
Adaptive Transfer Network for Cross-Domain Person Re-Identification

Jiawei Liu1, Zheng-Jun Zha1*, Di Chen1, Richang Hong2, Meng Wang2

1University of Science and Technology of China, China
2HeFei University of Technology, China

{ljw368,cdrom000}@mail.ustc.edu.cn, zhazj@ustc.edu.cn, {hongrc,wangmeng}@hfut.edu.cn

Abstract

Recent deep learning based person re-identification

approaches have steadily improved the performance for

benchmarks, however they often fail to generalize well

from one domain to another. In this work, we propose a

novel adaptive transfer network (ATNet) for effective cross-

domain person re-identification. ATNet looks into the es-

sential causes of domain gap and addresses it following

the principle of “divide-and-conquer”. It decomposes the

complicated cross-domain transfer into a set of factor-wise

sub-transfers, each of which concentrates on style trans-

fer with respect to a certain imaging factor, e.g., illumina-

tion, resolution and camera view etc. An adaptive ensem-

ble strategy is proposed to fuse factor-wise transfers by per-

ceiving the affect magnitudes of various factors on images.

Such “decomposition-and-ensemble” strategy gives ATNet

the capability of precise style transfer at factor level and

eventually effective transfer across domains. In particular,

ATNet consists of a transfer network composed by multi-

ple factor-wise CycleGANs and an ensemble CycleGAN as

well as a selection network that infers the affects of differ-

ent factors on transferring each image. Extensive experi-

mental results on three widely-used datasets, i.e., Market-

1501, DukeMTMC-reID and PRID2011 have demonstrated

the effectiveness of the proposed ATNet with significant per-

formance improvements over state-of-the-art methods.

1. Introduction

Person re-identification is the task of matching a probe

pedestrian image from a large-scale gallery collected by

non-overlapping camera networks at diverse locations [17,

35, 18]. It has been widely investigated due to its impor-

tance for many practical applications, such as automated

surveillance, content-based retrieval and behavior analysis

etc. [20, 38, 43, 36]. Recently, deep learning technique has

been applied for person re-identification, leading to steady
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Figure 1. Illustration of the domain disparity among Market1501,

DukeMTMC-reID and PRID2011 benchmarks, presenting signif-

icant variances in illumination, resolution and camera viewpoint

etc.

performance improvement on popular benchmarks [34, 41].

Despite remarkable progress on person re-identification

[26, 31, 11], it still remains a challenging task due to

dramatic variances in imaging device, condition and envi-

ronment among different surveillance cameras/camera net-

works. In practice, visual appearance of a pedestrian ob-

served by different cameras at various locations and times

varies drastically due to different camera configuration,

lighting condition and viewing angles etc. This results in in-

tensive disparities across pedestrian image galleries known

as the challenge of domain gap in literatures [23, 16], hin-

dering the application of exiting person re-identification

systems. Existing re-identification models trained on one

domain often fail to generalize well to another and suffer

from severe performance drop. For example, GoogleNet

[29] trained on Market-1501 dataset achieves rank-1 recog-

nition rate of only 5.0% on PRID2011. Figure 1 illustrates

the domain disparity among three popular benchmarks for

person re-identification. They are collected at different

places (e.g., supermarket, campus and street) and present
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significant variances in illumination, resolution and camera

viewpoint, etc.

A promising solution for bridging domain gap is un-

supervised domain adaptation (UDA), which is a class of

techniques aiming to use a source domain with labeled

samples to learn a classifier with good capability on a un-

labeled target domain. Typical UDA approaches assume

that the source and target domain contain the same set of

classes. Hence, they could not applied directly to person

re-identification task as different re-identification datasets

consist of entirely different pedestrian identities (classes).

Recently, a few of UDA approaches tailored for person re-

identification [2, 45, 46, 33, 3] have bee proposed upon

the domain translation model CycleGAN [48]. These ap-

proaches encompass two phases typically. First, pedestrian

images labeled with identities from a source domain are

transferred into the style of a target domain, while preserv-

ing pedestrian identities. Second, the style-transferred im-

ages with labels are used to train a re-identification model

for the target domain. These approaches treat the domain

gap as a “black box” and attempt to tackle it resorting to

a single style transformer. Actually, inter-domain dispar-

ities arise from the variations in multiple essential factors

(e.g. illumination, resolution and camera viewpoint) dur-

ing imaging process [22]. Even for each different image,

the factors may hold different impacts on its imaging, lead-

ing to various cases of discrepancy across domains. Such

complexity of domain discrepancy mixed with various fac-

tors challenge existing approaches, resulting in suboptimal

performance.

