
Circulant Binary Convolutional Networks: Enhancing the Performance of 1-bit

DCNNs with Circulant Back Propagation

jironronggChunlei Liu,1 Wenrui Ding,2 Xin Xia,1 Baochang Zhang,4∗j Jiaxin Gu,4jiergrong

Jianzhuang Liu,3 Rongrong Ji,5,6 David Doermann7

1 School of Electronic and Information Engineering, Beihang University,
2 Unmanned System Research Institute, Beihang University, 3 Huawei Noah’s Ark Lab,

4 School of Automation Science and Electrical Engineering, Beihang University,
5 School of Information Science and Engineering, Xiamen University,

6 Peng Cheng Laboratory, 7 University at Buffalo

{liuchunlei, ding, xiaxin, bczhang}@buaa.edu.cn

Abstract

The rapidly decreasing computation and memory cost

has recently driven the success of many applications in the

field of deep learning. Practical applications of deep learn-

ing in resource-limited hardware, such as embedded de-

vices and smart phones, however, remain challenging. For

binary convolutional networks, the reason lies in the de-

graded representation caused by binarizing full-precision

filters. To address this problem, we propose new circulant

filters (CiFs) and a circulant binary convolution (CBCon-

v) to enhance the capacity of binarized convolutional fea-

tures via our circulant back propagation (CBP). The CiFs

can be easily incorporated into existing deep convolution-

al neural networks (DCNNs), which leads to new Circulant

Binary Convolutional Networks (CBCNs). Extensive exper-

iments confirm that the performance gap between the 1-bit

and full-precision DCNNs is minimized by increasing the

filter diversity, which further increases the representational

ability in our networks. Our experiments on ImageNet show

that CBCNs achieve 61.4% top-1 accuracy with ResNet18.

Compared to the state-of-the-art such as XNOR, CBCNs

can achieve up to 10% higher top-1 accuracy with more

powerful representational ability.

1. Introduction

Deep convolutional neural networks (DCNNs) have been

successfully demonstrated on many computer vision tasks

such as object detection and image classification. DC-

∗Baochang Zhang is the corresponding author.

Figure 1. Circulant back propagation (CBP). We manipulate the

learned convolution filters using the circulant transfer matrix,

which is employed to build our CBP. By doing so, the capacity

of the binarized convolutional features are significantly enhanced,

e.g., robustness to the orientation variations in objects, and the per-

formance gap between the 1-bit and full-precision DCNNs is min-

imized. In the example, 4 CiFs are produced based on the learned

filter and the circular matrix.

NNs deployed in practical environments, however, still face

many challenges. It is particularly true when the portability

and real time performance are required. This is critical be-

cause models of vision applications can require very large

memory, making them impractical for most embedded plat-

forms. Besides, floating-point inputs and network weights

along with forward or backward data flow can result in a

significant computational burden.

2691



Figure 2. Circulant Binary Convolutional Networks (CBCNs) are designed based on circulant and binary filters to variate the orientations

of the learned filters in order to increase the representational ability. By considering the center loss and softmax loss in a unified framework,

we achieve much better performance than state-of-the-art binarized models. Most importantly, our CBCNs also achieve the performance

comparable to well-known full-precision ResNets and WideResNets. The circulant binary filters are only shown for demonstrating the

computation procedure, which are not saved for testing.

Binary filters instead of using full-precision weights

have been investigated in DCNNs to compress the deep

models to handle the aforementioned problems. They are

also called 1-bit DCNNs, as each weight parameter and ac-

tivation can be represented by a single bit. As presented in

[10], XNOR has both the convolution weights and input-

s attached to the convolution be approximated with binary

values, providing an efficient implementation of convolu-

tional operations, particularly by reconstructing the unbina-

rized filters with a single scaling factor. More recently, Bi-

Real Net [20] explores a new variant of residual structure

to preserve the real activations before the sign function and

TBN [16] replaces the sign function with a threshold-based

ternary function to obtain ternary input tensor. Both pro-

vide an optimal tradeoff among memory, efficiency and per-

formance. A warm-restart learning-rate schedule in [9] is

adopted to accelerate the training for 1-bit-per-weight net-

works. Furthermore, a method called WAGE [17] is pro-

posed to discretize both training and inference, where not

only weights and activations but also gradients and errors

are quantized. In these previous methods, however, the bi-

narization of the filters often degrades the representational

ability of the models for the rotation variations in objects.

