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Abstract

Panoptic segmentation, which needs to assign a category

label to each pixel and segment each object instance simul-

taneously, is a challenging topic. Traditionally, the existing

approaches utilize two independent models without sharing

features, which makes the pipeline inefficient to implement.

In addition, a heuristic method is usually employed to merge

the results. However, the overlapping relationship between

object instances is difficult to determine without sufficient

context information during the merging process. To address

the problems, we propose a novel end-to-end Occlusion

Aware Network (OANet) for panoptic segmentation, which

can efficiently and effectively predict both the instance and

stuff segmentation in a single network. Moreover, we intro-

duce a novel spatial ranking module to deal with the occlu-

sion problem between the predicted instances. Extensive

experiments have been done to validate the performance

of our proposed method and promising results have been

achieved on the COCO Panoptic benchmark.

1. Introduction

Panoptic segmentation [18] is a new challenging topic

for scene understanding. The goal is to assign each pixel

with a category label and segment each object instance

in the image. In this task, the stuff segmentation is em-

ployed to predict the amorphous regions (noted Stuff ) while

the instance segmentation [14] solves the countable objects

(noted Thing). Therefore, this task can provide more com-

prehensive scene information and can be widely used in au-

tonomous driving and scene parsing.

Previous panoptic segmentation algorithms [18] usually

contain three separated components: the instance segmen-

tation block, the stuff segmentation block and the merging

block, as shown in Figure 1 (a). Usually in these algorithms,

the instance and stuff segmentation blocks are independent
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Figure 1. An illustration of our end-to-end network in contrast to

the traditional method. Traditional methods [18] train two sub-

network and do heuristics merge. Our method can train a single

network for two subtasks, and realize a learnable fusion approach.

without any feature sharing. This results in apparent com-

putational overhead. Furthermore, because of the separated

models, these algorithms have to merge the corresponding

separated predictions with post-processing. However, with-

out the context information between the stuff and thing, the

merge process will face the challenge of overlapping rela-

tionships between instances and stuff. Exactly as mentioned

above, with the three separate parts, it is hard to apply this

complex pipeline to the industrial application.

In this paper, we propose a novel end-to-end algorithm

shown in Figure 1 (b). As far as we know, this is the first

algorithm which can deal with the issues above in an end-

to-end pipeline. More specifically, we incorporate the in-

stance segmentation and stuff segmentation into one net-

work, which shares the backbone features but applies dif-

ferent head branches for the two tasks. During the training

phase, the backbone features will be optimized by the ac-

cumulated losses from both the stuff and thing supervision

while the head branches will only fine-tune on the specific

task.
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To solve the problem of overlapping relationship be-

tween object instances, we also introduce a new algorithm

called Spatial Ranking Module. This module learns the

ranking score and offers an ordering accordance for in-

stances.

In general, we summarize the contributions of our algo-

rithm as follows:

• We are the first to propose an end-to-end occlusion

aware pipeline for the problem of panoptic segmen-

tation.

• We introduce a novel spatial ranking module to address

the ambiguities of the overlapping relationship, which

commonly exists in the problem of panoptic segmen-

tation.

• We obtain state-of-the-art performance on the COCO

panoptic segmentation dataset.

2. Related Work

2.1. Instance Segmentation

There are currently two main frameworks for instance

segmentation, including the proposal-based methods and

segmentation-based methods. The proposal-based ap-

proaches [8, 14, 24, 25, 28, 29, 33] first generate the object

detection bounding boxes and then perform mask predic-

tion on each box for instance segmentation. These methods

are closely related to object detection algorithms such as

Fast/Faster R-CNN and SPPNet [12, 15, 36]. Under this

framework, the overlapping problem raises due to the in-

dependence prediction of distinct instances. That is, pixels

may be allocated to wrong categories when covered by mul-

tiple masks. The segmentation-based methods use the se-

mantic segmentation network to predict the pixel class, and

obtain each instance mask by decoding the object bound-

ary [19] or the custom field [2, 9, 27]. Finally, they use the

bottom-up grouping mechanism to generate the object in-

stances. RNN method was leveraged to predict a mask for

each instance at a time in [35, 37, 46] .