In this work, we propose a novel Adaptive Transfer

Network (ATNet) for effective cross-domain person re-

identification. The ATNet looks into the “black box” of

domain gap and proposes to address it following the prin-

ciple of “divide-and-conquer”. To the best of our knowl-

edge, this work is the first one that looks into the essen-

tial factors of domain gap. It decomposes the complicated

cross-domain transfer into a set of intermediate sub-tasks,

each of which concentrates on style transfer at fine-grained

level with respect to a certain factor. The sub-transformers

are optimized jointly and assembled together to address the

domain discrepancy. The ensemble of sub-transformers is

self-adaptive to each image according to the affects of dif-

ferent factors. This gives ATNet the capability to trans-

fer styles precisely with the perception of factor-wise af-

fects. In particular, the proposed ATNet is built upon Cy-

cleGAN [48]. As illustrated in Figure 2, it consists of a

transfer network composed by multiple factor GANs and

an ensemble GAN as well as a selection network. Each fac-

tor GAN concentrates on transferring images to the target

style of a certain imaging factor. The illumination, res-

olution and camera-view are three critical factors of do-

main disparity and are investigated in this work. It is note-

worthy that ATNet is flexible to incorporate transfer mod-

ules of other factors. The ensemble GAN is designed to

fuse the factor GANs adaptively towards painting precise

style-transferred images. The selection network is to in-

fer the affects of different factors on transferring each im-

age, representing as sample-wise affect magnitudes which

are used for the adaptive ensemble of factor GANs. We

conduct extensive experiments to evaluate ATNet on three

widely-used person re-identification datasets, i.e., Market-

1501 [42], DukeMTMC-reID [44] and PRID2011 [9], and

report superior performance over state-of-the-art methods.

The main contributions of this paper are three-fold: (1)

we propose a novel adaptive transfer network (ATNet) for

effective cross-domain person re-identification following

the principle of “divide-and-conquer” ; (2) we propose a

flexible network architecture consisting of multiple factor

GANs and an ensemble GAN. While the former performs

factor-wise style transfer at more fine-grained level across

domains, the latter synergizes factor GANs for effective do-

main transfer; (3) we propose an sample-wise adaptive en-

semble of factor GANs by inferring the affects of various

imaging factors on images.

2. Related Work

This work is closely related with unsupervised domain

adaptation and feature learning in person re-identification.

We will briefly summarize these two aspects of works.

2.1. Unsupervised Domain Adaptation

The proposed work relates to unsupervised domain adap-

tation (UDA) where images in the target domain are un-

labeled. In the UDA community, most of the previous

methods [25, 6, 5, 27, 28, 37, 32] attempt to align the

source domain to the target domain by reducing the di-

vergence of feature distributions. These methods assume

that class labels are the same across domains, while dif-

ferent re-identification datasets contain different person IDs

(classes). Thus, these approaches can not be applied di-

rectly for person re-identification.

Recently, a few cycle generative adversarial Networks

(CycleGAN) [48, 1, 7] based UDA approaches [2, 45, 46,

33, 3] are proposed for person re-identification, which fo-

cus on learning a generator network that transforms sam-

ples in the pixel space from one domain to another. For

example, Deng et al. [3] proposed a similarity preserv-

ing generative adversarial network (SPGAN) which pre-

served self-similarity of an image before and after transla-

tion, and domain-dissimilarity of a translated source image

and a target image. Zhun et al. [45] introduced a Hetero-

Homogeneous Learning (HHL) model, which enforced

camera invariance, learned by positive pairs formed by un-

labeled target images and their camera style transferred im-

ages, and domain connectedness, by regarding source / tar-
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Figure 2. The overall architecture of the proposed ATNet approach. It consists of a transfer network for precise factor-wise style transfers

and adaptive ensemble of them as well as a selection network for inferring affect magnitude of various imaging factors (e.g., illumination,

resolution and camera view) on images.