In this paper, we introduce circulant filters (CiFs) and

the circulant binary convolution (CBConv) to actively cal-

culate diverse feature maps, which can improve the repre-

sentational ability of the resulting binarized DCNNs. The

key insight of producing CiFs to help back propagation is

shown in Fig. 1. Compared to previous binarized DCN-

N filters, CiFs are defined based on a circulant operation

on each learned filter. A new circulant back propagation

(CBP) algorithm is also introduced to develop an end-to-end

trainable DCNN. During the convolution, CiFs are used to

produce diverse feature maps which provide the binarized

DCNNs with the ability to capture variations previously un-

seen. Instead of introducing extra functional modules or

new network topologies, our method implements CBCon-

v onto the most basic element of DCNNs, the convolution

operator. Thus, it can be naturally fused with modern DC-

NN architectures, upgrading them to more expressive and

compact Circulant Binary Convolutional Networks (CBC-

Ns) for resource limited applications. We design a simple

and unique variation process, which is deployed at each lay-

er and can be solved within the same pipeline of the new

CBP algorithm. In addition, we consider the center loss

to further enhance the performance of CBCNs as shown in

Fig. 2. Thanks to the low model complexity, such an archi-

tecture is less prone to over-fitting and suitable for resource-

constrained environments. Our CBCNs reduce the required

storage space of full-precision models by a factor of 32,

while achieving better performance than existing binarized

filters based DCNNs. The contributions of this paper are

summarized as follows:

(1) CiFs are used to obtain more robust feature repre-

sentation, e.g., orientation variations in objects, which min-

imize the performance gap between full-precision DCNNs

and binarized DCNNs.

(2) We develop a CBP algorithm to reduce the loss

during back propagation and make convolutional networks

more compact and efficient. Experimental results show that

CBP is not only effective, but also converged quickly.

(3) The presented circulant convolution is generic, and

can be easily used on existing DCNNs, such as ResNets and

conventional DCNNs. Our highly compressed models out-

perform state-of-the-art binarized models by a large margin

on MNIST, CIFAR and ImageNet databases.

2. Related Work

DCNNs with a large number of parameters consume

considerable computational resources. From our practical

study, about half of the power consumption of a DCNN is

2692



Table 1. A brief description of variables and operators used in the paper.

M :circulant transfer matrix G : circulant filter W : learned filter F : feature map

δW : the gradient of the learned filter W P : inverse circulant transfer matrix Ĝ : binarized filter L: loss function

K : number of orientations for each filter i : filter index j : orientation index l : layer index

g : input feature map index h : output feature map index η : learning rate

related to the model size. Many attempts have been made to

accelerate and simplify DCNNs while avoiding the increase

of the errors. Network binarization is one of the most pop-

ular approaches, which is briefly reviewed below.

The research in [6] demonstrates that the storage of

real-valued deep neural networks such as AlexNet [4],

GoogLeNet [15] and VGG-16 [13] can be reduced signif-

icantly when their 32-bit parameters are quantized to 1-bit.

Expectation BackPropagation (EBP) in [14] uses a varia-

tional Bayesian approach to achive high performance with

a network with binary weights and activations. BinaryCon-

nect (BC) [1] extends the idea of EBP by employing 1-bit

precision weights (1 and -1). Later, Courbariaux et al. [2]

propose BinaryNet (BN) that is an extension of BC and fur-

ther constrains activations to +1 and -1, binaring the input

(except the first layer) and the output of each layer. BC

and BN both achieve sufficiently high accuracy on smal-

l datasets such as MNIST, CIFAR10 and SVHN. Accord-

ing to Rastegari et al. [11], BC and BN are not very suc-

cessful on large-scale data sets. XNOR [10] has a differ-

ent binarization method and a network architecture. Both

the weights and inputs attached to the convolution are ap-

proximated with binary values, which results in an efficient

implementation of the convolutional operations by recon-

structing the unbinarized filters with a single scaling fac-

tor. Recent studies such as MCN [18] and Bi-Real Net [20]

have been conducted to explore new network structures and

training techniques for binarizing both weights and activa-

tions while minimizing accuracy degradation using a con-

cept similar to XNOR. MCN introduces modulated filters to

recover the unbinarized filters and leads to a new architec-

ture to calculate the network model. Bi-Real Net connects

the real activations to the activations of consecutive blocks

through an identity shortcut.