2.2. Semantic Segmentation

Semantic segmentation has been extensively studied, and

many new methods have been proposed in recent years.

Driven by powerful deep neural networks [16, 21, 39, 40],

FCN [30] successfully applied deep learning to pixel-by-

pixel image semantic segmentation by replacing the fully

connected layer of the image classification network with the

convolutional layer.

The encoder-decoder structure such as UNet [1, 38, 42,

43, 47] can gradually recover resolution and capture more

object details. Global Convolutional Network [34] proposes

large kernel method to relieve the contradiction between

classification and localization. DFN [43] designs a channel

attention block to select feature maps. DeepLab [4, 6] and

PSPNet [48] use atrous spatial pyramid pooling or spatial

pyramid pooling to get multi-scale context. Method of [44]

uses dilated convolution to enlarge field of view. Multi-

scale features were using to obtain sufficient receptive field

in [5, 13, 41] .

Related datasets are also constantly being enriched and

expanded. Currently, there are public datasets such as

VOC [11], Cityscapes [7], ADE20K [49], Mapillary Vis-

tas [32], and COCO Stuff [3].

2.3. Panoptic Segmentation

Panoptic Segmentation task was first proposed in [18]

and the research work for this task is not too much. A

weakly supervised model that jointly performs semantic

and instance segmentation was proposed by [22]. It uses

the weak bounding box annotations for “thing” classes, and

image level tags for “stuff” classes. JSIS-Net [10] proposes

a single network with the instance segmentation head [14]

and the pyramid stuff segmentation head [48], following

heuristics to merge two kinds of outputs. Li et al. [23] pro-

pose AUNet that can leverage proposal and mask level at-

tention and get better background results.

2.4. Multi­task learning

Panoptic segmentation can also be treated as multi-task

learning problem. Two different task can be trained together

through strategies [17, 31]. UberNet [20] jointly handles

low-, mid-, and high-level vision tasks in a single network,

including boundary detection, semantic segmentation and

normal estimation. Zamir et al. [45] build a directed graph

named taskonomy, which can effectively measure and lever-

age the correlation between different visual tasks. It can

avoid repetitive learning and enable learning with less data.

3. Proposed End-to-end Framework

The overview of our algorithm is illustrated in Figure 2.

There are three major components in our algorithm: 1) The

stuff branch predicts the stuff segmentation for the whole

input. 2) The instance branch provides the instance segmen-

tation predictions. 3) The spatial ranking module generates

a ranking score for the each instance.

3.1. End­to­end Network Architecture

We employ FPN [26] as the backbone architecture for the

end-to-end network. For instance segmentation, we adopt

the original Mask R-CNN [14] as our network framework.

We apply top-down pathway and lateral connections to get

feature maps. And then, a 3 × 3 convolution layer is ap-

pended to get RPN feature maps. After that, we apply the
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Figure 2. The illustration of overall framework. Given an input image, we use the FPN network to provide feature maps for stuff branch

and instance branch. The two branches generate intermediate results, while later are passed to our spatial ranking module. The spatial

ranking module learns a ranking score for each instance as the final merging evidence.

ROIAlign [14] layer to extract object proposal features and

get three predictions: proposal classification score, proposal

bounding box coordinates, and proposal instance mask.

For stuff segmentation, two 3× 3 convolution layers are

stacked on RPN feature maps. For the sake of multi-scale

feature extraction, we then concatenate these layers with

succeeding one 3 × 3 convolution layer and 1 × 1 convo-

lution layer. Figure 3 presents the details of stuff branch.

During training, we supervise the stuff segmentation and

thing segmentation simultaneously, as the auxiliary objec-

tion information could provide object context for stuff pre-

diction. In inference, we only extract the stuff predictions

and normalized them to probability.

To break out the information flow barrier during training

and to make the whole pipeline more efficient, we share

the features from the backbone network of two branches.

