1 illustrates our goal. Given a visual demonstration

or a description of someone going to watch TV, we want to

extract the sketch of the activity (fig. 1a). In this example,

the sketch consists of two steps: Sit Couch, Watch TV.

The fact that the demonstration had the person going to the
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living-room is not important. Watching TV requires us to

go to the room that contains the TV. Executing this activity

in a new environment requires expanding the sketch into a

complete program (fig. 1b). The sketch expansion depends

on the state of the environment. In this example, it turns out

that there is a cat on the couch. To sit on the couch, we need

to push away the cat first. We show the automatically gener-

ated program that includes all the steps needed to complete

the task and to deal with the cat.

To expand sketches into programs, it is necessary to

have access to commonsense knowledge about the world

and how to deal with typical situations. This knowledge

provides ways to solve situations that can be reused in a

multitude of tasks. Since no such information, with di-

verse programs and environments, exists to date, we col-

lect a new dataset, built upon VirtualHome [15], contain-

ing around 3k home activities. We extend the VirtualHome

dataset to include more actions and over 30k programs and

collect sketches of the activities by crowdsourcing. Each

environment is represented as a graph with 300 objects and

4000 spatial relations on average.

We then propose a model to generate programs by se-

lecting, for every step, a node in the environment graph

representing an object of interaction. To do so, we exploit

Graph Neural Networks (GNNs) to reason about the states

and relations between the objects in the environments. Fur-

thermore, we propose ResActGraph, a model that reasons

about the changes in the graph induced by the agents previ-

ous steps to generate the goal program.

The main contributions of this work are: introducing

sketches as environment-independent representations of an

activity, a database of commonsense knowledge of activi-

ties, sketches and how to deal with a variety of situations,

and a method to generate programs from sketches that ac-

complish the task in a new environment. We show results in

VirtualHome [15].

2. Related Work

Learning from demonstrations. Learning from visual

demonstrations or language descriptions has been of in-

creasing interest in both robotics and computer vision.

However, this has been mostly focused on learning low-

level tasks rather than the high semantic level activities

that we tackle in this work. For example, [18, 11, 1] fo-

cus on learning to navigate in environments or manipulate

objects, while in visual imitation learning, multiple works

have used videos to learn to manipulate objects under low

supervision regimes [14, 7] or imitate kinetic human be-

haviors [12]. Our work is more closely related to semantic

planning [9, 20, 3], which focus on modeling sequences of

composite and semantically loaded actions. Learning those

requires inferring and modeling the sub-goals of a given

task. [9] represents such goals as a graph, with nodes be-

ing actions and edges being precondition states, while we

propose program representations. Furthermore, to perform

such tasks, it is necessary to know what the constraints of

the given environment where it will be executed are. Sim-

ilarly to [3], we propose to encode knowledge of the en-

vironments and how they can constrain the activities to be

performed.

Program Synthesis by Sketching. Our approach for

environment-aware program generation is partially inspired

by performing program synthesis by sketching. In [16], a

sketch expresses the high-level structure of an implemen-

tation but leaves holes in place of low-level details, which

corresponds to our model that derives the details based on

the environmental constraints so as to execute the programs

smoothly.A recent body of work has developed neural ap-

proaches to program generation using user-provided exam-

ples [8, 4], visual demonstrations [17], and descriptions [6].

The work [13] is the most related to ours. They learn a

model that predicts sketches of programs relevant to a label

and the predicted sketches are concretized into code using

combinatorial techniques. The main difference between our

work and theirs is not only that our sketches are inferred

from visual or textual data, but that we focus on how to

incorporate the environmental constraints in program gen-

eration.

3. Problem formulation

The goal of environment-aware program generation is to

predict, given a demonstration or description of an activity

and an environment, a program that can execute the activ-

ity in such environment. We define this task and the corre-

sponding notation in this section.

Let A and E be the universe of activities and environ-

ments. An activity a (e.g. watch TV) can be represented as

a set of programs Pa containing a sequence of instructions

(e.g. TurnOn TV, Sit Sofa, Watch TV), which vary

depending on how the activity is performed. Let ✶(p, e) be

an indicator function determining if p can be executed in e

(e.g. an agent can not grab cups inside a closed cabinet).