The results of these studies are encouraging, but due to

the weight binarization process, the representational ability

of the networks can be degraded. This inspires us to seek

a way to increase the filter variations in order to increase

the network representation ability. In particular, for the first

time, we use the circulant matrix to build CiFs for our bi-

narized CNNs. We also develop a CBP algorithm to make

the DCNNs more compact and effective in an end-to-end

framework.

Figure 3. Illustration of the circulant transfer matrix M for K = 8.

The center position stays unchanged, and the remaining numbers

are circled in a counter-clockwise direction. Each column of M is

obtained from m0 with a rotation angle ∈ {0◦, 45◦, ..., 315◦}. It

clearly shows that a circulant filter explicitly encodes the position

and orientation.

3. Methodology

We design a specific architecture in CBCNs based on

CiFs, and train it with a new BP algorithm. Attempting

to increase the representational ability reduced by the bina-

rization process, CiFs are designed to enrich the binarized

filters for the enhancement of the network performance. As

shown in the experiments, the performance drop is marginal

even when the learned network parameters are highly com-

pressed. First of all, Table 1 gives the main notation used in

this paper.

3.1. Circulant Transfer Matrix M

A circulant matrix M is defined by a single vector in

the first column, with cyclic permutations of the vector

with offset equal to the column index in the remaining

columns. An important property of the circulant matrix

is that it can produce different representations using sim-

ple vectors or matrices. With this unique characteristic,

we define the circulant transfer matrix of K columns as

M = (m0, ...,mj , ...,mK−1), j = {0, 1, ..,K − 1}:

M =

























0 7 6 5 4 3 2 1

1 0 7 6 5 4 3 2

2 1 0 7 6 5 4 3

3 2 1 0 7 6 5 4

4 3 2 1 0 7 6 5

5 4 3 2 1 0 7 6

6 5 4 3 2 1 0 7

7 6 5 4 3 2 1 0

























, (1)

2693



(a) Traditional convolution

(b) CBConv

Figure 4. CiF and CBConv examples for K = 4 orientations (0◦,

90
◦, 180◦, 270◦) and H = 3. (a) The generation of a CiF and

its corresponding binary CiF based on a learned filter and M . To

obtain the 4D CiF, the original 2DH×H learned filter is modified

to 3D by copying it 3 times. (b) CBConv on an input feature map.

Note that in this paper, a feature map is defined as 3D with K

channels, and these channels are usually not the same.

where K = 8 and 8 vector rotations are used to form M .

The first column m0 corresponds to the numbers in Fig. 3,

and the other columns are obtained by a counter-clockwise

rotation of the numbers. Each column of M represents one

rotation angle ∈ {0◦, 45◦, 90◦, 135◦, 180◦, 225◦, 270◦,

315◦}. We set m0 to correspond to the learned filter and

m1−7 to the derived rotated versions of m0.

3.2. Circulant Filters (CiFs)

We now design the specific convolutional filters CiF-

s used in our CBCNs. A CiF is a 4D tensor of size

K×K×H×H , generated based on a learned filter and M .

These CiFs are deployed across all convolutional layers. As

shown in Fig. 4(a), the original 2D H ×H learned filter is

modified to 3D by replicating it three times and concatenat-

ing them to obtain the 4D CiF. For K = 4, every channel of

the network input is replicated as a group of four elements.

By doing so, we can easily implement our CBCNs using

PyTorch. One example of the CBConv is illustrated in Fig.

4(b).

