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Abstract

Manually labeling objects by tracing their boundaries is

a laborious process. In [7, 2], the authors proposed Polygon-

RNN that produces polygonal annotations in a recurrent

manner using a CNN-RNN architecture, allowing interac-

tive correction via humans-in-the-loop. We propose a new

framework that alleviates the sequential nature of Polygon-

RNN, by predicting all vertices simultaneously using a Graph

Convolutional Network (GCN). Our model is trained end-

to-end. It supports object annotation by either polygons or

splines, facilitating labeling efficiency for both line-based

and curved objects. We show that Curve-GCN outperforms

all existing approaches in automatic mode, including the

powerful PSP-DeepLab [8, 23] and is significantly more effi-

cient in interactive mode than Polygon-RNN++. Our model

runs at 29.3ms in automatic, and 2.6ms in interactive mode,

making it 10x and 100x faster than Polygon-RNN++.

1. Introduction

Object instance segmentation is the problem of outlining

all objects of a given class in an image, a task that has been

receiving increased attention in the past few years [15, 36,

20, 3, 21]. Current approaches are all data hungry, and

benefit from large annotated datasets for training. However,

manually tracing object boundaries is a laborious process,

taking up to 40sec per object [2, 9]. To alleviate this problem,

a number of interactive image segmentation techniques have

been proposed [28, 23, 7, 2], speeding up annotation by a

significant factor. We follow this line of work.

In DEXTR [23], the authors build upon the Deeplab ar-

chitecture [8] by incorporating a simple encoding of human

clicks in the form of heat maps. This is a pixel-wise ap-

proach, i.e. it predicts a foreground-background label for

each pixel. DEXTR showed that by incorporating user clicks

as a soft constraint, the model learns to interactively improve

its prediction. Yet, since the approach is pixel-wise, the

worst case scenario still requires many clicks.

Polygon-RNN [7, 2] frames human-in-the-loop annota-

tion as a recurrent process, during which the model sequen-
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Figure 1: We propose Curve-GCN for interactive object annota-

tion. In contrast to Polygon-RNN [7, 2], our model parametrizes

objects with either polygons or splines and is trained end-to-end at

a high output resolution.

tially predicts vertices of a polygon. The annotator can

intervene whenever an error occurs, by correcting the wrong

vertex. The model continues its prediction by conditioning

on the correction. Polygon-RNN was shown to produce an-

notations at human level of agreement with only a few clicks

per object instance. The worst case scenario here is bounded

by the number of polygon vertices, which for most objects

ranges up to 30-40 points. However, the recurrent nature

of the model limits scalability to more complex shapes, re-

sulting in harder training and longer inference. Furthermore,

the annotator is expected to correct mistakes in a sequential

order, which is often challenging in practice.

In this paper, we frame object annotation as a regres-

sion problem, where the locations of all vertices are pre-

dicted simultaneously. We represent the object as a graph

with a fixed topology, and perform prediction using a Graph

Convolutional Network. We show how the model can be

used and optimized for interactive annotation. Our frame-

work further allows us to parametrize objects with either

polygons or splines, adding additional flexibility and effi-

ciency to the interactive annotation process. The proposed

approach, which we refer to as Curve-GCN, is end-to-end

differentiable, and runs in real time. We evaluate our Curve-

GCN on the challenging Cityscapes dataset [10], where we

outperform Polygon-RNN++ and PSP-Deeplab/DEXTR in

both automatic and interactive settings. We also show that

our model outperforms the baselines in cross-domain an-

notation, that is, a model trained on Cityscapes is used to
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annotate general scenes [38], aerial [31], and medical im-

agery [16, 14]. Code is available: https://github.com/

fidler-lab/curve-gcn.

2. Related Work

Pixel-wise methods. Interactive object segmentation

has typically been formulated as a pixel-wise foreground-

background segmentation. Most of the early work relies on

optimization by graph-cuts to solve an energy function that

depends on various color and texture cues [28, 4, 9]. The

user is required to draw a box around the object, and can

interact with the method by placing additional scribbles on

the foreground or background, until the object is carved out

correctly. However, in ambiguous cases where object bound-

aries blend with background, these methods often require

many clicks from the user [2].

Recently, DEXTR [23] incorporated user clicks by stack-

ing them as additional heatmap channels to image features,

and exploited the powerful Deeplab architecture to perform

user-guided segmentation. The annotator is expected to click

on the four extreme points of the object, and if necessary,

iteratively add clicks on the boundary to refine prediction.