The issue raised here could be divided into two parts: 1)

the sharing granularity on feature maps and 2) the balance

between instance loss and stuff loss. In practice, we find

that as more feature maps are shared, better performance

we can obtain. Thus, we share the feature maps until skip-

connection layers, that is the 3× 3 convolution layer before

RPN head shown in Figure 3.

Ltotal =Lrpn cls + Lrpn bbox + Lcls + Lbbox + Lmask
︸ ︷︷ ︸

instance branch

+ λ · Lseg (stuff+object)
︸ ︷︷ ︸

stuff branch

+ Lsrm

(1)

Figure 3. A building block illustrating the stuff segmentation sub-

network. Here we share both the backbone and skip-connection

feature maps in stuff branch and instance branch. Besides, we pre-

dict both object and stuff category for the stuff branch.

As for the balance of two supervisions, we first present

the multiple losses in Equation 1. The instance branch

contains 5 losses: Lrpn cls is the RPN objectness loss,

Lrpn bbox is the RPN bounding-box loss, Lcls is the clas-

sification loss, Lbbox is the object bounding-box regression

loss, and Lmask is the average binary cross-entropy loss for

mask prediction. As the stuff branch, there is only one se-
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Figure 4. An illustration of spatial ranking score map prediction. The pixel vector in instance feature map represents instance prediction

result in this pixel. The red color means that the corresponding category object includes this pixel and the multiple red channels indicate

the occlusion problem between instances. We use the panoptic segmentation category label to supervise spatial ranking score map.

mantic segmentation loss named Lseg (stuff+object). The

hyperparameter λ is employed for loss balance and will be

discussed later. Lsrm represents the loss function of the spa-

tial ranking module, which is described in the next section.

3.2. Spatial Ranking Module

The modern instance segmentation framework is often

based on object detection network with an additional mask

prediction branch, such as the Mask RCNN [14] which is

usually based on FPN [26]. Generally speaking, the current

object detection framework does not consider the overlap-

ping problems between different classes, since the popu-

lar metrics are not affected by this issue, e.g., the AP and

AR. However, in the task of panoptic segmentation, since

the number of pixels in one image is fixed, the overlapping

problem, or specifically the multiple assignments for one

pixel, must be resolved.

Commonly, the detection score was used to sort the in-

stances in descending order, and then assign them to the

stuff canvas by the rule of larger score objects on top of

lower ones. However, this heuristic algorithm could easily

fail in practice. For example, let’s consider a person wear-

ing a tie, shown in Figure 7. As the person class is more fre-

quent than the tie in the COCO dataset, its detection score

is tend to be higher than the tie bounding box. Thus through

the above simple rule, the tie instance is covered by the per-

son instance, and leading to the performance drops.

Could we alleviate this phenomenon through the panop-

tic annotation? That is if we force the network learns the

person annotation with a hole in the place of the tie, could

we avoid the above situation? As shown in Table 3, we con-

duct the experiment with the above mentioned annotations,

but only find the decayed performance. Therefore, this ap-

proach is not applicable currently.

To counter this problem, we resort to a semantic-like ap-

proach and propose a simple but very effective algorithm

for dealing with occlusion problems, called spatial ranking

module. As shown in the Figure 4, we first map the results

of the instance segmentation to the tensor of input size. The

dimension of the feature map is the number of object cate-

gories, and the instances of different categories are mapped

to the corresponding channels. The instance tensor is ini-

tialized to zero, and the mapping value is set to one. We

then append the large kernel convolution [34] after the ten-

sor to obtain the ranking score map. In the end , we use the

pixel-wise cross entropy loss to optimize the ranking score

map, as the Equation 2 shows. Smap represents the output

ranking score map and Slabel represents the corresponding

non-overlap semantic label.

Lsrm = CE(Smap, Slabel) (2)

After getting the ranking score map, we calculate the rank-

ing score of each instance object as Equation 3. Here,

Si,j,cls represents the ranking score value in (i, j) of class

cls, note that Si,j,cls has been normalized to a probabil-

ity distribution. mi,j is the mask indicator, representing if

pixel (i, j) belongs to the instance. The ranking score of the

whole instance Pobjs is computed by the average of pixel

ranking scores in a mask.