To facilitate the math description below, we represent a

2D H ×H learned filter as a 1D vector of size H2 so that

its corresponding 4D CiF can be represented using a 2D
matrix of size H2 × K (see Fig. 4(a)). Let Gi be such a

matrix representing the ith CiF. Then

Gi = (Gi0, ..., Gij , ..., Gi(K−1))

= (Wi ◦m0, ...,Wi ◦mj , ...,Wi ◦mK−1),
(2)

where Wi is a 1D vector containing the ith learned filter’s

weights (including the unchanged central one during rota-

tion), and ◦ denotes the rotation operation of Wi with mj

(see Fig. 3). Gi0 corresponds to the ith learned filter and

the other columns of Gi are introduced to increase the rep-

resentational ability.

3.3. Forward Propagation of CBCNs based on the
CBConv Module

In CBCNs, a binary CiF denoted by Ĝi is calculated as:

Ĝi = sign(Gi), (3)

where Gi is the corresponding full-precision CiF, and the

values of Ĝi are 1 or -1. Both Gi and Ĝi are jointly ob-

tained in the end-to-end learning framework. Let the set

of all the binarized filters in the lth layer be Ĝl. Then the

output feature maps F l+1 are obtained by:

F l+1 = CBConv(sign(F l); Ĝl), (4)

where CBConv is the convolution operation implemented

as a new module including the CiF generation process (the

blue part in Fig. 2). Fig. 4(b) shows a simple example of

a forward convolution where there is one input feature map

with one generated output feature map. In the CBConv, the

channels of an output feature map are generated as follows:

F l+1
h,j =

∑

i,g

F l
g ∗ Ĝl

ij , (5)

F l+1
h = {F l+1

h,0 , F l+1
h,1 , ..., F l+1

h,K−1}, (6)

where ∗ denotes the convolution operation. F l+1
h,k is the kth

channel of the hth feature map, and F l
g denotes the gth fea-

ture map of the input in the lth convolutional layer. In Fig.

4(b), h = 1 and g = 1, where after the CBConv with one

binary CiF, the number of the channels of the output feature

map is the same as that of the input feature map.

3.4. Circulant Back Propagation (CBP)

During the back-propagation, what needs to be learned

and updated are the learned filters only. And the inverse

transformation of the circulant transfer matrix M is in-

volved in the process of BP to further enhance the repre-

sentational ability of our CBCNs. To facilitate the math de-

scription below, we define the inverse circulant matrix P of

K columns as P = (p0, ..., pj , ..., pK−1), j = {0, 1, ..,K−
1}, where K = 8 and 8 vector inverse rotations are used to

form P . Let δWi
be the gradient of a learned filter Wi. Note

that we need to sum up the gradients of the K sub-filters in

the corresponding CiF, Gi. Thus:

δWi
= (

K−1
∑

j=0

∂L̂

∂Gij(pj(0))
, ...,

K−1
∑

j=0

∂L̂

∂Gij(pj(7))
), (7)

2694



Wi ←Wi − ηδWi
, (8)

where L̂ is the network loss function, and η is the learning

rate. Note that since the central weights of CiFs are not

rotated, their gradients are obtained as in the common BP

procedure and are not presented in Eq. 7. As is shown, the

circular operation involves in our BP process, which makes

CBP be adaptive to orientation variations in objects.

For the gradient of the sign function, some special pro-

cess is necessary due to its discontinuity property. In [2]

and [20], the sign function is approximated by the clip func-

tion and the piecewise polynomial function, respectively,

as shown in Fig. 5(a) and Fig. 5(b) where their corre-

sponding derivatives are also given. Since the derivative

of the sign function (an impulse) can be represented as

lim
σ→0

1
σ
√
π
exp(−G2

σ2 ), in this work, we use this Gaussian

function (Fig. 5(c)) as the approximation of the gradient:

∂Ĝi

∂Gi

=
A

σ
√
π
exp(−G2

i

σ2
), (9)

where A and σ are the amplitude gain and variance of the

Gaussian function, respectively, which are determined em-

pirically. In our experiments, we find that our approxima-

tion in Fig. 5(c) is better than those in Fig. 5(a) and Fig.

