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Abstract

Referring object detection and referring image segmen-

tation are important tasks that require joint understanding

of visual information and natural language. Yet there has

been evidence that current benchmark datasets suffer from

bias, and current state-of-the-art models cannot be easily

evaluated on their intermediate reasoning process. To ad-

dress these issues and complement similar efforts in visual

question answering, we build CLEVR-Ref+, a synthetic di-

agnostic dataset for referring expression comprehension.

The precise locations and attributes of the objects are read-

ily available, and the referring expressions are automati-

cally associated with functional programs. The synthetic

nature allows control over dataset bias (through sampling

strategy), and the modular programs enable intermediate

reasoning ground truth without human annotators.

In addition to evaluating several state-of-the-art models

on CLEVR-Ref+, we also propose IEP-Ref, a module net-

work approach that significantly outperforms other models

on our dataset. In particular, we present two interesting and

important findings using IEP-Ref: (1) the module trained to

transform feature maps into segmentation masks can be at-

tached to any intermediate module to reveal the entire rea-

soning process step-by-step; (2) even if all training data has

at least one object referred, IEP-Ref can correctly predict

no-foreground when presented with false-premise referring

expressions. To the best of our knowledge, this is the first

direct and quantitative proof that neural modules behave in

the way they are intended.1

1. Introduction

There has been significant research interest in the joint

understanding of vision and natural language. While image

captioning [17, 5, 25, 22] focuses on generating a sentence

with image being the only input, visual question answering

(VQA) [2, 6, 37] and referring expressions (REF) [24, 13]

require comprehending both an image and a sentence, be-

fore generating an output. In this paper, we focus on refer-

1All data and code concerning CLEVR-Ref+ and IEP-Ref have been

released at https://cs.jhu.edu/˜cxliu/2019/clevr-ref+

ring expressions, which is to identify the particular objects

(in the form of segmentation mask or bounding box) in a

given scene from natural language.

In order to study referring expressions, various datasets

have been proposed [24, 34, 18]. These are real-world im-

ages annotated by crowdsource workers. The advantage of

these datasets is that they, to a certain extent, reflect the

complexity and nuances of the real world. Yet inevitably,

they also have limitations. First, they usually exhibit strong

biases that may be exploited by the models [3]. Roughly

speaking, this means simply selecting the salient foreground

object (i.e., discarding the referring expression) will yield a

much higher baseline than random. This casts doubts on

the true level of understanding within current REF models.

Second, evaluation can only be conducted on the final seg-

mentation mask or bounding box, but not the intermediate

step-by-step reasoning process. For example, for the refer-

ring expression “Woman to the left of the red suitcase”, a

reasonable reasoning process should be first find all suit-

cases in the image, then identify the red one among them,

finally segment the woman to its left. Clearly this requires

significantly more high-quality annotations, which are cur-

rently unavailable and hard to collect.

To address these concerns and echo similar efforts in vi-

sual question answering (i.e., CLEVR [15]), we propose

CLEVR-Ref+, a synthetic diagnostic dataset for referring

expressions. The advantage of using a synthetic dataset is

that we have full control over the scene, and dataset bias

can be minimized by employing a uniform sampling strat-

egy. Also, the referring expressions are now automatically

annotated with the true underlying reasoning process, so a

step-by-step analysis becomes much more plausible.

We make much effort in constructing CLEVR-Ref+ to

make sure it is well adapted and applicable to the refer-

ring expression task. First, we turn the original questions in

CLEVR into their corresponding referring expression for-

mat. Second, we change the output space from textual an-

swers (in the form of a word) to referred objects (in the

form of segmentation mask or bounding box). Third, we

analyzed statistics from real-world REF datasets and found

that there are some common types of referring expressions
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The big thing(s) that are behind the second one of the big thing(s) from

front and to the right of the first one of the large sphere(s) from left

Any other things that are the same size as the fifth one of the thing(s)

from right

Figure 1: Examples from our CLEVR-Ref+ dataset. We use the same scenes as those provided in CLEVR [15]. Instead of

asking questions about the scene, we ask the model to either return one bounding box (as illustrated on the left) or return a

segmentation mask (could potentially be multiple objects; illustrated on the right) based on the given referring expression.