Pobjs =

∑

(i,j)∈objs Si,j,cls ·mi,j
∑

(i,j)∈objs mi,j

(3)

mi,j =

{

0 (i,j) ∈ instance

1 (i,j) /∈ instance
(4)

Let’s reconsider the example mentioned above through our

proposed spatial ranking module. When we forward the

person mask and tie mask into this module, we obtain the

spatial ranking scores using Equation 3 for these two ob-

jects. Within the ranking score, the sorting rule in the pre-

vious method could be more reliable, and the performance

is improved, as the experiments present in the next section.
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4. Experiments

4.1. Dataset and Evaluation Metrics

Dataset: We conduct all experiments on COCO panop-

tic segmentation dataset [18]. This dataset contains 118K

images for training, 5k images for validation, with annota-

tions on 80 categories for the thing and 53 classes for stuff.

We only employ the training images for model training and

test on the validation set. Finally, we submit test-dev result

to the COCO 2018 panoptic segmentation leaderboard.

Evaluation metrics: We use the standard evaluation

metric defined in [18], called Panoptic Quality (PQ). It con-

tains two factors: 1) the Segmentation Quality (SQ) mea-

sures the quality of all categories and 2) the Detection Qual-

ity (DQ) measures only the instance classes. The math-

ematical formations of PQ, SQ and DQ are presented in

Equation 5, where p and g are predictions and ground truth,

and TP, FP, FN represent true positives, false positives and

false negatives. It is easy to find that SQ is the common

mean IOU metric normalized for matching instances, and

DQ could be regarded as a form of detection accuracy. The

matching threshold is set to 0.5, that is if the pixel IOU of

prediction and ground truth is larger than 0.5, the predic-

tion is regarded matched, otherwise unmatched. For stuff

classes, each stuff class in an image is regarded as one in-

stance, no matter the shape of it.

PQ =

∑

(p,g)∈TP IOU(p, g)

|TP |
︸ ︷︷ ︸

Segmentation Quality (SQ)

×
|TP |

|TP |+ 1
2 |FP |+ 1

2 |FN |
︸ ︷︷ ︸

Detection Quality (DQ)

(5)

4.2. Implementation Details

We choose the ResNet-50 [16] pretrained on ImageNet

for ablation studies. We use the SGD as the optimization al-

gorithm with momentum 0.9 and weight decay 0.0001. The

multi-stage learning rate policy with warm up strategy [33]

is adopted. That is, in the first 2, 000 iterations, we use the

linear gradual warmup policy by increasing the learning rate

from 0.002 to 0.02. After 60, 000 iterations, we decrease the

learning rate to 0.002 for the next 20, 000 iterations and fur-

ther set it to 0.0002 for the rest 20, 000 iterations. The batch

size of input is set to 16, which means each GPU consumes

two images in one iteration. For other details, we employ

the experience from Mask-RCNN [14].

Besides the training for the two branches of our network,

a little bit more attention should be paid to the spatial rank-

ing module. During the training process, the supervision

label is the corresponding non-overlap semantic label and

training it as a semantic segmentation network. We set the

non-conflicting pixels ignored to force the network focus on

the conflicting regions.

During the inference, we set the max number of boxes

for each image to 100 and the min area of a connected stuff

area to 4,900. As for the spatial ranking module, since we

do not have the ground truth now, the outputs of instance

branch will be passed through this module to resolve the

overlapping issue.

4.3. Ablation Study on Network Structure

In this subsection, we focus on the properties of our end-

to-end network design. There are three points should be

discussed as follows: the loss balance parameter, the ob-

ject context for stuff branch and the sharing mode of two

branches. To avoid the Cartesian product of experiments,

we only modify the specific parameters and control the

other optimally.

0 1000 2000 3000 4000 5000 6000 7000 8000
iterations

0.00

0.02

0.04

0.06

0.08

0.10

0.12

M
ea

n 
Gr

ad
ie

nt
 v

al
ue

Train stuff gradient
Train instance gradient

Figure 5. The plot of the specified layer mean gradient value in two

branches. We chose one epoch iterations in the training process.