Given an activity a ∈ A and an environment e ∈ E, our

goal is to learn a model that generates p such that

p ∈ Pa,✶(p, e) = 1 (1)

We use the corresponding visual demonstrations ia ∈ Ia
or descriptions da ∈ Da to specify a. However, ia and da
are implicitly conditioned on certain environments which

might differ from the current one e. Therefore, directly in-

ferring p̂ does not ensure that p̂ satisfies eq. 1 given e.

Inspired by [16], we introduce program sketches sa ∈ S

as environment-independent representations of the activi-

ties. We thus change the constraint in eq. 1 to be:
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Figure 2. (a) We extract the ground truth environment graph from VirtualHome and perform message passing on the graph. (b) At every

time step, the decoder perform sequential classification over the hidden states of the graphs (top row). The selected nodes are shown in

bold border blocks. We also model the environment changes induced by the generated programs (solid red arrows).

p ∈ Psa ,✶(p, e) = 1 (2)

With the program sketches as proxy representations, we

can divide the task into two sub-problems: a model that

predicts a sketch ŝa from a demonstration ia or a description

da and another model that predicts a program p̂ given the

predicted sketch ŝa and an environment e:

p̂ = fsketch2prog(ŝa, e),where

ŝa = fdemo2sketch(ia) or ŝa = fdesc2sketch(da)
(3)

Here, p and sa are a sequence of instructions. Each instruc-

tion is represented by an action and up to two arguments

representing objects of interaction (α, β1, β2).1

4. Model

In this section, we present our approach to the

environment-aware program generation task. First, we in-

troduce ResActGraph to generate programs from sketches

and target environments. Later on, we describe how we pre-

dict sketches from demonstrations or descriptions.

4.1. Program generation from sketches and graphs

We frame the program generation task as a seq2seq prob-

lem, where an encoder encodes the input sketch and the de-

coder generates the target program one instruction at a time,

composed by an action and object arguments. Given that

1The number of arguments depends on the type of the action.

the program must be grounded in a target environment, in-

stead of predicting the objects from a fixed taxonomy, the

model predicts for each instruction object instances that are

present in the environment. This has two benefits: (1) It

avoids referring to object instances that do not exist in the

environment. (2) It allows the model to use information of

each instance within the environment, such as its state or

relations with other objects, to predict the appropriate in-

struction.

To do that, we encode the scene as a graph G = (V,R)
modeling the dependencies of the object instances. The

node v ∈ V indicates the object instance and each node

has a label, including the object class cv , its states lv , and

properties propv . Note that V includes a node for the agent

itself. The edge r ∈ R encodes the spatial relations, includ-

ing ON, IN OBJ, IN ROOM, CLOSE TO, and FACE AT,

between every two object instances.

The node labels and relations are used to obtain vector

embeddings for each instance which are used by the decoder

to predict the environment-aware program, as we describe

in the following section.

4.2. ResActGraph

We adopt the GGNN [10] framework to obtain the hid-

den states of the nodes and capture the object relations in

the environment graph. The hidden states of each node v

are initialized by its label (cv, lv, propv):

h0
v = tanh(ginit([Wccv,Wllv,Wproppropv]) (4)

We apply one-hot encoding to the label and set
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Wc,Wl,Wprop as learnable weights. ginit is a network

composed of fully connected layers that combine all the in-

formation.

At propagation step k, each node’s incoming informa-

tion xk
v is determined by aggregating the hidden states of its

neighbors v′ ∈ N (v) at the previous step k − 1:

xk
v =

∑

j∈L(R)

∑

v′∈Nj(v)

Wpj
hk−1
v′ + bpj

(5)

L(R) denotes the set of edge labels and the linear layer Wpj

and bias bpj
are shared across all nodes.

After aggregating the information, the hidden states of

the nodes are updated through a gating mechanism similar

to Gated Recurrent Unit (GRU) [5] as follows:

zkv = ρ(Wzx
k
v + Uzh

k−1
v + bz),

rkv = ρ(Wrx
k
v + Urh

k−1
v + br),

ĥk
v = tanh(Whx

k
v + Uh(r

k
v ⊙ hk−1

v ) + bh),

hk
v = (1− zkv )⊙ hk−1

v + zkv ⊙ ĥk
v

(6)

This results in a vector embedding for each object hk
v , with

information about its state and relationship with the envi-

ronment.