(e.g., “The second sphere from left”) that are not included

in CLEVR templates. In our CLEVR-Ref+, we add support

for these types of expressions to better match the variety of

referring expressions used in real world.

We tested several state-of-the-art referring expression

models on our CLEVR-Ref+ dataset. This includes both

those designed for referring segmentation [21] and detec-

tion [35, 33]. In addition to evaluating the overall IoU and

accuracy as previous datasets, we can now do a more de-

tailed breakdown and analysis in terms of sub-categories.

For example, we found that it is especially hard for the mod-

els to understand ordinality. This could point to important

research directions in the future.

Besides diagnosing these existing models, we also pro-

pose IEP-Ref, a Neural Module Network [1] solution based

on IEP [16]. Experiments show that the IEP-Ref model

achieved excellent performance on CLEVR-Ref+ with its

explicit, step-by-step functional program and module net-

work execution engine, suggesting the importance of com-

positionality. Very interestingly, we found that the mod-

ule trained on translating the last module output to segmen-

tation mask is general, and can produce excellent human-

interpretable segmentation masks when attached to inter-

mediate module outputs, revealing the entire reasoning pro-

cess. We believe ours is the first to show clean visualization

of the visual reasoning process carried out by neural module

networks, as opposed to gradient norms [16] or soft atten-

tion maps [27, 9].

In sum, our paper makes the following contributions:

• We construct CLEVR-Ref+, a synthetic diagnostic

dataset for referring expression tasks that complements

existing real-world datasets.

• We test and diagnose several state-of-the-art refer-

ring expression models on CLEVR-Ref+, including

our proposed IEP-Ref that explicitly captures compo-

sitionality.

• The segmentation module trained in IEP-Ref can be

trivially plugged in all intermediate steps in the module

network to produce excellent segmentation masks that

clearly reveal the network’s reasoning process.

2. Related Works

2.1. Referring Expressions

Referring expressions are sentences that refer to specific

objects in an image. Understanding referring expressions

has important applications in robotics and human-computer

interaction. In recent years, many deep learning models

have been developed for this task.

Several works focused on detection, i.e. returning one

bounding box containing the referred object. [24, 13]

adapted image captioning for this task by scoring each

bounding box proposal with a generative captioning model.

[31] learned the alignment between the description and im-

age region by reconstructing the description using an atten-

tion mechanism. [34, 28] studied the importance of con-

text for referring expressions. [23] used a discriminative

comprehension model to improve referring expression gen-

eration. [35] showed additional gain by incorporating rein-

forcement learning. [11, 33] used learned parser and mod-

ule networks to better match the structured semantics.

There are also works focusing on segmentation, i.e. re-

turning the segmentation mask. [12] used FCN feature con-

catenated with LSTM feature to produce pixel-wise binary

segmentation. [21] used a convolutional LSTM in addition

to the language-only LSTM to facilitate propagation of in-

termediate segmentation beliefs. [20, 26] improved upon

[21] by making more architectural improvements.

2.2. Dataset Bias and Diagnostic Datasets

In visual question answering, despite exciting models

being proposed and accuracy on benchmark datasets being

steadily improved, there has been serious concern over the
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Table 1: Examples of converting questions to referring expressions.

Category Question (CLEVR) Referring Expression (CLEVR-Ref+)

Basic How many cyan cubes are there? The cyan cubes.

Spatial Relation Are there any green cylinders to the left of the

brown sphere?

The green cylinders to the left of the brown sphere.

AND Logic How many green spheres are both in front of the

red cylinder and left to the yellow cube?

The green spheres that are both in front of the red

cylinder and left to the yellow cube.

OR Logic Are there any cylinders that are either purple metal

objects or small red matte things?

Cylinders that are either purple metal objects or

small red matte things.