Our work differs from the above methods in that it directly

predicts a polygon or spline around the object, and avoids

pixel-labeling altogether. We show this to be a more efficient

way to perform object instance segmentation, both in the

automatic and in the interactive settings.

Contour-based methods. Another line of work to ob-

ject segmentation aims to trace closed contours. Oldest

techniques are based on level sets [6], which find object

boundaries via front propagation by solving a corresponding

partial differential equation. Several smoothing terms help

the contour evolution to be well behaved, producing accu-

rate and regularized boundaries. In [1], levelset evolution

with carefully designed boundary prediction was used to find

accurate object boundaries from coarse annotations. This

speeds up annotation since the annotators are only required

to perform very coarse labeling. [34] combines CNN fea-

ture learning with level set optimization in an end-to-end

fashion, and exploits extreme points as a form of user in-

teraction. While most level set-based methods were not

interactive, [11] proposed to incorporate user clicks into the

energy function. Recently, [24] proposed a structure predic-

tion framework to learn CNN features jointly with the active

contour parameters by optimizing an approximate IoU loss.

Rather than relying on the regularized contour evolution

which may lead to overly smooth predictions, our approach

learns to perform inference using a GCN. We further tackle

the human-in-the-loop scenario, not addressed in [24].

Intelligent Scissors [25] is a technique that allows the user

to place “seeds” along the boundary and finds the minimal

cost contour starting from the last seed up to the mouse

cursor, by tracing along the object’s boundary. In the case of

error, the user is required to place more seeds.

Polygon-RNN [7, 2] adopted a similar idea of sequentially

tracing a boundary, by exploiting a CNN-RNN architecture.

Specifically, the RNN predicts a polygon by outputting one

vertex at a time. However, the recurrent structure limits the

scaleability with respect to the number of vertices, and also

results in slower inference times. Our work is a conceptual

departure from Polygon-RNN in that we frame object an-

notation as a regression problem, where the locations of all

vertices of the polygon are predicted simultaneously. The key

advantages of our approach is that our model is significantly

faster, and can be trained end-to-end using a differentiable

loss function. Furthermore, our model is designed to be

invariant to order, thus allowing the annotator to correct any

vertex, and further control the influence of the correction.

Our approach shares similarities with Pixel2Mesh [33],

which predicts 3D meshes of objects from single images.

We exploit their iterative inference regime, but propose a

different parametrization based on splines and a loss function

better suited for our (2D annotation) task. Moreover, we

tackle the human-in-the-loop scenario, not addressed in [33].

Splines have been used to parametrize shapes in older

work on active shape models [32]. However, these models

are not end-to-end, while also requiring a dataset of aligned

shapes to compute the PCA basis. Furthermore, interactivity

comes from the fact that the prediction is a spline that the user

can modify. In our approach, every modification leads to re-

prediction, resulting in much faster interactive annotation.

3. Object Annotation via Curve-GCN

In order to approximate a curved contour outlining an

object, one can either draw a polygon or a spline. Splines are

a more efficient form of representation as they allow precise

approximation of the shape with fewer control points. Our

framework is designed to enable both a polygon and a spline

representation of an object contour.

We follow the typical labeling scenario where we assume

that the annotator has selected the object of interest by plac-

ing a bounding box around it [7, 2]. We crop the image

around this box and frame object annotation in the crop as

a regression problem; to predict the locations of all control

points (vertices) simultaneously, from an initialization with

a fixed topology. We describe our model from represen-

tation to inference in Subsec. 3.1, and discuss training in

Subsec 3.2. In Subsec. 3.3, we explain how our model can

be used for human-in-the loop annotation, by formulating

both inference as well as training in the interactive regime.

3.1. Polygon/Spline­GCN

We assume our target object shapes can be well repre-

sented using N control points, which are connected to form

a cycle. The induced shape is rendered by either connect-

ing them with straight lines (thus forming a polygon), or

5258



CNN 

Encoder 

Boundary 

Prediction 
Feature 

Extraction 

initialization 

GCN GCN 

Feature 
Extraction 

image prediction 

Feature map F 

Figure 2: Curve-GCN: We initialize N control points (that form a closed curve) along a circle centered in the image crop with a diameter of 70% of image

height. We form a graph and propagate messages via a Graph Convolutional Network (GCN) to predict a location shift for each node. This is done iteratively

(3 times in our work). At each iteration we extract a feature vector for each node from the CNN’s features F , using a bilinear interpolation kernel.

higher order curves (forming a spline). We treat the loca-

tion of each control point as a continuous random variable,

and learn to predict these via a Graph Neural Network that

takes image evidence as input. In [2], the authors exploited

Gated Graph Neural Networks (GGNN) [19] as a polygon

refinement step, in order to upscale the vertices output by the

RNN to a higher resolution. In similar vein, Pixel2Mesh [33]

exploited a Graph Convolutional Network (GCN) to predict

vertex locations of a 3D mesh. The key difference between a

GGNN and a GCN is in the graph information propagation;

a GGNN shares propagation matrices through time akin to a

gated recurrent unit (GRU), whereas a GCN has propagation

steps implemented as unshared “layers”, similar to a typical

CNN architecture. We adopt the GCN in our model due to

its higher capacity. Hence, we name our model, Curve-GCN,

which includes Polygon or Spline-GCN.