We use one GRU to encode the sketches and another one

to generate the program one instruction at a time. For time

t, let featsa = enc(sa) be the output of the sketch encoder,

and ht
dec the hidden states of the decoder. To predict the

program instruction, (α̂t, β̂
1
t , β̂

2
t ), we predict the first object

argument β1
t over the graph nodes, use it to predict the ac-

tion α̂t and combine this information to predict the second

argument β̂2
t :

β̂1
t = argmax

v∈V

σ(gβ1(ht
dec, h

K
v , featsa))

α̂t = argmax
α∈A

σ(gα(h
t
dec, h

K

β̂1

t

, featsa))

β̂2
t = argmax

v∈V

σ(gβ2(ht
dec, h

K
v , featsa , h

K

β̂1

t

, α̂t))

(7)

where A is all the possible actions and σ denotes the

softmax function.

Note that so far the hidden states of the nodes hK
v are

constant over t, but we would like them to change according

to the program being executed. To do that, at time t, we

use the previously generated instructions ( ˆα<t,
ˆβ1
<t,

ˆβ2
<t) to

update the hidden states of the nodes. We set the initial

state of each node as hK0

v = hK
v and update the state hKt

v

at time t if v is interacted by the agent at the previous time

step or is the agent itself. For example, if the instruction

at the previous time step is grab mug, we use the action

embeddings of grab to change the hidden states of agent

and mug. Let v̂ correspond to the agent node or one of the

previous arguments ˆβ1
t−1,

ˆβ2
t−1. The state h

Kt−1

v̂ is updated

as follows:

hKt

v̂ = h
Kt−1

v̂ + r

r = tanh(gres(h
Kt−1

v̂ ⊙ ge(Emb( ˆαt−1),mt−1)))
(8)

where Emb( ˆαt−1) is the embedding of ˆαt−1 and mt−1 is

a one-hot encoding denoting if v is the subject or the object

of ˆαt−1. ge and gres consider the change of the h
Kt−1

v̂ and

predict the residuals. Note that since the node agent is

involved at every time step, it tracks the progress through

the generation. The model overview is shown in Fig. 2.

Learning. We use the cross-entropy loss function for pro-

gram prediction. The GGNN and GRUs are then trained

with the back-propagation through time (BPTT).

4.3. Inferring sketches

Activities specified by demonstrations. We use key

frames i = [in]n=1:Ndemo
as the representations of the

demonstrations, where Ndemo is the length of the key

frames. To be specific, we take the bird-eye view of each

in. Besides, we also use the ground truth semantic segmen-

tation map iseg = [isegn]n=1:Ndemo
as input. Two CNNs

are used to extract the features separately, and we apply late

fusion to extract the nth visual features featn as follows:

featn = gfuse([CNNi(in), CNNseg(isegn)]) (9)

where [, ] denotes concatenation. Later on, we max-pool the

features over the different steps time steps and apply a GRU

to decode the sketches.

Activities specified by descriptions. We adopt the seq2seq

model with a GRU encoding each word in the description

and a GRU to decode each of the sketch instructions.

5. Dataset: VirtualHome-Env

Our goal is to generate a sketch sa from a demonstration

ia or description da and induce a program p from sa and a

target environment e. In this section, we describe how we

obtain the dataset containing (a, ia, da, sa, e, p). We briefly

introduce VirtualHome as the playground for the dataset

collection, we describe how we extend the dataset with ac-

tivity sketches and finally describe how we pair the pro-

grams with arbitrary environments where they can be per-

formed, motivating the creation of a common sense knowl-

edge base of activities2.

Background. VirtualHome is a dataset and simulator to

represent human household activities. The dataset was col-

lected by asking annotators to come up with various ac-

tivities and provide a description for them. In a second

2The details of the collected knowledge base are described in ??
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Description:

Pick up my dirty clothes 

from the bedroom, load the 

washer, add detergent, and 

turn on washer

Washing machine off

Washing machine in 
entrance hall

Clothes in bedroom

Detergent near 
washing machine

No clothes inside 
washing machine

Walk Bedroom

Walk Clothes

Grab Clothes

Walk Entrance hall

Walk Washing machine

Open Washing machine

Put Clothes

Grab Detergent

Put Detergent

Run Washing machine

(1)

(2)

Preconditions

Programs

Figure 3. The annotators label the descriptions and programs

with certain environments in mind (bottom left), resulting in the

environment-dependent descriptions and programs. The blocks

colored in blue are considered as environment-dependent compo-

nents.

stage, annotators were shown a description of an activity

and were asked to write a program from it. With activities

represented as programs, a Unity simulator executes them

in some predefined apartments and renders the programs as

videos. This allows us to obtain activities and programs to-

gether with descriptions and demonstrations (a, ia, da, p).