Same Relation Are there any other things that have the same size

as the red sphere?

The things/objects that have the same size as the

red sphere.

Compare Integer Are there more brown shiny objects behind the

large rubber cylinder than gray blocks?

-

Comparison Does the small ball have the same color as the

small cylinder in front of the big sphere?

-

dataset bias problem [36, 7], meaning that models may be

heavily exploiting the imbalanced distribution in the train-

ing/testing data. More recently, [3] showed that dataset bias

also exists in referring expression datasets [24, 18, 34]. For

example, [3] reported that the performance when discarding

the referring expression and basing solely on the image is

significantly higher than random. Ideally the dataset should

be unbiased so that the performance faithfully reflect the

model’s true level of understanding. But this is very hard to

control when working with real-world images and human-

annotated referring expressions.

A possible solution is to use synthetic datasets. Indeed

this is the path taken by CLEVR [15], a diagnostic dataset

for VQA. There, objects are placed on a 2D plane and only

have a small number of choices in terms of shape, color,

size, and material. The question-answer pairs are also syn-

thesized using carefully designed templates. Together with

a uniform sampling strategy, this design can mitigate dataset

bias and reveal the model’s ability to understand compo-

sitionality. We construct our CLEVR-Ref+ dataset by re-

purposing CLEVR towards the referring expression task.

Several approaches now achieve near-perfect accuracy

on CLEVR [16, 10, 29, 32, 27, 14, 9]. In addition to report-

ing the VQA accuracy, they typically try to interpret the vi-

sual reasoning process through visualization. However, the

quality of these visualizations does not match the high VQA

accuracy. We suspect the primary reason is that the domain

these models are trained for (i.e. a textual answer) is dif-

ferent from the domain these models are diagnosed on (i.e.

attention over the image). Fortunately, in referring expres-

sions these two domains are very much interchangeable.

Note that CLEVR was also adapted towards referring

expression in [9], but they focused on facilitating VQA,

instead of introducing extensions (Section 3.3), evaluating

state-of-the-art models (Section 4.1), and directly facilitat-

ing the diagnosis of visual reasoning (Section 4.3).

3. The CLEVR-Ref+ Dataset

CLEVR-Ref+ uses the exact same scenes as CLEVR

(70K images in train set, 15K images in validation and test

set), and every image is associated with 10 referring expres-

sions. Since CLEVR is a VQA dataset, we began by chang-

ing the questions to referring expressions (Section 3.1), and

the answers to referred objects (Section 3.2). We then made

important additions to the set of modules (Section 3.3) as

well as necessary changes to the sampling procedure (Sec-

tion 3.4). Finally, we made the distinction whether more

than one object is being referred (Section 3.5).

3.1. From Question to Referring Expression

Templates are provided in CLEVR so that questions and

the functional programs associated with them can be gener-

ated at the same time. We notice that in many cases, part

of the question is indeed a referring expression, as we need

to first identify objects of interest before asking about their

property (e.g. color or number). In Table 1 we provide ex-

amples of how we change question templates into their cor-

responding referring expression templates, usually by se-

lecting a subset. The associated functional programs are

also adjusted accordingly. For example, for “How many”

questions, we simply remove the Count module at the end.

The original categories “Compare Integer” and “Com-

parison” were about comparing properties of two groups of

referred objects, so they do not contribute additional refer-

ring expression patterns. Therefore they are not included in

the templates for CLEVR-Ref+.

3.2. From Answer to Referred Objects

In referring expressions, the output is no longer a textual

answer, but a bounding box or segmentation mask.

Since we know the exact 3D locations and properties of

objects in the scene, we can follow the ground truth func-
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Table 2: Frequent category and words in RefCOCO+ [34].