The learning rate of the two branches is the same. The horizontal

axis is the number of iterations, and the vertical axis is the mean

gradient value of the backbone last layer.

λ PQ PQTh PQSt

0.2 36.9 45.0 24.6

0.25 37.2 45.4 24.9

0.33 36.9 44.4 25.4

0.50 36.5 43.5 25.9

0.75 35.3 41.9 25.4

1.0 - - -

Table 1. Loss balance between instance segmentation and stuff

segmentation

The loss balance issue comes from the reality that the

gradients from stuff branch and instance branch are not

close. We make a statistic on the mean gradients of two

branches with respect to the last feature map of the back-

bone, where the hyperparameter λ is set to 1 for fairness.
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Input Image No-sharing Result Sharing Result

Figure 6. Feature Sharing Mode Visualization. The first column is the original image, and the second column is sharing backbone feature

result, and the last column is the no-sharing result.

As shown in the Figure 5, it is brief and clear that the

gradient from stuff branch dominates the penalty signals.

Therefore, we obtain a hyperparameter λ in Equation 1 to

balance the gradients. We conduct the experiments with

λ ∈ [0.2, 0.25, 0.33, 0.5, 0.75, 1.0]. The interval is not uni-

form for the sake of searching efficiency. As the Table 1

summarizes, λ = 0.25 is the optimal choice. Note that if

we set λ = 1, which means the instance and stuff branches

trained like separate models, the network could not con-

verge through our default learning rate policy.

Object context is a natural choice in stuff segmenta-

tion. Although we only want the stuff predictions from this

branch, the lack of object supervision will introduce holes

on ground truth, resulting in discontinuous context around

objects. Therefore, we conduct a pair of comparative exper-

iments where all 133 categories is supervised , and the other

Stuff-SC Object-SC PQ PQTh PQSt

X - 36.7 43.8 25.9
X X 37.2 45.4 24.9

Table 2. Ablation study results on stuff segmentation network de-

sign. Stuff-SC represents stuff supervision classes. It refers to

predict stuff classes. While both Stuff-SC and Object-SC mean

predicting all classes.

is trained on 53 stuff classes. The results in Table 2 shows

the 0.5 improvement on overall PQ with object context.

Sharing features is a key point of our network design.

The benefits of sharing have two parts: 1) two branches

could absorb useful information from other supervision sig-

nals, and 2) the computation resources could be saved if

the shared network is computed only once. To investigate
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Methods backbone PQ PQTh PQSt SQ SQTh SQSt DQ DQTh DQSt

baseline ResNet-50 37.2 45.4 24.9 77.1 81.5 70.6 45.7 54.4 32.5
w/pano-instance GT ResNet-50 36.1 43.5 24.9 76.1 80.0 70.3 44.5 52.4 32.7

w/spatial ranking module ResNet-50 39.0 48.3 24.9 77.1 81.4 70.6 47.8 58.0 32.5

baseline ResNet-101 38.8 46.9 26.6 78.2 82.0 72.5 47.4 55.9 34.5
w/spatial ranking module ResNet-101 40.7 50.0 26.6 78.2 82.0 72.5 49.6 59.7 34.5

Table 3. Results on MS-COCO panoptic segmentation validation dataset which use our spatial ranking module method. W/pano-instance

GT represents using panoptic segmentation ground truth to generate instance segmentation ground truth. It is trained in two separate

networks. All results in this table are based on backbone ResNet-50.

Methods backbone PQ PQTh PQSt

no ResNet-50 36.5 44.4 24.6
res1-res5 ResNet-50 37.0 44.8 25.2

+ skip-conection ResNet-50 37.2 45.4 24.9

no ResNet-101 38.2 46.3 26.0
+ skip-conection ResNet-101 38.8 46.9 26.6

Table 4. Results on whether share stuff segmentation and instance

segmentation features. On ResNet-50 backbone, sharing features

method gets a gain of 0.7 in PQ, and ResNet-101 gets a gain of 0.7.