5.1. Collecting sketches

When collecting each activity in VirtualHome, annota-

tors imagine an environment where the activity could take

place and provide a description according to it. As a re-

sult, the description and subsequent program is specific to a

given environment, but may not be doable when presented

with new environments or constraints (see Fig. 3). There-

fore, we need a more abstract representation of an activity,

which can be consistent with multiple environments and the

information (a, ia, da, p).
Inspired by [16], we collect the sketches of the activi-

ties to abstract out the components that are environment-

dependent and informally define the sketches as the envi-

ronment independent representations. Different from pro-

gramming languages, it is highly non-trivial to define the

sketches of the activities since they depend on the common-

sense of each individual. Therefore, we manually collect

the sketches and get the information (a, ia, da, sa, p).

5.2. Pairing programs with environments

We finally need to add an environment that pairs with the

activity programs. Since we do not know the environment

that each annotator had in mind, we need to infer it from the

program. We first extract the preconditions of the programs

and use them to sample feasible environments. We define

preconditions of a program as the conditions that have to be

true in the environment in order to execute the program in it.

For example, in order to execute watch TV, the tv should

be on. We construct a function Φ that infers the precondi-

tions from p and sample e from the set of environments that

satisfy such preconditions EΦ(p):

e ∼ EΦ(p) ⊂ E, s.t. ∀j ∈ Φ(p), e satisfies j (10)

The above is a weak constraint since it does not inform

about objects that are not specified in Φ(p). To get real-

istic environments, these objects should follow some priors.

For example, couches can be occupied, but they can not be

cold. Apples can be stored inside fridges, but they are sel-

dom found in bathtubs. We build collect these rules in a

knowledge base, KB-RealEnv and use them to build the en-

vironment, starting from the environments provided in Vir-

tualHome.

5.3. Extending programs to diverse environments

We now have the information (a, ia, da, sa, e, p). How-

ever, relying solely on the original programs results in a lim-

ited set of preconditions and thus environments. One possi-

ble reason is that when describing activities, annotators tend

to assume the simplest setting to perform the given activity.

For example, when thinking of doing the laundry, it is com-

mon to imagine that the washing machine is idle or empty.

To address that, we build a simulator Ψ that takes a pro-

gram p and environment graph e and outputs the graph cor-

responding to the environment after executing the program,

or raises an exception if the program is not executable at a

certain step. Given a program with preconditions Φ(p), we

start by randomly perturbing them into Φ(p)′ and use eq. 10

to obtain e′ as an environment satisfying Φ(p)′. Then, we

execute p in the simulator with the environment e′. Given

that the environment and preconditions have changed but

the program is still the same, as the program is executed,

some exception will be raised from the simulator. Then,

a subroutine is called to modify the program p into p′, by

inserting or removing instructions to correct the exception,

obtaining the extended program.

For example, when we executing Sit Sofa, if Sofa

is occupied, the subroutine is expected to perform actions

to remove things on the Sofa until there is enough space

to Sit. We manually compose the subroutines based on

different types of exception, forming the knowledge base,

KB-ExceptionHandler. We show more details of how we

augment the programs in the supplementary materials.

This way, we augment over 30k tuples of sketches, envi-

ronments, and programs (sa, e
′, p′). Note that the sketches

sa are environment-independent, so there is no need to

change them after applying the subroutines.
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Figure 4. The effect of the dataset augmentation: changes in the

distribution of preconditions for the objects in the environment.

5.4. Dataset Analysis

From the original 2807 programs in VirtualHome, we

trim out the programs that can not be executed in the simula-

tor with the environment sampled via preconditions, obtain-

ing 1387 executable programs. Using the process described

in Sec. 5.3, we extend these programs to our final dataset

with around 30k programs. The significant increase in the

program length is induced by the modified preconditions.