Category Example words Frequency

object shirt,head,chair,hat,pizza 63.66%

human man,woman,guy,girl,person 42.54%

color white,black,blue,red,green 38.76%

spatial back,next,behind,near,up 23.86%

animal zebra,elephant,horse,bear 15.36%

attribute big,striped,small,plaid,long 10.55%

action standing,holding,looking 10.34%

ordinal closest,furthest,first,third 5.797%

compare smaller,tallest,shorter,older 5.247%

visible fully visible,barely seen 4.639%

tional program associated with the referring expression to

identify which objects are being referred. In fact we can

do this not only at the end (also available in real-world

datasets), but also at every intermediate step (not available

in real-world datasets). This will become useful later when

we do step-by-step inspection and evaluation of the visual

reasoning process.

After finding the referred objects, we project them back

to the image plane to get the ground truth bounding box and

segmentation mask. This automatic annotation was done

through rendering with the software Blender. For occluded

objects, only the visible part is treated as ground truth.

3.3. Module Additions

We hope the referring expressions that we generate are

representative of those used in the real world. However,

since the task is no longer the same, we suspect that there

may be some frequent referring patterns missing in the

templates directly inherited from CLEVR. To this end, we

analyzed statistics from a real-world referring expression

dataset, RefCOCO+ [34], as shown in Table 2.

We began by sorting the words in these referring expres-

sions by their frequency. Then, starting with the most fre-

quent word, we empirically cluster these words into cate-

gories. Not surprisingly, nouns that represent object or hu-

man are the most common. However, going down the list,

we found that the “ordinal” (e.g. “The second woman from

left”) and “visible” (e.g. “The barely seen backpack”) cat-

egories recall more than 10% of all sentences, but are not

included in the existing templates. Moreover, it is indeed

possible to define them using a computer program, because

there is no ambiguity in meaning. We add these two new

modules into the CLEVR-Ref+ function catalog.

In a functional program, these two modules may be in-

serted whenever color, material, size, or shape is being de-

scribed. As an example, “the red sphere” may be equiva-

lently described as “the third sphere from left” or “the par-

tially visible red object”. In our dataset, we define an object

to be partially visible if foreground objects’ mask occupies

more than 20% of its bounding box area. For an object to

be fully visible, this value must be exactly 0. We do not de-

scribe visibility when there is an ambiguous case (i.e. this

value is between 0 and 0.2) in the scene.

3.4. Generation Procedure

Generating a referring expression for a scene is concep-

tually simple and intuitive. The process may be summarized

as the following few steps:

1. Randomly choose a referring expression family2.

2. Randomly choose a text template from this family.

3. Follow the functional program and select random val-

ues when encountering template parameters3.

4. Reject when certain criteria fail, that is, the sam-

pled referring expression is inappropriate for the given

scene; return when the entire functional program fol-

lows through.

We largely follow the generation procedure of CLEVR,

with a few important changes:

• To balance the number of referring expressions across

different categories (those listed in Table 1), we double

the probability of being sampled in categories with a

small number of referring expression families.

• When describing the attributes for a set of objects, we

do not use Ordinal and Visible at the same time.

This is because referring an object as “The second par-

tially visible object from left” seems too peculiar and

rare, and there usually exists more natural alternatives.

• Originally when describing the attributes for a set

of objects, four fair coins were flipped to determine

whether color, material, size, shape will be included.

As a result, usually multiple attributes are selected, and

a very small number of objects survive these filters. We

empirically found that this makes it quite easy for the

system to select the correct object simply from the at-

tributes that directly describe the target object(s).

To remedy this, we first enumerate all possible com-

binations of these attributes, and calculate how many

objects will survive for each possibility. We then

uniformly sample from these possible number of sur-

vivors, before doing another uniform sampling to find

the combination of attributes. This will ensure a larger

variance in terms of number of objects after each set of

filtering, and prevent near-degenerate solutions.

• At the end of the functional program, we verify if at

least one object is being referred; reject otherwise.

2A referring expression family contains a template for constructing

functional programs and several text templates that provide multiple ways

of expressing these programs in natural language.
3For instance, left/right/front/behind; big/small; metal/rubber.
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Table 3: Referring object detection and referring image segmentation results on CLEVR-Ref+. We evaluated three existing

models, as well as IEP-Ref which we adapted from its VQA counterpart.