Notation: We initialize the nodes of the GCN to be at a

static initial central position in the given image crop (Fig. 2).

Our GCN predicts a location offset for each node, aiming

to move the node correctly onto the object’s boundary. Let

cpi = [xi, yi]
T denote the location of the i-th control point

and V = {cp0, cp1, · · · , cpN−1} be the set of all control

points. We define the graph to be G = (V,E), with V

defining the nodes and E the edges in the graph. We form

E by connecting each vertex in V with its four neighboring

vertices. This graph structure defines how the information

propagates in the GCN. Connecting 4-way allows faster

exchange of information between the nodes in the graph.

Extracting Features: Given a bounding box, we crop the

corresponding area of the image and encode it using a CNN,

the specific choice of which we defer to experiments. We

denote the feature map obtained from the last convolutional

layer of the CNN encoder applied on the image crop as Fc.

In order to help the model see image boundaries, we super-

vise two additional branches, i.e. an edge branch and a vertex

branch, on top of the CNN encoder’s feature map Fc, both

of which consist of one 3 × 3 convolutional layer and one

fully-connected layer. These branches are trained to predict

the probability of existence of an object edge/vertex on a

28 × 28 grid. We train these two branches with the binary

cross entropy loss. The predicted edge and vertices outputs

are concatenated with Fc, to create an augmented feature

map F . The input feature for a node cpi in the GCN is

a concatenation of the node’s current coordinates (xi, yi),
where top-left of the cropped images is (0, 0) and image

length is 1, and features extracted from the corresponding lo-

cation in F :f0
i = concat{F (xi, yi), xi, yi}. Here, F (xi, yi)

is computed using bilinear interpolation.

GCN Model: We utilize a multi-layer GCN. The graph

propagation step for a node cpi at layer l is expressed as:

f l+1
i = wl

0f
l
i +

∑

cpj∈N (cpi)

wl
1f

l
j (1)

where N (cpi) denotes the nodes that are connected to

cpi in the graph, and wl
0, w

l
1 are the weight matrices.

Following [5, 33], we utilize a Graph-ResNet to propagate

information between the nodes in the graph as a residual

function. The propagation step in one full iteration at layer l

then takes the following form:

rli = ReLU
(

wl
0f

l
i +

∑

cpj∈N (cpi)

wl
1f

l
j

)

(2)

rl+1
i = w̃l

0r
l
i +

∑

cpj∈N (cpi)

w̃l
1r

l
j (3)

f l+1
i = ReLU(rl+1

i + f l
i ), (4)

where w0, w1, w̃0, w̃1 are weight matrices for the residual.

On top of the last GCN layer, we apply a single fully con-

nected layer to take the output feature and predict a relative

location shift, (∆xi,∆yi), for each node, placing it into lo-

cation [x′
i, y

′
i] = [xi+∆xi, yi+∆yi]. We also perform itera-

tive inference similar to the coarse-to-fine prediction in [33].

To be specific, the new node locations [x′
i, y

′
i] are used to

re-extract features for the nodes, and another GCN predicts

a new set of offsets using these features. This mimics the

process of the initial polygon/spline iteratively “walking”

towards the object’s boundaries.

Spline Parametrization: The choice of spline is impor-

tant, particularly for the annotator’s experience. The two

most common splines, i.e. the cubic Bezier spline and the uni-

form B-Spline [27, 12], are defined by control points which

do not lie on the curve, which could potentially confuse an

annotator that needs to make edits. Following [32], we use
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the centripetal Catmull-Rom spline (CRS) [35], which has

control points along the curve. We refer the reader to [35]

for a detailed visualization of different types of splines.