get images as negative matching pairs. Slawomir et al. [2]

proposed a three-step domain adaptation technique, which

translated the Synthetic Person Re-Identification dataset to

the target conditions by employing cycle-consistent adver-

sarial networks. Wei et al. [33] proposed a Person Transfer

Generative Adversarial Network (PTGAN) for bridging do-

main gap, which introduced a identity loss and a style loss

to keep the identity of pedestrians and ensure the transferred

images with similar style of target domain during transfer.

Zhong et al. [46] proposed a camera style (CamStyle) adap-

tation method with a label smooth regularization (LSR) for

person re-identification, which can serve as a data augmen-

tation approach that smooths the camera style disparities

and alleviate the impact of noise caused by the new gen-

erated samples.

2.2. Feature Learning

Deep learning based methods [47, 14, 26, 15, 40] for

feature extraction have shown substantial advantage over

traditional hard-crafted features on most of person re-

identification datasets. For example, Xiao et al. [34] pre-

sented a pipeline for learning global full-body representa-

tions from multiple domains by a Domain Guided Dropout

layer to discard useless neurons for each domain. Liu et al.

[19] proposed a multi-scale triplet CNN which captures vi-

sual appearance of a person at various scales by a compara-

tive similarity loss on massive sample triplets. McLaughlin

et al. [21] presented a recurrent neural network architecture

for video-based person re-identification, which utilized op-

tical flow, recurrent layers and mean-pooling layer to learn

video features containing appearance and motion informa-

tion. Li et al. [14] formulated a method of jointly learning

local and global features in a CNN model by optimizing

multiple classification losses in different context.

3. The Proposed Method

In this section, we first present the overall architecture of

the proposed ATNet and then elaborate its components.

3.1. Problem Formulation

Given an annotated dataset S from source domain and

an unlabeled dataset T from target domain for person re-

identification, the goal of unsupervised domain adaptation

is to use the labeled source images to train a re-identification

model that generalizes well to the unlabeled dataset on tar-

get domain. Considering that data bias caused by differ-

ent influence factors Θ, we require a transfer model G(·)
to translate the annotated dataset S from source domain to

target domain, and learn effective generalized features of

pedestrian with the new created dataset G(S;w;Θ). The

unsupervised domain adaptation problem can be formulated
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as:

argmin
w

Djs(PT (y)‖PG(x;w;Θ)) (1)

where Djs denotes the Jensen-Shannon divergence between

two distributions, PT denotes the distribution of the tar-

get domain over data y, PG denotes the distribution of the

transfer model over data x from source domain S . w and Θ

refer to the parameters of the transfer model and the factors

(illumination, resolution, camera viewpoint, etc).

To learn an effective transfer model, we look into the

“black box” of domain gap and address it following the

principle of “divide-and-conquer”. The complicated cross-

domain transfer are decomposed into a set of factor-wise

sub-transformers, each of which concentrates on style trans-

fer at fine-grained level with respect to a certain factor,

which are then assembled together to address the domain

discrepancy. Moreover, the factors may hold different im-

pacts on imaging process, the sub-transformers should be

self-adaptive to each image according to the impacts of dif-

ferent factors for transferring style precisely. Thus, we pro-

pose a novel ATNet for effective cross-domain person re-

identification. As shown in Figure 2, the ATNet consists of

a transfer network containing multiple factor GANs and an

ensemble GAN, and a selection network. Each factor GAN

focuses on transferring images to the target style of a cer-

tain imaging factor. The ensemble GAN is designed to fuse

the factor GANs adaptively towards painting precise style-

transferred images. The selection network is to infer the

weight scores of different factors on transferring each im-

age, representing as sample-wise affect magnitudes which

are used for the adaptive ensemble of factor GANs. After

that, following the works [3, 33], we adopt the ResNet-50

[8] and GoogleNet [29] models as baseline to evaluate the

performance on the target domain.