Basic Spatial Relation Logic

0-Relate 1-Relate 2-Relate 3-Relate AND OR Same Accuracy IoU

SLR [35] 0.627 0.569 0.570 0.584 0.594 0.701 0.444 0.577 -

MAttNet [33] 0.566 0.623 0.634 0.624 0.723 0.737 0.454 0.609 -

RMI [21] 0.822 0.713 0.736 0.715 0.585 0.679 0.251 - 0.561

IEP-Ref (GT) 0.928 0.895 0.908 0.908 0.879 0.881 0.647 - 0.816

IEP-Ref (700K prog.) 0.920 0.884 0.902 0.898 0.860 0.869 0.636 - 0.806

IEP-Ref (18K prog.) 0.907 0.858 0.874 0.862 0.829 0.847 0.605 - 0.782

IEP-Ref (9K prog.) 0.910 0.858 0.847 0.811 0.778 0.791 0.626 - 0.760

3.5. Multi­Object and Single­Object Referring

As explained in Section 3.4, each referring expression

in CLEVR-Ref+ may refer to one or more objects in the

scene. We believe this is the more general setting, and mod-

els should have the flexibility to handle various number of

objects being referred. This is already handled and sup-

ported by referring image segmentation systems. However,

we notice that detection based systems are usually designed

to return a single object instead of multiple objects, presum-

ably because this was how the detection datasets [24, 34]

were created. As a result, for detection based methods, we

evaluate on the subset of CLEVR-Ref+ where only a single

object is referred. This subset contains a total of 222,569

referring expressions (32% of the entire dataset).

4. Experiments

4.1. Models and Implementation Details

In all models we resize the input image to 320×320 to set

up a fair comparison. Publicly available code for these mod-

els are used with minimum change to adapt to our CLEVR-

Ref+ dataset. The following referring expression models

are studied and tested:

Speaker-Listener-Reinforcer (SLR) [35] This is a de-

tection model that includes a generative model (speaker),

a discriminative model (listener), as well as a reinforcement

learning component that makes further improvement. Be-

fore training the main model, the visual-language similarity

model needs to be trained first. We use Adam optimizer

[19], learning rate 4e-4, batch size 32 for both the visual-

language similarity model and the main model.

MAttNet [33] This is also a detection model, that uses

three modular networks to capture the subject, location, and

relationship features respectively. A soft attention mecha-

nism is used to return the overall score of a candidate re-

gion. We use learning rate 4e-4 and batch size 15.

Recurrent Multimodal Interaction (RMI) [21] This is a

segmentation model. In addition to concatenating the refer-

ring expression LSTM embedding with the image features,

RMI also used a convolutional LSTM to facilitate propaga-

tion of segmentation beliefs when reading in the referring

expression word-by-word. We use Adam optimizer, learn-

ing rate 2.5e-4, batch size 3, and weight decay 5e-4.

IEP-Ref This is a segmentation model that we adapt

from IEP [16], which was designed for VQA. The idea is

to use a LSTM program generator to translate the refer-

ring expression into a structured series of modules, each

of which is parameterized by a small CNN. By executing

this dynamically constructed neural network (with a spe-

cial Segment module at the end; see supplementary ma-

terial for its architecture), IEP-Ref imitates the underlying

visual reasoning process. For input visual features, we use

the last layer of the conv4 stage of ResNet101 [8] pre-

trained on ImageNet [4], which is of size 1024 × 20 × 20.

Following [16], this part is not finetuned. We tried three

settings that use 9K/18K/700K ground truth programs to

train the LSTM program generator (Adam optimizer, learn-

ing rate 5e-4, batch size 64; 20,000 iterations for the 9K

setting, 32,000 iterations for the 18K and 700K setting).

The accuracies of the predicted programs are 0.873, 0.971,

0.993 respectively. For the fourth setting, we simply use the

ground truth program4. The execution engine is trained for

30 epochs using learning rate 1e-4 and Adam optimizer.