For a curve segment Si defined by control points cpi−1,

cpi, cpi+1, cpi+2 and a knot sequence ti−1, ti, ti+1, ti+2,

the CRS is interpolated by:

Si =
ti+1−t

ti+1−ti
L012 +

t−ti
ti+1−ti

L123 (5)

where

L012 = ti+1−t

ti+1−ti−1
L01 +

t−ti−1

ti+1−ti−1
L12 (6)

L123 = ti+2−t

ti+2−ti
L12 +

t−ti
ti+2−ti

L23 (7)

L01 = ti−t
ti−ti−1

cpi−1 +
t−ti−1

ti−ti−1
cpi (8)

L12 = ti+1−t

ti+1−ti
cpi +

t−ti
ti+1−ti

cpi+1 (9)

L23 = ti+2−t

ti+2−ti+1
cpi+1 +

t−ti+1

ti+2−ti+1
cpi+2, (10)

and ti+1 = ||cpi+1 − cpi||
α
2 + ti, t0 = 0. Here, α ranges

from 0 to 1. We choose α = 0.5 following [32], which in the-

ory produces splines without cusps or self-intersections [35].

To make the spline a closed and C1-continuous curve, we

add three additional control points:

cpN = cp0 (11)

cpN+1 = cp0 +
||cpN−1−cp0||2
||cp1−cp0||2

(cp1 − cp0) (12)

cp−1 = cp0 +
||cp1−cp0||2

||cpN−1−cp0||2
(cpN−1 − cp0). (13)

3.2. Training

We train our model with two different loss functions.

First, we train with a Point Matching Loss which we intro-

duce in Subsec. 3.2.1, and then fine-tune it with a Differen-

tiable Accuracy Loss described in Subsec. 3.2.2. Details and

ablations are provided in Experiments.

3.2.1 Point Matching Loss

Typical point-set matching losses, such as the Chamfer

Loss, assumed unordered sets of points (i.e. they are

permutation invariant). A polygon/spline, however, has a

well defined ordering, which an ideal point set matching loss

would obey. Assumuing equal sized and similarly ordered

(clockwise or counter-clockwise) prediction and ground

truth point sets, denoted as p = {p0, p1, · · · , pK−1}, and

p′ = {p′0, p
′
1, · · · , p

′
K−1} respectively (K is the number of

points), we define our matching loss as:

Lmatch(p,p
′) = min

j∈[0··· ,K−1]

K−1
∑

i=0

‖pi − p′(j+i)%K‖
1

(14)

Notice that this loss explicitly ensures an order in the vertices

in the loss computation. Training with an unordered point

set loss function, while maintaining the topology of the

polygon could result in self-intersections, while the ordered

loss function discourages it.

Sampling equal sized point sets. Since annotations may

vary in the number of vertices, while our model always

assumes N , we sample additional points along boundaries

of both ground-truth polygons and our predictions. For

Polygon-GCN, we uniformly sample K points along edges

of the predicted polygons, while for Spline-GCN, we sample

K points along the spline by uniformly ranging t from ti
to ti+1. We also uniformly sample the same number of

points along the edges of the ground-truth polygon. We

use K = 1280 in our experiments. Sampling more points

would have a higher computational cost, while sampling

fewer points would make curve approximation less accurate.

Note that the sampling only involves interpolating the control

points, ensuring differentiability.

3.2.2 Differentiable Accuracy Loss

Note that training with the point matching loss results in

overly smooth predictions. To perfectly align the predicted

polygon and the ground-truth silhouette, we employ a differ-

entiable rendering loss, which encourages masks rendered

from the predicted control points to agree with ground-truth

masks by directly optimizing for accuracy. This has been

used previously to optimize 3D mesh vertices to render cor-

rectly onto a 2D image [17, 22].

The rendering process can be described as a function R;

M(θ) = R(p(θ)), where p is the sampled point sequence

on the curve, and M is the corresponding mask rendered

from p. The predicted and the ground-truth masks can be

compared by computing their difference with the L1 loss:

Lrender(θ) = ‖M(θ)−Mgt‖1 (15)

Note that Lrender is exactly the pixel-wise accuracy of the

predicted mask M(θ) with respect to the ground truth Mgt.

We now describe the method for obtaining M in the for-

ward pass and back-propagating the gradients through the

rendering process R, from ∂L
∂M

to ∂L
∂p

in the backward pass.

Forward Pass: We render p into a mask using OpenGL.

As shown in Fig. 3, we decompose the shape into triangle

fans fj and assign positive or negative values to their area

based on their orientation. We render each face with the

assigned value, and sum over the rendering of all the triangles

to get the final mask. We note that this works for both convex

and concave polygons [29].

Figure 3: We decompose the poly-

gon ABCDE into 3 triangle fans ABC,

ACD and ADE, and render them sep-

arately. We assign positive value for

clock wise triangles (ABC, ACD) and

negative value for the others (ADE).