3.2. Transfer Network

Inter-domain disparities arise from the variations in mul-

tiple essential factors during image processing. The transfer

network decomposes the complicated cross-domain transfer

into a set of factor-wise sub-transformers, each of which fo-

cuses on style transfer with respect to a certain factor. The

proposed framework is generic and flexible to include sub-

transfers of other factors. We select illumination, resolution

and camera view in this work as they are common and crit-

ical factors as discussed in literature. It optimizes the sub-

transformers for these factors jointly and assembles them

together to address the domain discrepancy. Moreover, the

ensemble of sub-transformers is self-adaptive to each image

based on the affects of different factors for generating more

realistic images with a similar style of target domain.

Specifically, the transfer network contains three fac-

tors GANs and a emsemble GAN. They are all based

on the CycleGAN model, which contains two generator-

discriminator pairs, {G,DT } and {F,DS}, producing a

translated sample that is indistinguishable from samples in

the other domain. The two generators G : S → T and

F : T → S are the mapping functions. The two ad-

versarial discriminators DT ,DS are used to distinguish

whether samples are translated from source (target) domain.

For simplification, we only consider that mapping a sample

from source domain S to target domain T and ignore the

reverse process. Similar to [30], the overall loss of the four

GANs for image-to-image translation is expressed as:

Lgan = Ladv + λ1 · Lcyc + λ2 · Lide (2)

where Ladv is used for matching the distribution of trans-

lated images to the data distribution in the target domain,

Lcyc attempts to recover the original sample after a cycle

of translation and reverse translation, and Lide encourages

the style transfer to keep the color consistency between the

original sample and translated sample.

Different from the original CycleGAN model with the

adversarial loss, cycle-consistent loss and identity mapping

loss, the three factor GANs are elaborately designed to con-

centrate on transferring images to the target style of the

imaging factors, i.e., illumination, resolution and camera

viewpoint. On the one hand, the three factor GANs are

pre-trained on the pair of datasets whose inter-domain dif-

ference are mainly induced by the three factors respectively

to provide a good initialization. For pre-training illumina-

tion GAN, a collection of images with different illumination

conditions is created by utilizing random gamma correction

[24] in source domain. The created collection together with

souce dataset are used for pre-training. For pre-training the

resolution GAN, we downsample images in source domain

to create a collection of images with multiple resolutions.

For pre-training camera-view GAN, we use images from

any two different cameras in source domain for pre-training.

All created images will not be used in subsequent end-to-

end training procedure of the network. On the other hand,

an illumination constraint and a resolution constraint are in-

troduced to the illumination GAN and resolution GAN re-

spectively, for further guaranteeing that the style difference

between original images and translated images focuses on

the variations of illumination and resolution. The formula-

tion of the illumination constraint is shown as follows:

Lill(G,F,H) = E
x∼p(x)[‖H(G(x))−H(x)‖1] (3)

where H(·) denotes abstracting illumination insensitive fea-

tures [39]. This constraint is able to enforce the style con-

sistency between the original image and translated image

except the illumination condition. Thus, the final overall

loss of the illumination GAN is: Lgan + η1 · Lill. The for-

mulation of the resolution constraint is shown as follows:
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Lres(G,F, I) = E
x∼p(x)[‖I(G(x))− I(x)‖22] (4)

where I(·) denotes extracting resolution-insensitive fea-

tures [13]. This constraint keeps the style consistency ex-

cept the resolution variation. The final overall loss of the

resolution GAN is: Lgan + η2 · Lres. Moreover, the losses

of the three factor GANs reflect the degree of style dispar-

ity between the translated samples and the target samples,

which can be viewed as the different impacts of the three

factors that result in the domain gap. If the associated loss

is smaller, the factor is more critical for the domain gap.

Therefore, the weight scores of the three factors are the

reciprocal of the associated losses. Then the three weight

scores β = (β1, β2, β3) are normalized by a softmax func-

tion, and are used for the emsemble GAN.