5(b). From the equations above, we can see that the BP

process can be easily implemented. Thus only updating

the learned convolution filters with the help of CiFs, our

CBCNs are significantly compact and efficient, reducing the

memory storage by 32. Finally, the learning algorithm to

train CBCNs is given in Algorithm 1.

Algorithm 1 CBCN Training.

Require: The training dataset; the full-precision learned

filters W ; the circulant transfer matrix M ; the num-

ber of orientations K; hyper-parameters such as ini-

tial learning rate, weight decay, convolution stride and

padding size.

Ensure: A CBCN based on the CiFs.

1: Initialize W randomly;

2: repeat

3: // Forward propagation

4: for all l = 1 to L convolutional layer do

5: Use Eqs. 1 and 2 to obtain Gl;

6: F l+1 = CBConv(sign(F l), sign(Gl));
7: end for

8: // Back propagation

9: for all l = L to 1 do

10: Calculate the gradients δW ; // Using Eq. 7

11: W ←W − ηδW ; // Update the parameters

12: end for

13: until the maximum epoch.

4. Experiments

Our CBCNs are evaluated on object classification us-

ing MNIST [7], CIFAR10/100 [5] and ILSVRC12 Ima-

geNet datasets [12]. LeNet [7], WideResNet (WRN) [19]

and ResNet18 [3] are employed as the backbone networks

to build our CBCNs simply by replacing the full-precision

convolution with CBConv. Also, binarizing the neuron ac-

tivations is carried out in all of our experiments.

4.1. Datasets and Implementation Details

Datasets: The MINIST [7] dataset is composed of a

training set of 60,000 and a testing set of 10,000 32 × 32
grayscale images of hand-written digits from 0 to 9. Each

sample is randomly rotated in [−45◦, 45◦] yielding MNIST-

rot.

CIFAR10 [5] is a natural image classification dataset

containing a training set of 50, 000 and a testing set of

10, 000 32× 32 color images across the following 10 class-

es: airplanes, automobiles, birds, cats, deers, dogs, frogs,

horses, ships, and trucks, while CIFAR100 consists of 100

classes. And we randomly rotate each sample in the CI-

FAR10 dataset between [0, 360◦] to yield CIFAR10-rot.

ImageNet object classification dataset [12] is more chal-

lenging due to its large scale and greater diversity. There are

1000 classes and 1.2 million training images and 50k vali-

dation images in it. We compare our method with the state-

of-the-art on the ImageNet dataset and we adopt ResNet18

to validate the superiority and effectiveness of CBCNs.

In the implementation, LeNet, WRN, and ResNet18

backbone networks are used to build CBCNs. We simply re-

place the full-precision convolution with CBConv, and keep

other components unchanged. The parameters σ and A for

the Gaussian function in the Eq. 9 are set to 1 and 3
√
2π,

respectively. More details are elaborated below.

LeNet Backbone: LetNet contains four simple convolu-

tional layers. We adopt Max-pooling and ReLU after each

convolution layer, and a dropout layer after the fully con-

nected layer to avoid over-fitting. The initial learning rate

is 0.01 with no degradation before reaching the maximum

epoch of 50 for MNIST and MNIST-rot.

WRN Backbone: WRN is a network structure similar

to ResNet with a depth factor k to control the feature map

depth dimension expansion through 3 stages, within which

the dimensions remain unchanged. For simplicity we fix the

depth factor to 1. Each WRN has a parameter i which indi-

cates the channel dimension of the first stage and we set it to

16 leading to a network structures 16-16-32-64. The train-

ing details are the same as in [19]. The initial learning rate is

0.01 with a degradation of 10% for every 60 epochs before

it reaches the maximum epoch of 200 for CIFAR10/100 and

CIFAR10-rot. For example, WRN22 is a network with 22

convolutional layers and similarly for WRN40.

2695



(a) (b) (c)

Figure 5. Three approximations of the sign function for its gradient computation. (a) The clip function and its derivative in [2]. (b) The

piecewise polynomial function and its derivative in [20]. (c) Our proposed function and its derivative.

Table 2. Error rates on the MNIST and CIFAR10 and their variants. ‘fp’ denotes the full precision result. The bold denotes the best result

among the binary networks.