Finally we sum over all the renderings.

The sum retains only the interior of

the polygon.
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Figure 4: Human-in-the-Loop: An annotator can choose any wrong

control point and move it onto the boundary. Only its immediate neighbors

(k = 2 in our experiments) will be re-predicted based on this interaction.

Backward Pass: The rendering process is non-

differentiable in OpenGL due to rasterization, which

truncates all float values to integers. However, follow-

ing [22], we compute its gradient with first order Taylor

expansion. We reutilize the triangle fans from the decom-

position in the forward pass (see Fig. 3) and analyze each

triangle fan separately. Taking a small shift of the fan fj , we

calculate the gradient w.r.t. the j-th triangle as:

∂Mj

∂fj
=

R(fj +∆t)−R(fj)

∆t
, (16)

where Mj is the mask corresponding to the fan fj . Here, ∆t

can be either in the x or y direction. For simplicity, we let ∆t

to be a 1 pixel shift, which alleviates the need to render twice,

and lets us calculate gradients by subtracting neighboring

pixels. Next, we pass the gradient
∂Mj

∂fj
to its three vertices

fj,0, fj,1 and fj,2:

∂Mj

∂fj,k
=

∑

i

wi
k

∂M i
j

∂fj
k ∈ [0, 1, 2] (17)

where we sum over all pixels i. For the i-th pixel M i
j in the

rendered image Mj , we compute its weight wi
0, wi

1 and wi
2

with respect to the vertices of the face fj as its barycentric

coordinates. For more details, please refer to [22].

3.3. Annotator in The Loop

The drawback of Polygon-RNN is that once the anno-

tator corrects one point, all of the subsequent points will

be affected due to the model’s recurrent structure. This is

often undesirable, as the changes can be drastic. In our work,

we want the flexibility to change any point, and further con-

strain that only the neighboring points can change. As in

Polygon-RNN, the correction is assumed to be in the form

of drag-and-drop of a point.

To make our model interactive, we train another GCN

that consumes the annotator’s correction and predicts the

relative shifts of the other control points. We refer to it as

the InteractiveGCN. We keep the network’s architecture the

same as the original GCN, except that we now append two

additional dimensions to the corrected node’s (say node i)

input feature, representing the annotator’s correction:

f0
i = concat{F (xi, yi), xi, yi,∆xi,∆yi}, (18)

Algorithm 1 Learning to Incorporate Human-in-the-Loop

1: while not converged do

2: (rawImage, gtCurve) = Sample(Dataset)

3: (predCurve, F ) = Predict(rawImage)

4: data = []

5: for i in range(c) do

6: corrPoint = Annotator(predictedCurve)

7: data += (predCurve, corrPoint, gtCurve, F )

8: predCurve = InteractiveGCN(predCurve, corrPoint)

9: ⊲ Do not stop gradients

10: TrainInteractiveGCN(data)

where (∆xi,∆yi) is the shift given by the annotator. For

all other nodes, we set (∆xi,∆yi) to zero. We do not

perform iterative inference here. Our InteractiveGCN

allows a radius of influence by simply masking predictions

of nodes outside the radius to 0. In particular, we let k

neighbors on either side of node i to be predicted, i.e.,

cp(i−k)%N , . . . , cp(i−1)%N , cp(i+1)%N , . . . , cp(i+k)%N .

We set k = 2 in our experiments, while noting that in

principle, the annotator could vary k at test time.

We train InteractiveGCN by mimicking an annotator that

iteratively moves wrong control points onto their correct

locations. We assume that the annotator always chooses

to correct the worst predicted point. This is computed by

first aligning the predicted polygon with GT, by finding the

minimum of our point matching loss (Sec. 3.2.1). We then

find the point with the largest manhattan distance to the

corresponding GT point. The network is trained to move

the neighboring points to their corresponding ground-truth

positions. We then iterate between the annotator choosing

the worst prediction, and training to correct its neighbors. In

every iteration, the GCN first predicts the correction for the

neighbors based on the last annotator’s correction, and then

the annotator corrects the next worst point. We let the gradi-

ent back-propagate through the iterative procedure, helping

the InteractiveGCN to learn to incorporate possibly many

user interactions. The training procedure is summarized in

Alg. 1, where c denotes the number of iterations.

4. Experimental Results

In this section, we extensively evaluate our Curve-GCN

for both in-domain and cross-domain instance annotation.