The emsemble GAN takes the adaptive fused image fea-

ture zx as input, which is computed by:

zx = [β1 · z
1

x
;β2 · z

2

x
;β3 · z

3

x
], zx ∈ R

64×64×768 (5)

where z
1

x
, z2

x
, z3

x
∈ R

64×64×256 refer to the image features

extracted from the associated encoders of the three factor

GANs. Afterwards, the fused image feature are send to a

convolution layer with 1 × 1 × 256 filters and a decoder

to generate the final translated image. The emsemble GAN

also has a discriminator to distinguish whether the sample is

real or fake. Moreover, a Jensen-Shannon divergence con-

straint is added to the image features z1

x
, z2

x
, z3

x
for enforc-

ing the learned features possessing different semantic infor-

mation, which is formulated as follows:

Ljs(z
1

x
, z2

x
, z3

x
) = f(z1

x
, z2

x
) + f(z1

x
, z3

x
) + f(z2

x
, z3

x
)

(6)

where f denotes the reciprocal of Jensen-Shannon diver-

gence between two distributions, z1

x
, z2

x
, and z

3

x
are the

normalized image features by a softmax function. The over-

all loss of the emsemble GAN is (Lgan + η3 · Ljs), which

is used to optimize the parameters of the transfer network.

The emsemble GAN and the three factor GANs have the

similar architecture, in which the generators contain 9 resid-

ual blocks [8] and four convolution layers, while the dis-

criminators are 70× 70 PatchGANs [10]. More details can

be founded in [48]. The decoders and the discriminators in

the emsemble GAN and the three factor GANs share same

parameters.

3.3. Selection Network

The selection network is developed to infer the weight

scores of different factors β = (β1, β2, β3) on transferring

each image, representing as sample-wise affect magnitudes

which are used for the adaptive ensemble of factor GANs.

We use the selection network to infer β. This allows ATNet

to avoid going through the process of generating fake im-

ages and calculating the losses during testing, thus greatly

reduces computational cost. The selection network con-

tains four convolution layers and one fully connected layer.

Specifically, the kernel size of the four convolution layers is

4× 4× 64, 4× 4× 128, 4× 4× 256, 4× 4× 256, respec-

tively, the padding and the stride of these layers are 1 and

2. Each convolution layer is followed by a batch normaliza-

tion (BN) and a rectified linear unit (ReLU) layer. The last

fully connected layer has 6 hidden units. The output fea-

ture of the fully connected layer represents the three weight

scores of a pair of images, which are then passed through

two softmax operations, respectively. In the training stage,

the selection network takes a pair of images from a source

domain and a target domain as input, the weight scores of

the pair of images calculated from the transfer network is

viewed as the ground-truth. We optimize the selection net-

work with MSE loss. In the testing stage, the output weight

scores of the selection network is provided to the emsemble

GAN for generating the final style-transferred image.

3.4. Feature Learning

Once we obtain the style-transferred dataset G(S),
which is composed of the translated images with the asso-

ciated labels, the feature learning step is the same as super-

vised person re-identification methods. Since we mainly

focus on the step of source-target image translation, we

adopt the ResNet-50 and GoogleNet models as baseline,

following the works [3, 33]. During testing, we can extract

the 2048-dim pedestrian feature from ResNet-50 model and

4096-dim pedestrian feature from GoogleNet model for re-

trieval under the Euclidean distance, and test the perfor-

mance on the target domain.

4. Experiments

In this section, we conduct extensive experiments to

evaluate the performance of the proposed ATNet on three

widely used person re-identification benchmarks and com-

pare the ATNet to state-of-the-art methods. The experimen-

tal results show that ATNet achieves superior performance

of UDA in person re-identification over the state-of-the-art

methods. Moreover, we investigate the effectiveness of the

proposed ATNet including the three factor GANs and the

emsemble GAN.

4.1. Experimental Settings

Datasets - In this work, extensive experiments are con-

ducted on three widely used datasets, i.e, Market-1501,

DukeMTMC-reID and PRID2011 for fair comparison and

evaluation.
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The Market-1501 dataset contains 32,643 images of

1,501 identities captured by 6 cameras. All images are au-

tomatically detected by the Deformable Part Model (DPM)

detector [4]. The dataset is fixedly divided into two parts

respectively, one part contains 12,936 images of 750 identi-

ties as training set and the other contains 19,732 images of

751 identities as testing set.