4.2. Results and Analysis

4.2.1 Overall Evaluation

The experimental results are summarized in Table 3. Detec-

tion models are evaluated by accuracy (i.e. whether the pre-

diction selects the correct bounding box among given can-

didates), where MAttNet performs favorably against SLR.

Segmentation models are evaluated by Intersection over

Union (IoU), where IEP-Ref performs significantly better

than RMI. This suggests the importance to model composi-

tionality within the referring expression. We now present a

more detailed analysis of various aspects.
4This is our default IEP-Ref setting unless otherwise specified.
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Figure 2: Analyzing the basic referring ability of different models. “Include” means the average performance if a module is

involved in the referring process. “Exclude” means otherwise. As a result, high “exclude” and low “include” performance

suggests that this module is more challenging to learn, and vice versa.

0 1 2 3 0 1 2 3

SLR

MAttNet

RMI
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Figure 3: Analyzing the spatial reasoning ability of different

models. Horizontal axis is the number of spatial relations.

4.2.2 Basic Referring Ability

Here we start with the easiest form: referring by direct de-

scription of object attributes (e.g., “The big blue sphere”).

Concretely, this corresponds to the “0-Relate” subset.

In CLEVR-Ref+, there are totally 6 types of attributes

that may help us locate specific objects: color, size, shape,

material, ordinality, and visibility. In Figure 2 we show

the average detection accuracy/segmentation IoU of vari-

ous methods on “0-Relate” referring expressions that either

contain or not contain a specific type of module.

Among detection models, we found that accuracy is

higher when the referring expression contains descriptions

of color, shape, and visibility. A reasonable conjecture is

that these concepts are easier to learn compared with the

others. However, for segmentation, the performance gaps

between “exclude” and “include” are not as significant.

Though it is unclear which concept is the easiest to learn,

there seems little dispute that ordinality is the hardest. In

particular, for RMI, IoU is 0.91 if the expression does not

require ordinality and 0.27 when it does. Other models do

not suffer as much, but also experience significant drops.

We suspect this is because ordinality requires the global

context, whereas the others are local properties.

4.2.3 Spatial Reasoning Ability

Other than directly describing the attributes, it is also com-

mon to refer to an object by its spatial location. Here we di-

agnose whether referring expression models can understand
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0.72	 0.74	

0.59	

0.91	 0.88	1.00
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0.00
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0.75

0.50

0.25
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SLR

MAttNet

RMI

IEP-Ref

treechain

Acc IoU

Figure 4: Effect of reasoning topology (Chain vs. Tree) on

referring detection or segmentation performance.
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0.25	
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0.65	
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0.44	

0.63	

0.45	

1.00
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0.50

0.25

0.00

SLR

MAttNet

RMI

IEP-Ref

samespatial

Acc IoU

Figure 5: Effect of relation type (Spatial vs. Same) on re-

ferring detection or segmentation performance.

(potentially multiple steps of) relative spatial relationship,

for example “The object that is left to the red cube”. In Ta-

ble 3, this corresponds to the “{0, 1, 2, 3}-Relate” columns.

Results are shown in Figure 3.

In general, we observe a small drop when referring ex-

pressions start to include spatial reasoning. However, there

does not seem to be significant difference among referring

expressions that require 1, 2, 3 steps of spatial reasoning.

This seems to suggest that once the model has grasped spa-

tial reasoning, there is little trouble in successfully applying

it multiple times.

4.2.4 Different Reasoning Topologies

There are two referring expression topologies in CLEVR-

Ref+: chain-structured and tree-structured. Intuitively,

a chain structure has a single reasoning path to follow,

whereas a tree structure requires following two such paths

before merging. In Figure 4 we compare performance on

referring expressions with two sequential spatial relation-
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Figure 6: Four examples (two chain structures, two tree structures) of step-by-step inspection of IEP-Ref visual reasoning.
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Figure 7: Average IoU going into/out of each IEP-Ref module on CLEVR-Ref+ validation set. Note that here IoU is not only

computed at the end, but also all intermediate steps. This shows that IoU remains high throughout visual reasoning. The

large differences in modules marked in dark red are discussed in text.

ships vs. one on each branch joined with AND. These two

templates have roughly the same length and complexity, so

the comparison focuses on topology.