We use the Cityscapes dataset [10] as the main benchmark

to train and test our model. We analyze both automatic and

interactive regimes, and compare to state-of-the-art baselines

for both. For cross-domain experiments, we evaluate the

generalization capability of our Cityscapes-trained model

on the KITTI dataset [13] and four out-of-domain datasets,

ADE20K [38], Aerial Rooftop [31], Cardiac MR [30], and

ssTEM [14], following Polygon-RNN++ [2].

To indicate whether our model uses polygons or splines,

we name them Polygon-GCN and Spline-GCN, respectively.
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Model Bicycle Bus Person Train Truck Motorcycle Car Rider Mean

Polygon-RNN++ 57.38 75.99 68.45 59.65 76.31 58.26 75.68 65.65 67.17

Polygon-RNN++ (with BS) 63.06 81.38 72.41 64.28 78.90 62.01 79.08 69.95 71.38

PSP-DeepLab 67.18 83.81 72.62 68.76 80.48 65.94 80.45 70.00 73.66

Polygon-GCN (MLoss) 63.68 81.42 72.25 61.45 79.88 60.86 79.84 70.17 71.19

+ DiffAcc 66.55 85.01 72.94 60.99 79.78 63.87 81.09 71.00 72.66

Spline-GCN (MLoss) 64.75 81.71 72.53 65.87 79.14 62.00 80.16 70.57 72.09

+ DiffAcc 67.36 85.43 73.72 64.40 80.22 64.86 81.88 71.73 73.70

Table 1: Automatic Mode on Cityscapes. We compare our Polygon and Spline-GCN to Polygon-RNN++ and PSP-DeepLab. Here, BS indicates that the

model uses beam search, which we do not employ.

Model mIOU F at 1px F at 2px

Polyrnn++ (BS) 71.38 46.57 62.26

PSP-DeepLab 73.66 47.10 62.82

Spline-GCN 73.70 47.72 63.64

DEXTR 79.40 55.38 69.84

Spline-GCN-EXTR 79.88 57.56 71.89

Table 2: Different Metrics. We report IoU & F bound-

ary score. We favorably cross-validate PSP-DeepLab and

DEXTR for each metric on val. Spline-GCN-EXTR uses

extreme points as additional input as in DEXTR.

.

Model Spline Polygon

GCN 68.55 67.79

+ Iterative Inference 70.00 70.78

+ Boundary Pred. 72.09 71.19

+ DiffAcc 73.70 72.66

Table 3: Ablation study on Cityscapes.

We use 3 steps when performing iterative in-

ference. Boundary Pred adds the boundary

prediction branch to our CNN.

Model Time(ms)

Polygon-RNN++ 298.0

Polygon-RNN++ (Corr.) 270.0

PSP-Deeplab 71.3

Polygon-GCN 28.7

Spline-GCN 29.3

Polygon-GCN (Corr.) 2.0

Spline-GCN (Corr.) 2.6

Table 4: Avg. Inference Time per object. We

are 10× faster than Polygon-RNN++ in forward

pass, and 100× for every human correction.

Image Encoder: Following Polygon-RNN++ [2], we use

the ResNet-50 backbone architecture as our image encoder.

Training Details: We first train our model via the match-

ing loss, followed by fine-tuning with the differentiable ac-

curacy loss. The former is significantly faster, but has less

flexibility, i.e. points are forced to exactly match the GT

points along the boundary. Our differentiable accuracy loss

provides a remedy as it directly optimizes for accuracy. How-

ever, since it requires a considerably higher training time we

employ it only in the fine-tuning stage. For speed issues we

use the matching loss to train the InteractiveGCN. We use a

learning rate of 3e-5 which we decay every 7 epochs.

We note that the Cityscapes dataset contains a significant

number of occluded objects, which causes many objects to

be split into disconnected components. Since the matching

loss operates on single polygons, we train our model on

single component instances first. We fine-tune with the

differentiable accuracy loss on all instances.

Baselines: Since Curve-GCN operates in two different

regimes, we compare it with the relevant baselines in each.

For the automatic mode, we compare our approach to

Polygon-RNN++ [2], and PSP-DeepLab [8, 37]. We use the

provided DeepLab-v2 model by [23], which is pre-trained

on ImageNet, and fine-tuned on PASCAL for semantic seg-

mentation. We stack Pyramid scene parsing [37] to en-

hance performance. For the interactive mode, we benchmark

against Polygon-RNN++ and DEXTR [23]. We fine-tune

both PSP-DeepLab and DEXTR on the Cityscapes dataset.

We cross-validate their thresholds that decide between fore-

ground/background on the validation set.