The DukeMTMC-reID dataset contains 36,411 hand-

drawn bounding boxes of 1,812 identities from 8 high-

resolution cameras. It is fixedly divided into two parts re-

spectively, one part contains 16,522 images of 702 identities

as training set and the other contains 17,661 gallery images

of 702 identities as testing set. In addition, there are 2,228

query pedestrian images.

The PRID2011 dataset is captured from two static

surveillance camera views. Camera view A contains 385

persons, camera view B contains 749 persons, with 200 of

them appearing in both views. Therefore, there are 200 per-

son image pairs in the dataset. These image pairs are ran-

domly split into a training and a testing set of equal size.

Evaluation Metrics - Evaluation Metrics Cumulative

Matching Characteristic (CMC) is adopted for quantitative

evaluation of person re-identification. The rank-k recogni-

tion rate in the CMC curve indicates the probability that a

query identity appears in the top-k position. The other eval-

uation metric is the mean average precision (mAP), consid-

ering person re-identification as a retrieval task.

Implementation Details - The implementation of the

proposed method is based on the Pytorch framework with

eight NVIDIA Titan XP GPUs. Images in the three datasets

are resized to 256× 256× 3, the number of mini-batches is

8. The proposed architecture is optimized by 20,000 itera-

tions in each epoch, and 20 epochs in total. For the transfer

network, we adopt the Adam optimizer [12] with a learning

rate of 0.0002. The learning rate remains unchanged for the

first 10 epochs and linearly decay to zero over the last 10

epochs. The parameters λ1, λ2, η1, η2, η3 are set to 10, 5, 2,

1, 1, respectively. The three factor GANs are pre-trained on

the source dataset and the generated dataset with the varia-

tions of the three factors (illumination, resolution and cam-

era viewpoint), the emsemble GAN is trained from scratch.

For the selection network, the stochastic gradient descent

(SGD) algorithm is started with learning rate lr of 0.01, the

weight decay of 1e−5 and the Nesterov momentum of 0.9.

4.2. Comparison to State­of­the­Arts

Transfer from large dataset to large dataset. Ta-

ble 1 shows the performance comparison of the proposed

ATNet against 5 methods in terms of CMC accuracy and

mAP on the large target datasets (DukeMTMC-reID and

Market-1501). We employ ResNet-50 model as the baseline

for feature learning, following the work [3]. When tested

on DukeMTMC-reID, Market-1501 is used as the source

Figure 3. Examples of original images and their style-transferred

images after image-to-image translation. (Best viewed in color)

dataset, and vice versa. “Supervised learning” denotes us-

ing labeled training sets from the target datasets. “Di-

rect Transfer” means directly applying the source-trained

model to the target datasets. CycleGAN(based), CycleGAN

(base+ Lide) and SPGAN are the state-of-the-art methods.

When comparing the supervised learning method and the

direct transfer method (66.7% vs 33.1%, 75.8% vs 43.1%),

it can be observed that a large performance drop when us-

ing the direct transfer method on the target domain, due to

the bias of data distributions in different domains. When

tested on DukeMTMC-reID, the proposed ATNet achieves

45.1% rank-1 recognition rate and 24.9% mAP score. We

can see that our method improves the 2nd best compared

method SPGAN by 3.7% rank-1 recognition rate and 2.6%

mAP score. When tested on Market-1501, the proposed AT-

Net achieves 55.7% rank-1 recognition rate and 25.6% mAP

score. It can be observed that our method improves the 2nd

best compared method SPGAN by 4.2% rank-1 recognition

rate and 2.8% mAP score. The comparison indicates that

the effectiveness of the proposed ATNet to generate more

realistic translated images for bridging domain gap. An il-

lustration of some generated results is given in Figure 3.

Transfer from large dataset to small dataset. Table 2

shows the performance comparison of the proposed ATNet

against 3 methods in terms of CMC accuracy on the small

target dataset (PRID2011). We employ GoogleNet model

as the baseline for feature learning, following the work [33].