Dataset Backbone kernel stage
original (%) rot (%)

fp XNOR CBCN fp XNOR CBCN

MNIST LeNet
5-10-20-40 0.91 3.76 1.91 2.77 17.26 5.76

10-20-40-80 0.69 1.50 1.24 1.89 7.77 4.95

CIFAR10 ResNet18

16-16-32-64 8.94 22.88 10.9 19.07 40.75 19.68

32-32-64-128 6.63 15.55 8.13 12.96 33.69 16.2

32-64-128-256 5.27 13.43 8.09 10.47 21.93 15.11

Figure 6. Network architectures of ResNet18, XNOR on ResNet18 and CBCN on ResNet18. Note that CBCN doubles the shortcuts.

Table 3. Performance (accuracy, %) contributions of the compo-

nents in CBCNs on CIFAR10, where ConvComp, S, C, and G

denote the convolution comparison between BConv in XNOR and

CBConv, doubled shortcuts, using the center loss, and using the

Gaussian gradient function, respectively. The bold number repre-

sents the best result.
Conv

-Comp
S S+C S+G

S+C

+G

XNOR 76.3 80.53 80.97 81.65 82.32

CBCN (K=2) 81.84 85.79 86.23 86.67 87.56

CBCN (K=4) 84.79 89.10 89.6 90.22 90.83

CBCN (K=8) 86.79 90.80 91.27 91.53 92.02

ResNet18 Backbone: Fig. 6 respectively illustrates the

architectures of ResNet18, XNOR and CBCNs. SGD is

used as the optimization algorithm with a momentum of

0.9 and a weight decay 1e-4. The initial learning rate is

0.01 with a degradation of 10% for every 20 epochs before

reaching the maximum epoch of 70 on ImageNet, while on

CIFAR10/100, the initial rate is 0.01 with a degradation of

10% for every 60 epochs before reaching the maximum e-

poch of 200.

4.2. Rotation Invariance

With LeNet and ResNet18 backbones, we build XNOR

and CBCNs and compare them on MNIST, MNIST-rot, CI-

FAR10, and CIFAR10-rot. K is set to 4 in CBCNs.

Table 2 gives the results in terms of error rates, and ‘f-

p’ represents the full-precision results. The state-of-the-

2696



art XNOR has a dramatical performance drop on the more

challenging rotated datasets. On MNIST-rot, with the k-

ernel stage 5-10-20-40, CBCN shows impressive perfor-

mance improvement 11.5% over XNOR, while 1.85% im-

provement is achieved on MNIST. On CIFAR10-rot, with

the kernel stage 16-16-32-64, CBCN has about 20% im-

provement over XNOR. From Table 2, we can also see

that on CIFAR10-rot, the performance gap between CBCN

and XNOR decreases from about 20% to 17% to 6% with

the increase of the kernel stage (parameters), meaning that

the improvement of CBCN over XNOR is more significant

when they have fewer parameters. The results in Table 2

confirm that with the improved representation ability from

the proposed CiFs, CBCNs are more robust than conven-

tional binarization methods for rotation variations of input

images.

4.3. Ablation Study

In this section, we study the performance contributions

of the components in CBCNs, which include CBConv, cen-

ter loss, additional shortcuts (Fig. 6), and the Gaussian gra-

dient function (Eq. 9). CIFAR10 and ResNet18 with kernel

stage 16-16-32-64 are used in this experiment. The details

are given below.

1) We only replace the convolution BConv in XNOR

with our CBConv convolution and compare the results.

As shown in the ConvComp column in Table 3, CBC-

N (K=4) achieves about 8% accuracy improvement over

XNOR (84.79% vs. 76.3%) using the same network struc-

ture and shortcuts as in ResNet18. This significant improve-

ment verifies the effectiveness of our CBConv.

2) In CBCNs, if we double the shortcuts (Fig. 6), we

can also find a decent improvement from 84.79% to 89.10%

(see the column under S in Table 3), which shows that the

increase of shortcuts can also enhance binarized deep net-

works.

3) Fine-tuning CBCN with the center loss can also im-

prove the performance of CBCN by 0.5% as shown in the

column under S+C in Table 3).