Evaluation Metrics: We follow Polygon-RNN [7] to eval-

uate performance by computing Intersection-over-Union

(IoU) of the predicted and ground-truth masks. However,

as noted in [18], IoU focuses on the full region and is less

sensitive to the inaccuracies along the object boundaries. We

argue that for the purpose of object annotation boundaries

are very important – even slight deviations may not escape

the eye of an annotator. We thus also compute the Bound-

ary F score [26] which calculates precision/recall between

the predicted and ground-truth boundary, by allowing some

slack wrt misalignment. Since Cityscapes is finely annotated,

we report results at stringent thresholds of 1 and 2 pixels.

4.1. In­Domain Annotation

We first evaluate our model when both training and infer-

ence are performed on Cityscapes [10]. This dataset contains

2975/500/1525 images for training, validation and test, re-

spectively. For a fair comparison, we follow the same split

and data preprocessing procedure as in Polygon-RNN++ [7].

Automatic Mode: Table 1 reports results of our Curve-

GCN and compares with baselines, in terms of IoU. Note

that PSP-DeepLab uses a more powerful image encoder,

which is pretrained on PASCAL for segmentation. Our

Spline-GCN outperforms Polygon-RNN++ and is on par

with PSP-DeepLab. It also wins over Polygon-GCN, likely

because most Cityscapes objects are curved. The results

also show the significance of our differentiable accuracy loss

(diffAcc) which leads to large improvements over the model

trained with the matching loss alone (denoted with MLoss

in Table). Our model mostly loses against PSP-DeepLab

on the train category, which we believe is due to the fact

that trains in Cityscapes are often occluded and broken into

multiple components. Since our approach predicts only a

single connected component, it struggles in such cases.

Table 2 compares models with respect to F boundary

metrics. We can observe that while Spline-GCN is on par

with PSP-DeepLab under the IoU metric, it is significantly

better in the more precise F score. This means that our model

more accurately aligns with the object boundaries. We show
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Figure 5: Automatic Mode on Cityscapes. The input to our model are bounding boxes for objects.

Figure 6: Automatic mode on Cityscapes. We show results for individual instances. (top) Spline-GCN, (bottom) ground-truth. We can observe that our

model fits object boundaries accurately, and surprisingly finds a way to “cheat" in order to annotate multi-component instances.

Figure 7: Comparison in Automatic Mode. From left to right: ground-truth, Polygon-GCN, Spline-GCN, PSP-DeepLab.

qualitative results in Fig 5, 6, and 7.

Ablation Study: We study each component of our model

and provide results for both Polygon and Spline-GCN in

Table 3. Performing iterative inference leads to a significant

boost, and adding the boundary branch to our CNN further

improves performance.

Additional Human Input: In DEXTR [23], the authors

proposed to use 4 extreme points on the object boundary as

an effective information provided by the annotator. Com-

pared to just a box, extreme points require 2 additional clicks.

We compare to DEXTR in this regime, and follow their strat-

egy in how this information is provided to the model. To be

specific, points (in the form of a heat map) are stacked with

the image, and passed to a CNN. To compare with DEXTR,

we use DeepLab-v2 in this experiment, as they do. We refer

to our models with such input by appending EXTR.

We notice that the image crops used in Polygon-RNN,

are obtained by extracting an image inside a square box (and

not the actual box provided by the annotator). However,

due to significant occlusion in Cityscapes, doing so leads

to ambiguities, since multiple objects can easily fall in the

same box. By providing 4 extreme points, the annotator

more accurately points to the target object. To verify how

much accuracy is really due to the additional two clicks,

we also test an instantiation of our model to which the four

corners of the bounding box are provided as input. This is

still a 2-click (box) interaction from the user, however, it

reduces the ambiguity of which object to annotate. We refer

to this model by appending BOX.

Since DEXTR labels pixels and thus more easily deals

with multiple component instances, we propose another in-

stantiation of our model which still exploits 4 clicks on aver-

age, yet collects these differently. Specifically, we request

the annotator to provide a box around each component, rather

than just a single box around the full object. On average, this

leads to 2.4 clicks per object. This model is referred to with

MBOX. To match the 4-click budget, our annotator clicks

on the worst predicted boundary point for each component,

which leads to 3.6 clicks per object, on average.

Table 5 shows that in the extreme point regime, our model

is already better than DEXTR, whereas our alternative strat-

egy is even better, yielding an 0.8% improvement overall

with fewer clicks on average. Our method also significantly

outperforms DEXTR in the boundary metrics (Table 2).