Market-1501 and PRID2011 are used as the source dataset
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Method
Market-1501→DukeMTMC-reID DukeMTMC-reID→Market-1501

rank-1 rank-5 rank-10 rank-20 mAP rank-1 rank-5 rank-10 rank-20 mAP

Supervised Learning 66.7 79.1 83.8 88.7 46.3 75.8 89.6 92.8 95.4 52.2

Direct Transfer 33.1 49.3 55.6 61.9 16.7 43.1 60.8 68.1 74.7 17.0

CycleGAN (base) [48] 38.1 54.4 60.5 65.9 19.6 45.6 63.8 71.3 77.8 19.1

CycleGAN (base+ Lide) [48] 38.5 54.6 60.8 66.6 19.9 48.1 66.2 72.7 80.1 20.7

SPGAN [3] 41.4 56.6 63.0 69.6 22.3 51.5 70.1 76.8 82.4 22.8

ATNet 45.1 59.5 64.2 70.1 24.9 55.7 73.2 79.4 84.5 25.6

Table 1. Performance comparison to the state-of-the-art methods in terms of rank-k recognition rate and mAP scores on DukeMTMC-reID

and Market-1501 datasets, respectively.

Method

Market-1501→PRID2011

cam1/cam2 cam2/cam1

Rank-1 Rank-10 Rank-1 Rank-10

Supervised 13.0 43.0 11.0 38.5

Direct Transfer 5.0 26.0 11.0 40.0

PTGAN(cam1)[33] 17.5 50.5 8.5 28.5

PTGAN(cam2) [33] 10.0 31.5 10.5 37.5

ATNet(cam1) 24.0 51.5 21.5 46.5

ATNet(cam2) 15.0 51.0 14.0 41.5

Table 2. Performance comparison to the state-of-the-art methods

in terms of rank-k recognition rate on PRID2011 dataset.

Method
Market-1501→DukeMTMC-reID

Rank-1 Rank-5 Rank-20 mAP

ResGAN 37.9 53.9 64.0 21.3

CamGAN 38.1 53.8 63.9 21.4

illumGAN 39.8 54.3 65.2 21.7

ATNet w/o illumGAN 41.2 55.5 66.4 22.9

ATNet w/o CamGAN 42.1 55.6 66.2 23.1

ATNet w/o ResGAN 43.3 57.8 68.8 23.7

ATNet w/o adaptive 42.6 56.6 67.5 23.4

ATNet 45.1 59.5 70.1 24.9

Table 3. Evaluation of the effectiveness of each component within

ATNet on DukeMTMC-reID dataset.

and the target dataset, respectively. The subscript cam1 and

cam2 represent the transferred target dataset PRID-cam1
and PRID-cam2. “cam1/cam2” means using samples in

PRID-cam1 as query set and samples from PRID-cam2
as gallery set, and vice versa. “Supervised learning” de-

notes using labeled training set of the target dataset. “Direct

Transfer” means directly applying the source-trained model

to the PRID2011 datasets. PTGAN is the state-of-the-art

method. GoogLeNet trained on the Marker-1501 dataset,

only achieves the Rank-1 accuracy of 5.0% on PRID2011,

which implies substantial domain gap between Market-

1501 and PRID2011. When transfered on PRID-cam1, the

proposed ATNet achieves 24.0% and 21.5% rank-1 recog-

nition rate for PRID-cam1 and PRID-cam2 as query set,

respectively. It can observed that our method improves

the compared method PTGAN by 6.5% and 13.0% rank-1

recognition rate, respectively. When transfered on PRID-

cam2, the proposed ATNet obtains 15.0% and 14.0% rank-

1 recognition rate for PRID-cam1 and PRID-cam2 as query

set, respectively, boosting the compared method PTGAN

by 5.0% and 3.5% rank-1 recognition rate, respectively.

The comparison indicates that the effectiveness of the pro-

posed ATNet and it can achieve reasonable re-identification

performance on PRID2011 dataset, training on the other

dataset. An illustration of some generated results is given

in Figure 3.

4.3. Ablation Studies

To demonstrate the effectiveness and contribution of

each component of the ATNet, we conduct a series of

ablation experiments on DukeMTMC-reID dataset, using

Market-1501 dataset as the source domain.