For example, the agent needs to open containers to reach

objects or make space to sit on a sofa. In Table ??, we show

the statistics of the new dataset. Fig. 4 shows the change

in the distribution of preconditions of the cup and the sauce

pan. The programs after augmentation show a less skewed

distribution of preconditions and therefore more diverse en-

vironments. Finally, we use the simulator to generate snap-

shots of the environment after executing each instruction of

a program, as show in fig. ??. Note that some of the objects

in the program do not have a model in the simulator, so we

generate frames for a subset of 8421 programs.

6. Experiments

We split the dataset into train and test set in terms of dif-

ferent types of activities with ratio 7:3 and leave one apart-

ment for the test set. We aim to test the capability of our

model with novel activities and environments. We follow

the same split for sketch prediction, where we only keep the

original programs for the desc2sketch, since they contain

the collected descriptions, and use the available frames for

the demo2sketch task.

In this section, we describe the evaluation metrics, base-

lines. Next, we show the extensive experiment results of

ResActGraph. Finally, we analyze the extent to which the

proposed method is environment-aware. We will describe

the implementation details in supplementary materials.

6.1. Evaluation Metrics

We analyze the performance of sketch prediction and

program generation by measuring the normalized longest

common subsequence (LCS) between the generated and

ground truth sequences. LCS is sensitive to the order of the

sequences and allows gaps in between. To further measure

if the generated programs achieve the specified activities,

we compute the differences between the final environment

graphs Ĝ = Ψ(p̂, e) and G = Ψ(p, e) using F1 scores3. In

particular, we only compared the sub-graph containing the

object instances mentioned in p and p̂. We describe the de-

tails of F1(Ĝ,G) in the supplementary materials. Inspired

by [2], we also compute F1-state and F1-relation.

Furthermore, inspired by program synthesis, we care

whether the generated programs are “compilable” as well.

We evaluate if the generated programs can be parsed

(parsibility) and executed (executability) by the simulators.

We will describe the detailed definition of them in the sup-

plementary materials.

6.2. Baselines

We implement five different baselines to compare with

the proposed ResActGraph.

Nearest Neighbors: For every example in the testing set,

we retrieve the training sample that has a sketch with the

highest LCS. In case of a tie, we pick the one with the most

similar initial graph.

Unaries: We set K = 0 in Eq. 7. This model does not

consider the relations of the objects. We use it to showcase

the benefits of modeling object relations.

Graph: This model does not consider the change of graphs

induced by programs (Eq. 8).

FCActGraph: This model uses a FC layer to

model the graph changes. Specifically, it takes the

[h
Kt−1

v , Emb( ˆαt−1),mt−1] as inputs and outputs hKt
v .

GRUActGraph: This model treats the graph changes

as another sequence and uses a GRU to ingest

[Emb( ˆαt−1),mt−1] as inputs and considers h
Kt−1

v as

hidden state to output hKt
v .

6.3. Results

We show the results of ResActGraph quantitatively and

qualitatively. Next, we show the ablation study of the num-

ber of the graph propagation steps. Finally, we show the

prediction results of the whole system.

Program generation from sketches and graphs. The

results are shown in Table 1. By comparing the Graph and

Unaries, we show that aggregating information from neigh-

boring nodes increases performances in nearly all metrics.

The three bottom rows of Table 1 show the results of

models that consider graph changes induced by programs.

The F1 scores and executability benefit the most, which

is expected. For example, suppose there is a glass near

an opened cabinet in the environment and the model pre-

dicts (Grab Glass, Put Glass Cabinet, Close

3If the generated programs cannot be parsed or cannot be executed, the

F1 is set to be 0.
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LCS F1-relation F1-state F1 Executability Parsability

Nearest Neighbors 0.463 0.537 0.051 0.100 - -

Unaries 0.39 0.188 0.179 0.188 22.93% 79.16%

Graph 0.526 0.4 0.397 0.4 46.79% 78.9%

FCActGraph 0.515 0.423 0.4 0.4 48.23% 84.44%

GRUActGraph 0.517 0.426 0.428 0.429 50.28% 84.74%

ResActGraph 0.519 0.432 0.436 0.436 51.1% 83.66%

Table 1. Induce program from ground truth sketches and ground truth graphs. (K = 2)

Sketch GT Program Generated Program

[Open] <washing machine>  
[Put] <basket> <washing machine> 
[Put] <soap>  <washing machine> 
[SwitchOn] <washing machine> 