Interactive Mode: We simulate an annotator correcting

vertices, following the protocol in [2]. In particular, the an-

notator iteratively makes corrections until the IoU is greater

than a threshold T , or the model stops improving its predic-

tion. We consider the predicted curve achieving agreement

above T as a satisfactory annotation.

Plots 8 and 9 show IoU vs number of clicks at different

thresholds T . We compare to Polygon-RNN++. Our results

show significant improvements over the baseline, highlight-

ing our model as a more efficient annotation tool. We further

analyze performance when using 40 vs 20 control points.

The version with fewer control points is slightly worse in
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Model Bicycle Bus Person Train Truck Mcycle Car Rider Mean # clicks

Spline-GCN-BOX 69.53 84.40 76.33 69.05 85.08 68.75 83.80 73.38 76.29 2

PSP-DEXTR 74.42 87.30 79.30 73.51 85.42 73.69 85.57 76.24 79.40 4

Spline-GCN-EXTR 75.09 87.40 79.88 72.78 86.76 73.93 86.13 77.12 79.88 4

Spline-GCN-MBOX 70.45 88.02 75.87 76.35 82.73 70.76 83.32 73.49 77.62 2.4

+ One click 73.28 89.18 78.45 79.89 85.02 74.33 85.15 76.22 80.19 3.6

Table 5: Additional Human Input. We follow DEXTR [23] and provide a budget of 4 clicks to the models. Please see text for details.
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Figure 8: Interactive Mode on Cityscapes: (left) 40 control points, (right) 20 control points.
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Figure 9: Inter. Mode on KITTI: 40 cps

Figure 10: Annotator in the Loop: GT, 2nd column is the initial prediction from Spline-GCN, and the following columns show results after (simulated)

annotator’s corrections. Our corrections are local, and thus give more control to the annotator. However, they sometimes require more clicks (right).

Model KITTI ADE Rooftop Card.MR ssTEM

Square Box (Perfect) - 69.35 62.11 79.11 66.53

Ellipse (Perfect) - 69.53 66.82 92.44 71.32

Polygon-RNN++ (BS) 83.14 71.82 65.67 80.63 53.12

PSP-DeepLab 83.35 72.70 57.91 74.11 47.65

Spline-GCN 84.09 72.94 68.33 78.54 58.46

+ finetune 84.81 77.35 78.21 91.33 -

Polygon-GCN 83.66 72.31 66.78 81.55 60.91

+ finetune 84.71 77.41 75.56 90.91 -

Table 6: Automatic Mode on Cross-Domain. We outperform PSP-

DeepLab out-of-the-box. Fine-tuning on 10% is effective.
Table 7: Automatic Mode for Cross-Domain. (top) Out-of-the-box output of

Cityscapes-trained models, (bottom) fine-tuned with 10% of data from new domain.

automatic mode (see Appendix), however, it is almost on par

in the interactive mode. This may suggest that coarse-to-fine

interactive correction may be the optimal approach.
Inference Times: Timings are reported in Table 4. Our

model is an order of magnitude faster than Polygon-

RNN++, running at 29.3 ms, while Polygon-RNN++ re-

quires 298.0ms. In the interactive mode, our model re-uses

the computed image features computed in the forward pass,

and thus only requires 2.6ms to incorporate each correction.

On the other hand, Polygon-RNN requires to run an RNN

after every correction, thus still requiring 270ms.

4.2. Cross­Domain Evaluation

We now evaluate the ability of our model to generalize to

new datasets. Generalization is crucial, in order to effectively

annotate a variety of different imagery types. We further

show that by fine-tuning on only a small set of the new

dataset (10%) leads to fast adaptation to new domains.

We follow [2] and use our Cityscapes-trained model

and test it on KITTI [13] (in-domain driving dataset),

ADE20k [38] (general scenes), Rooftop [31] (aerial im-

agery), and two medical datasets [30, 16, 14].

Quantitative Results. Table 6 provides results. We adopt

simple baselines from [2]. We further fine-tune (with dif-

fAcc) the models with 10% randomly sampled training data

from the new domain. Note that ssTEM does not have a train-

ing split, and thus we omit this experiment for this dataset.

Results show that our model generalizes better than PSP-

DeepLab, and that fine-tuning on very little annotated data

effectively adapts our model to new domains. Fig. 7 shows a

few qualitative results before and after fine-tuning.

5. Conclusion

We presented Curve-GCN for efficient interactive anno-

tation. Our model improves over the state-of-the-art and is

significantly faster. We further allow interactive corrections

that only have local effect, giving more control to the annota-

tors. This leads to the better overall annotation strategy. We

will release an annotation tool running our model, in order

to facilitate faster collection of computer vision datasets.
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