The impact of the proposed three factor GANs. We

conduct the experiment to verify the influence of the three

factor GANs on performance in Table 3. ATNet w/o il-

lumGAN, ATNet w/o CamGAN and ATNet w/o ResGAN

refer to the ATNet model without the illumination GAN,

the camera viewpoint GAN and resolution GAN, respec-

tively. These models achieve 41.2%, 42.1% and 43.3%

rank-1 recognition rate, as well as 22.9%, 23.1%, 23.7%

mAP score, respectively. From Table 3, we can observe

that their performances are inferior to the ATNet, which

shows the effectiveness of ATNet by incorporating the phys-

ical priors into UDA and utilizing the multiple factor GANs

to decompose the complicated problem of bridging domain

gap into handling the inter-domain the discrepancy caused

by different factors. Moreover, by comparing the perfor-

mance of the three models, it shows that the illumination

GAN is the most important network branch to bridge do-

main gap.

The impact of the proposed emsemble GAN. We also

conduct the experiment to verify the effectiveness of the

7208



emsemble GAN with the adaptive ensemble strategy in Ta-

ble 3. ResGAN, CamGAN and illumGAN donates only us-

ing the individual resolution GAN, the camera viewpoint

GAN and resolution illumination GAN for UDA. ATNet

w/o adaptive refers to the ATNet without the adaptive en-

semble strategy (β1 = β2 = β3 = 1/3). From table 3,

it can observed that the ATNet w/o adaptive obtains better

performance of 42.6% rank-1 recognition rate and 23.4%

mAP scores as compared to the other three models, which

indicates that the effectiveness of the ensemble GAN for

handling the inter-domain discrepancy caused by multiply

factors over one factor GAN for one factor. Moreover, the

performance of the ATNet w/o adaptive model is inferior to

the ATNet, demonstrating that the effectiveness of the adap-

tive ensemble strategy based on the different weight scores

of the three factors, since the factors may hold different im-

pacts on imaging process for each different sample. We also

show some generated results from the three factor GANs

with their associated weight scores in Figure 4. The image

style of the translated images from the three factor GANs

are different, as compared to the source images. We can see

that the images from the illumination GAN slant dark, the

images from the resolution GAN is more ambiguous, which

show the factor GANs is able to handle the inter-domain

differences caused by the different factors. By comparing

the weight scores of the factors, it can be the observed that

illumination condition are dominant for the domain gap.

Figure 4. Visual examples of image-to-image translation in

Market-1501 with the weight scores. The images in the first

column are from Market-1501. The images in the middle three

columns are the translated images from the illumination, camera

viewpoint and resolution GANs. The images in the last column is

the final generated images. (Best viewed in color)

Sensitivity of ATNet to key parameters. The param-

eters η1, η2 and η3 are key parameters for the proposed

ATNet, which controls the relative importance of the pro-

posed illumination constraint, resolution constraint and the

Jensen-Shannon divergence constraint, respectively. We

conduct experiment to evaluate the impact of η1, η2, η3 re-

spectively, and the results are shown in Figure 5. When

adjusting the value of one parameter, the other parameters

are fixed. From Figure 5, we can see that when η1 = 2,

η2 = 1, η3 = 1, the ATNet yields the best re-identification

performance, which is superior to the ATNet without the

three additional constraints (η1 = 0, η2 = 0, η3 = 0). This

comparison verifies the effectiveness of the proposed ATNet

by using the three additional constraints.

Figure 5. Evaluation of the proposed ATNet with different values

of parameter η1, η2, η3.

5. Conclusion

In this paper, we have addressed the cross-domain per-

son re-identification problem by proposing a novel adaptive

transfer network (ATNet), which looks into the essential

imaging factors that engender dramatic inter-domain dis-

crepancy. We proposed a “decomposition-and-ensemble”

solution to tackle the complicated cross-domain transfer.

ATNet was designed to contain multiple factor GANs, an

ensemble GAN and a selection network. While each fac-

tor GAN concentrates on factor-wise precise style transfer

at fine-grained level, the ensemble GAN adaptively fuses

the factor GANs for effective domain transfer. The factor

and ensemble GANs are jointly optimized in an end-to-end

manner. The selection network was developed to perceive

the affects of various factors on transferring different im-

ages to the target domain. Extensive experiments on multi-

ple benchmarks have shown that the proposed ATNet out-

performs state-of-the-art methods by a large margin.
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