[Walk] <bedroom> (273)
[Walk] <basket> (1000)
[Find] <basket> (1000)
[Grab] <basket> (1000)
[Walk] <bathroom> (1)
[Walk] <washing machine> (1001)
[Find] <washing machine> (1001)
[Open] <washing machine> (1001)
[Put] <basket> (1000) <washing machine> (1001)
[Find] <soap> (1002)
[Grab] <soap> (1002)
[Put] <soap> (1002) <washing machine> (1001)
[Find] <washing machine> (1001)
[Close] <washing machine> (1001)
[PlugIn] <washing machine> (1001)
[SwitchOn] <washing machine> (1001)

[Walk] <bedroom> (273) 
[Walk] <basket> (1000) 
[Find] <basket > (1000) 
[Grab] <basket > (1000)
[Find] <washing machine> (1001)
[Open] <washing machine> (1001)
[Put] <basket> (1000) <washing machine> (1001) 
[Find] <soap> (1002) 
[Grab] <soap> (1002) 
[Put] <soap> (1002) <washing machine> (1001) 
[Close] <washing machine> (1001)
[Plugin] <washing machine> (1001) 
[SwitchOn] <washing machine> (1001)

Environment

Washing machine (1001) is closed
Washing machine (1001) is off
Washing machine (1001) is unplugged 
Washing machine (1001) in bathroom (1)
Soap (1002) inside Washing machine (1001)

Figure 5. An example of the prediction of ResActGraph. We colore the LCS between the prediction and ground truth in light green. Note

that the sketch is environment agnostic, so it does not specify the ‘id’ (the number in the parentheses) of the object instances.

LCS F1-relation F1-state F1

Unaries (K=0) 0.39 0.18 0.17 0.18

Graph (K=1) 0.48 0.34 0.36 0.35

Graph (K=2) 0.526 0.4 0.397 0.4

Graph (K=3) 0.527 0.39 0.39 0.39

ResActGraph (K=1) 0.49 0.38 0.39 0.39

ResActGraph (K=2) 0.519 0.432 0.436 0.436

ResActGraph (K=3) 0.536 0.415 0.418 0.419

Table 2. Ablation study of the propagation steps K.

Cabinet) at the first three steps, if the model wants to

grab other things from the cabinet without opening it after

t ≥ 4, it fails since the cabinet is closed at t = 3.

Among the three bottom rows of Table 1, the proposed

ResActGraph performs the best in F1. The reason is that us-

ing the residual architecture is easier for the model to learn

the state “changes” compared to using FC. Using GRU to

encode the state changes is also an alternative, but we ob-

serve that it converges slower since it has more number of

parameters to learn and does not perform better.

In Fig. 5, we show the qualitative results of ResAct-

Graph. Even though the generated program does not exactly

match the ground truth, it reaches nearly the same environ-

ment state. In Fig. 6, we show the results with the same

sketch, but different initial environment states. Note that we

only show the states and relations related to the programs.

The model correctly induces correct actions w.r.t. the en-

vironment changes and the two generated programs nearly

reach the same environment states.

Ablation studies. We show the effect of the number of

propagation steps K in Table 2. Both the baseline and the

proposed model benefit as K increases, and the proposed

model performs better than the baseline regardless of dif-

ferent K. We found that the performance saturates when

K = 2, so we fixed it for all other experiments.

Combining predicted sketches with ResActGraph.

The LCS of fdemo2sketch and fdesc2sketch are 0.16 and 0.33

respectively. The reason why the LCS is low is that they are

significantly shorter (on average 2.4 instructions) than the

programs (on average 18.79). This makes the sketch predic-

tion a quite challenging task where LCS is highly penalized

even under small errors.

With the trained model, we can directly generate the pro-

grams from the demonstrations or descriptions. Note that

we do not re-train the program generation model. In Ta-
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Sketch [Sit] <sofa>
[Read] <book>

Environment 1 Generated Program 1 Environment 2 Generated Program 2

Book (263) in bedroom (23)
Bookmark (27) near  book (263) 
Bookmark (27) in bedroom (23)
Sofa (101) in bedroom (23)
Sofa (101) near bookmark (275) 
Sofa (101) is free
Book (263) near sofa (1001) 

[Walk] <bedroom> (23)
[Walk] <book>  (263) 
[Find] <book> (263) 
[Grab] <book> (263) 
[Find] <sofa>  (101) 
[Sit] <sofa>  (101) 
[Find] <bookmark>  (27) 
[Read] <book> (263) 