4) Replacing the piecewise polynomial function in [20]

with the Gaussian function for back propagation, CBCN

obtains 1.12% improvement (90.22% vs. 89.10%), which

shows that the gradient function we use is a better choice.

5) From the column under S in Table 3, we can see

that CBCN performs better using more orientations in CiF-

s. More orientations can better deal with the problem of

degraded representation caused by network binarization.

4.4. Accuracy Comparison with StateoftheArt

CIFAR10/100: The same parameter settings are used in

CBCNs on both CIFAR10 and CIFAR100. We first com-

pare our CBCNs with original ResNet18 with stage kernels

as 16-16-32-64 and 32-64-128-256, followed by a compari-

(a) Train accuracy on CIFAR10.

(b) Test accuracy on CIFAR10.

Figure 7. Training and Testing error curves of CBCN and XNOR

based on WRN40 for the CIFAR10 experiments.

son with the original WRNs with the initial channel dimen-

sion 16 in Table 4. Then, we compare our results with other

state-of-the-arts such as BNN [1], BWN [10], and XNOR

[10]. It is observed that at least 1.84% (= 93.42%-91.58%)

accuracy improvement is gained with our CBCN, and in

other cases, larger margins are achieved. Also, we plot the

training and testing loss curves of XNOR and CBCN, re-

spectively, in Fig. 7, which clearly show that CBCN (CBP)

converges faster than XNOR (BP).

ImageNet: Four state-of-the-art methods on ImageNet

are chosen for comparison: Bi-Real Net [20], BinaryNet

[2], XNOR [10] and ABC-Net [8]. These four networks are

representative methods of binarizing both network weights

2697



Table 5. Classification accuracy (%) on ImageNet. The bold represents the best result among the binary networks. K = 4 in CBCN.

Full-Precision XNOR ABC-Net BinaryNet Bi-Real CBCN

ResNet18
Top-1 69.3 51.2 42.7 42.2 56.4 61.4

Top-5 89.2 73.2 67.6 67.1 79.5 82.80

Table 4. Classification accuracy (%) based on ResNet18 and

WRN40, respectively, on CIFAR10/100. The bold represents the

best result among the binary networks. K = 4 in CBCN.

Model Kernel Stage

Dataset

CIFAR CIFAR

-10 -100

BNN - 89.85 -

BWN - 90.12 -

XNOR (ResNet18) 64-64-128-256 87.1 66.08

XNOR (WRN40) 64-64-128-256 91.58 73.18

ResNet18 16-16-32-64 94.84 75.37

CBCN 16-16-32-64 90.22 69.97

CBCN 32-64-128-256 91.60 70.07

WRN40 16-16-32-64 95.8 79.41

WRN22 16-16-32-64 90.32 67.19

CBCN 16-16-32-64 93.42 74.80

and activations and achieve state-of-the-art results. All the

methods in Table 5 perform the binarization of ResNet18.

For a fair comparison, our CBCN contains the same amount

of learned filters as ResNet18. The comparative results in

Table 5 are quoted directly from the references, except that

the result of BinaryNet is from [8]. The comparison clearly

indicates that the proposed CBCN outperforms the four bi-

nary networks by a considerable margin in terms of both the

top-1 and top-5 accuracies. Specifically, for top-1 accura-

cy CBCN outperforms BinaryNet and ABC-Net with a gap

over 18%, achieves about 10% improvement over XNOR,

and about 5% over the latest Bi-Real Net. In Fig. 8, we plot

the training and testing loss curves of XNOR and CBCN,

respectively. It clearly shows that using our CBP algorithm,

CBCN converges faster than XNOR.

5. Conclusion

In this paper, we have proposed new circulant binary

convolutional networks (CBCNs) that are implemented by

a set of binary circulant filters (CiFs). The proposed CiFs

and circulant binary convolution (CBConv) are used to en-

hance the representation ability of binary networks. CBC-

Ns can be trained end-to-end with the developed circulant

BP (CBP) algorithm. Our extensive experiments demon-

strate that CBCNs have superiority over state-of-the-art bi-

nary networks, and obtain results that are more close to the

full-precision backbone networks ResNets and WRNs, with

a storage reduction of about 32 times. As a generic convo-

lutional layer, CBConv can also be used on various tasks,

(a) Top 1 accuracy on ImageNet.