Though not consistent among the four models, tree-

structured referring expressions are generally harder than

chain-structured ones. This agrees with the findings in [15].

4.2.5 Different Relation Types

There are two kinds of relationships in CLEVR-Ref+.

One is spatial relationship that includes phrases like “left

of”, “right of”, “in front of”, “behind” (discussed in Sec-

tion 4.2.3). The other is same-attribute relationship that re-

quires recognizing and memorizing particular attributes of

another object, e.g. “The large block(s) that have the same

color as the metal sphere”.

In Figure 5 we study whether the relation type will make

a difference in performance. We compare the “2-Relate”

column with the “Same” column in Table 3, again because

they have roughly the same length and complexity. All

models perform much worse on the same-attribute relation-

ship type, suggesting that this is a hard concept to grasp.

Similar to ordinality, same-attribute requires global context.
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4.3. Step­By­Step Inspection of Visual Reasoning

All the results discussed in Section 4.2 are about the end-

point of the visual reasoning process. We argue that in or-

der to trust the predictions made by the referring expression

system, it is also important to make sure that the interme-

diate reasoning steps make sense. CLEVR-Ref+ is suitable

because: (1) the semantics of the referring expressions is

modularized, and (2) the referring ground truth at all inter-

mediate steps can be obtained automatically (i.e. no human

annotators needed).

In training our IEP-Ref model, there is always a

Segment module at the end, transforming the 128-channel

feature map into a 1-channel segmentation mask. When

testing, we simply attach the trained Segment module to

the output of all intermediate modules. This is possible be-

cause all modules have the same number of input channels

and output channels (128). This technique would not help

in the VQA setting, because there the ending modules (e.g.

Count, Equal) discard the spatial dimensions needed for

visualization.

We found that this technique works quite well. In Fig-

ure 6 we provide four qualitative examples with various

topologies and modules. We notice that all modules are

performing their intended functionality, except the Unique

module5. Yet after one more module, the segmentation

mask becomes normal again. The quantitative analysis in

Figure 7 confirms this observation: on average, IoU drops

by 0.66 after each Unique module; but IoU significantly

increases after each Same or Relate module, and these

are the only modules that may come after Unique accord-

ing to the templates. We conjecture that the network has

learned some mechanism to treat Unique as the “prepro-

cessing” step of the Same and Relate functionalities.

4.4. False­Premise Referring Expressions

In reality, referring expression systems may face all

kinds of textual input, and not all of them will make sense.

When presented with a referring expression that makes false

assumptions (e.g. “The red sphere” when there is no sphere

in the scene), the system should follow through as much as

it can, and be robust enough to return zero foreground at

the end. We test IEP-Ref’s ability to deal with these false-

premise referring expressions (c.f. [30]). Note that no such

expressions appear during training.

We generate 10,000 referring expressions that refer to

zero object at the end. Qualitatively (see Figure 8), it is re-

assuring to see that intermediate modules are correctly do-

ing their jobs, and a no-foreground prediction is made at

the final step. Quantitatively, IEP-Ref predicts 0 foreground

5It is supposed to simply carry over the previously referred object, yet

from what we observe, its behavior is most similar to selecting the comple-

ment of the previously referred object, though this is far from consistent.
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Figure 8: Our IEP-Ref model can correctly handle false-

premise referring expressions even if they do not appear

during training.

pixel more than 1/4 of the time, and ≤ 8 foreground pixels

more than 1/3 of the time.