Sofa (101) in bedroom (23)
Book (263) in bedroom (23)
Bookmark (27) in bedroom (23)
Sofa (101) occupied
Phone (75) on sofa (101) 
Cards (261) on sofa (101) 
Game (231) on sofa (101) 
Check (213)  on sofa (101) 

[Walk] <bedroom>  (23)
[Walk] <sofa>  (101) 
[Find] <sofa>  (101) 
[Find] <phone>  (75) 
[Grab] <phone> (75) 
[Release] <phone> (75) 
[Find] <cards>  (261) 
[Grab] <cards> (261) 
[Release] <cards> (261) 
[Find] <game> (231)

[Grab] <game>  (231) 
[Release] <game> (231) 
[Find] <check> (213)
[Grab] <check>  (213)
[Release] <check> (213)
[Sit] <sofa> (101) 
[Standup]  
[Walk] <book>  (263) 
[Find] <book>  (263) 
[Grab] <book> (263) 
[Read] <book> (263) 

Figure 6. An example of the prediction of ResActGraph with the same sketch, but different environments. We highlight the difference

between two environments with orange and color the LCS between two predictions in light green.

Demonstration Environment Generated Sketch Generated Program

Phone (10) in living room (1) [Grab] <phone> [Walk] <living room> (1)
[Walk] <phone> (10)
[Find] <phone> (10)

[Walk] <phone> (10)
[TurnTo] <phone> (10)
[LookAt] <phone> (10)
[Grab] <phone> (10)

Description Environment Generated Sketch Generated Program

Walk into the home office. Walk up to 
the chair, sit down in the chair. Type 

with the keyboard.

Chair (29) close to keyboard (2)
Chair (29) is free
Keyboard (2) close to computer
Computer (31) in living room (1)

[Sit] <chair>
[Type] <keyboard>

[Walk] <living room> (1)
[Walk] <desk> (137)
[Find] <chair> (29)

[Sit] <chair> (29)
[Find] <keyboard> (2)
[Type] <keyboard> (2)

Figure 7. Predictions from the ResActGraph given sketches from descriptions and demonstrations.

LCS F1-relation F1-state F1 Executability Parsability

Unaries 0.25 0.16 0.16 0.16 32.05% 86.71%

Graph 0.4 0.33 0.32 0.33 43.69% 82.5%

ResActGraph 0.4 0.32 0.34 0.33 47.22% 80.94%

Table 3. Induce program from sketches predicted from decsrip-

tions and ground truth graphs. (K = 2)

LCS F1-relation F1-state F1 Executability Parsability

Unaries 0.23 0.24 0.25 0.24 97.77% 68.88%

Graph 0.4 0.39 0.45 0.4 77.77% 60%

ResActGraph 0.3 0.36 0.39 0.35 93.33% 66.66%

Table 4. Inducing program from sketches predicted from demon-

strations and ground truth graphs. (K = 2)

ble 3 and Table 4, we show the results of the program gen-

eration with the sketches predicted from descriptions and

demonstrations respectively. The performance gap between

the proposed model and the baselines becomes small. The

reason is that the model is confused when the non-perfect

sketches are given, resulting in similar performance. Note

that all models still perform better than Unaries. Qualitative

results are shown in Fig. 7, showing that the model predicts

the plausible sketch and ResActGraph generates plausible

programs w.r.t to the sketch and the graph.

7. Conclusion

In this work, we propose the environment-aware

program generation task. We introduce sketches as

environment-independent activity representations and ad-

dress the problem in two steps: generating sketches from

demonstrations or descriptions and generating programs

from sketches and graphs. To this end, we propose a novel

model, ResActGraph and create a dataset VirtualHome-Env,

with sketches, environments, and programs.

The environment-aware program generation is far from

being solved and opens exciting research directions. While

we access the truth state of the environment graph, one natu-

ral extension would be to predict it from environment obser-

vations [19], but this would still require an oracle provid-

ing images of the interior of closed objects or unexplored

areas. Additionally, though the ResActGraph updates the

hidden states of nodes at each time step, the graph structure

is not changed, which impedes from performing message

passing at each time step. Finally, our setting assumes a

fully observable environment. Working with partially ob-

servable environments opens up exciting directions, such as

dealing with environment changes due to factors external to

the agent or modelling the agent’s theory of mind.
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