(b) Top 5 accuracy on ImageNet.

Figure 8. Training and Testing error curves of CBCN and XNOR

based on the ResNet18 backbone on ImageNet.

which is our future work.

6. Acknowledgment

The work was supported by the National Key Re-

search and Development Program of China (Grant No.

2016YFB0502602) and the National Key R&D Plan

(2017YFC0821102). Baochang Zhang is the corresponding

author.

2698



References

[1] M. Courbariaux, Y. Bengio, and J. P. David. Binaryconnect:

Training deep neural networks with binary weights during

propagations. In Advances in Neural Information Processing

Systems.

[2] M. Courbariaux, I. Hubara, D. Soudry, R. El-Yaniv, and

Y. Bengio. Binarized neural networks: Training deep neu-

ral networks with weights and activations constrained to +1

or -1. arXiv preprint arXiv:1602.02830, 2016.

[3] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual learning

for image recognition. In IEEE Conference on Computer

Vision and Pattern Recognition, pages 770–778, 2016.

[4] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet

classification with deep convolutional neural networks. In

International Conference on Neural Information Processing

Systems, pages 1097–1105, 2012.

[5] N. Krizhevsky and Hinton. The cifar-10 dataset. online:

http://www. cs. toronto. edu/kriz/cifar. html.

[6] L. Lai, N. Suda, and V. Chandra. Deep convolutional neu-

ral network inference with floating-point weights and fixed-

point activations. arXiv:1703.03073v1.

[7] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-

based learning applied to document recognition. Proceed-

ings of the IEEE, 86(11):2278–2324, 1998.

[8] X. Lin, C. Zhao, and W. Pan. Towards accurate binary con-

volutional neural network. arXiv:1711.11294, 2017.

[9] M. D. McDonnell. Training wide residual networks for de-

ployment using a single bit for each weight. In International

Conference on Learning Representations, 2018.

[10] M. Rastegari, V. Ordonez, J. Redmon, and A. Farhadi. Xnor-

net: Imagenet classification using binary convolutional neu-

ral networks. In European Conference on Computer Vision,

pages 525–542, 2016.

[11] R. Rigamonti, A. Sironi, V. Lepetit, and P. Fua. Learning

separable filters. In Computer Vision and Pattern Recogni-

tion, pages 2754–2761, 2013.

[12] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, and M. Bernstein.

Imagenet large scale visual recognition challenge. Interna-

tional Journal of Computer Vision, 115(3):211–252, 2015.

[13] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556., 2014.

[14] D. Soudry, I. Hubara, and R. Meir. Expectation backpropa-

gation: parameter-free training of multilayer neural networks

with continuous or discrete weights. In International Confer-

ence on Neural Information Processing Systems, pages 963–

971, 2014.

[15] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going deeper with convolutions. In IEEE Conference on

Computer Vision and Pattern Recognition, 2015.

[16] D. Wan, F. Shen, L. Liu, F. Zhu, J. Qin, L. Shao, and H. T.

Shen. Tbn: Convolutional neural network with ternary inputs

and binary weights. In European Conference on Computer

Vision, pages 315–332, 2018.

[17] S. Wu, G. Li, F. Chen, and L. Shi. Training and inference

with integers in deep neural networks. International Confer-

ence on Learning Representations, 2018.

[18] C. L. R. J. J. H. X. C. Xiaodi Wang, Baochang Zhang and

J. Liu. Modulated convolutional networks. In Computer Vi-

sion and Pattern Recognition, 2018.

[19] S. Zagoruyko and N. Komodakis. Wide residual networks.

arXiv preprint arXiv:1605.07146, 2016.

[20] W. L. X. Y. W. L. Zechun Liu, Baoyuan Wu and K.-T. Cheng.

Bi-real net: Enhancing the performance of 1-bit cnns with

improved representational capability and advanced training

algorithm. In European Conference on Computer Vision,

2018.

2699