Ablation study results on different sharing feature way. The res1-

res5 means just share the backbone ResNet features. The +skip-

connection means share both the backbone features and FPN skip-

connection branch.

Conv Settings PQ PQTh PQSt

1× 1 38.4 47.4 24.9
3× 3 38.7 47.8 24.9

1× 7 + 7× 1 39.0 48.3 24.9

Table 5. Results on the convolution settings of spatial ranking

module. 1× 1 represents the convolution kernel size is 1. Results

shows that the large receptive field can help the spatial ranking

module get more context features and better results.

the granularity on sharing features, we conduct two experi-

ments, where the shallow share model only shares the back-

bone features and the deep share model further shares the

feature maps before RPN head, as Figure 3 presents. Ta-

ble 4 shows the comparisons between different settings, and

deep share model outperform the separate training baseline

by 0.7% on PQ. Figure 6 presents the visualization of shar-

ing features.

4.4. Ablation Study on Spatial Ranking Module

Supervised by no-overlapping annotations are a

straightforward idea to resolve the object ranking issue.

Here, we process the panoptic ground truth and extract

the non-overlapping annotations for instance segmentation.

The 3rd row of Table 3 gives the results of this idea. Unfor-

tunately, merely replacing the instance ground truth do not

help improve the performance, and may reversely reduce

Methods PQ PQTh PQSt

Artemis 16.9 16.8 17.0
JSIS-Net [10] 27.2 29.6 23.4
MMAP-seg 32.1 38.9 22.0

LeChen 37.0 44.8 25.2
Ours(OANet) 41.3 50.4 27.7

Table 6. Results on the COCO 2018 panoptic segmentation chal-

lenge test-dev. Results verifies the effectiveness of our feature

sharing mode and the spatial ranking module. We use the ResNet-

101 as our basemodel.

the accuracy and recall for objects. This phenomenon may

come from the fact that most of the objects in COCO do not

meet the overlapping issue, and forcing the network to learn

non-overlapping hurts the overall performance.

Figure 7. The visualization result of the spatial ranking module.

The left two segments denote the detected instances through our

model, the det bbox score represents the object detection score

predicted in detection. The spatial ranking score represents the

values from our approach.

Spatial ranking module proposed in this paper is aimed

to solve the overlapping issue in panoptic segmentation. Ta-

ble 5 shows that large receptive field can help the spatial
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Input Image Heuristic Method Our Method

Figure 8. The visualization results using our spatial ranking module. The first column is the input image, and second column is the panoptic

segmentation result with heuristic method, and last column is the result using our approach.

ranking module get more context features and better results.

As we can see in 3rd row or 2nd row for the ResNet-101

of Table 3, our spatial ranking module improve the PQ by

1.8% compared with the above end-to-end baseline. Specif-

ically, the PQTh is increased by 2.9%, while the metrics for

stuff remains the same. These facts prove the purpose of

our spatial ranking module is justified. We test our OANet

on COCO test-dev, as shown in Table 6. Compared with the

results of others, our method achieves the state-of-the-art

result. For detailed results, please refer to the leardboard ‡.

Figure 7 explaines the principle of our spatial ranking

module. For the example input image, the network predicts

a person plus a tie, and their bounding box scores are 0.997

and 0.662 respectively. If we use the scores to decide the re-

sults, the tie will definitely be covered by the person. How-

ever, in our method, we can get a spatial ranking score for

each instance, 0.325 and 0.878 respectively. With the help

of the new scores, we can get the right predictions. Figure 8

‡http://cocodataset.org/#panoptic-leaderboard

summarizes more examples.

5. Conclusion

In this paper, we propose a novel end-to-end occlusion

aware algorithm, which incorporates the common seman-

tic segmentation and instance segmentation into a single

model. In order to better employ the different supervisions

and reduce the consumption of computation resources, we

investigate the feature sharing between different branches

and find that we should share as many features as possi-

ble. Besides, we have also observed the particular ranking

problem raised in the panoptic segmentation, and design the

simple but effective spatial ranking module to deal with this

issue. The experiment results show that our approach out-

performs the previous state-of-the-art models.
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