5. Conclusion

In this paper, we build the CLEVR-Ref+ dataset to com-

plement existing ones for referring expressions. By choos-

ing a synthetic setup, the advantage is that dataset bias can

be minimized, and the ground truth visual reasoning pro-

cess is readily available. We evaluated several state-of-the-

art referring object detection and referring image segmen-

tation models on CLEVR-Ref+. In addition, we propose

the IEP-Ref model, which uses a module network approach

and outperforms competing methods by a large margin. De-

tailed analysis are conducted to identify the strengths and

weaknesses of these models. In particular, we found that

ordinality and the same-attribute relationship seem to be the

most difficult concepts to grasp.

Besides the correctness of the final segmentation mask,

the correctness of the reasoning process is also important.

We discovered that IEP-Ref provides an easy and natural

way of revealing this process: simply attach the Segment

module to each intermediate step. Our quantitative evalua-

tion shows a high IoU at intermediate steps as well, proving

that the neural modules have indeed learned the job they

are supposed to do. Another evidence is that IEP-Ref can

correctly handle false-premise referring expressions.

Going forward, we are interested to see whether these

findings will transfer and inspire better models on real data.
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Dynamic multimodal instance segmentation guided by natu-

ral language queries. In ECCV (11), volume 11215 of Lec-

ture Notes in Computer Science, pages 656–672. Springer,

2018. 2

[27] D. Mascharka, P. Tran, R. Soklaski, and A. Majumdar.

Transparency by design: Closing the gap between per-

formance and interpretability in visual reasoning. CoRR,

abs/1803.05268, 2018. 2, 3

[28] V. K. Nagaraja, V. I. Morariu, and L. S. Davis. Modeling con-

text between objects for referring expression understanding.

In ECCV (4), volume 9908 of Lecture Notes in Computer

Science, pages 792–807. Springer, 2016. 2

[29] E. Perez, F. Strub, H. de Vries, V. Dumoulin, and A. C.

Courville. Film: Visual reasoning with a general condition-

ing layer. In AAAI, pages 3942–3951. AAAI Press, 2018.

3

[30] A. Ray, G. Christie, M. Bansal, D. Batra, and D. Parikh.

Question relevance in VQA: identifying non-visual and

false-premise questions. In EMNLP, pages 919–924. The

Association for Computational Linguistics, 2016. 8

4193



[31] A. Rohrbach, M. Rohrbach, R. Hu, T. Darrell, and

B. Schiele. Grounding of textual phrases in images by re-

construction. In ECCV (1), volume 9905 of Lecture Notes in

Computer Science, pages 817–834. Springer, 2016. 2

[32] A. Santoro, D. Raposo, D. G. T. Barrett, M. Malinowski,

R. Pascanu, P. Battaglia, and T. Lillicrap. A simple neu-

ral network module for relational reasoning. In NIPS, pages

4974–4983, 2017. 3

[33] L. Yu, Z. Lin, X. Shen, J. Yang, X. Lu, M. Bansal, and T. L.

Berg. Mattnet: Modular attention network for referring ex-

pression comprehension. In CVPR. IEEE Computer Society,

2018. 2, 5

[34] L. Yu, P. Poirson, S. Yang, A. C. Berg, and T. L. Berg. Mod-

eling context in referring expressions. In ECCV (2), volume

9906 of Lecture Notes in Computer Science, pages 69–85.

Springer, 2016. 1, 2, 3, 4, 5

[35] L. Yu, H. Tan, M. Bansal, and T. L. Berg. A joint speaker-

listener-reinforcer model for referring expressions. In CVPR,

pages 3521–3529. IEEE Computer Society, 2017. 2, 5

[36] P. Zhang, Y. Goyal, D. Summers-Stay, D. Batra, and

D. Parikh. Yin and yang: Balancing and answering binary

visual questions. In CVPR, pages 5014–5022. IEEE Com-

puter Society, 2016. 3

[37] Y. Zhu, O. Groth, M. S. Bernstein, and L. Fei-Fei. Visual7w:

Grounded question answering in images. In CVPR, pages

4995–5004. IEEE Computer Society, 2016. 1

4194


