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Abstract

State-of-the-art methods for counting people in crowded

scenes rely on deep networks to estimate crowd density.

They typically use the same filters over the whole image or

over large image patches. Only then do they estimate local

scale to compensate for perspective distortion. This is typ-

ically achieved by training an auxiliary classifier to select,

for predefined image patches, the best kernel size among a

limited set of choices. As such, these methods are not end-

to-end trainable and restricted in the scope of context they

can leverage.

In this paper, we introduce an end-to-end trainable deep

architecture that combines features obtained using multiple

receptive field sizes and learns the importance of each such

feature at each image location. In other words, our ap-

proach adaptively encodes the scale of the contextual infor-

mation required to accurately predict crowd density. This

yields an algorithm that outperforms state-of-the-art crowd

counting methods, especially when perspective effects are

strong.

1. Introduction

Crowd counting is important for applications such as

video surveillance and traffic control. In recent years, the

emphasis has been on developing counting-by-density al-

gorithms that rely on regressors trained to estimate the

people density per unit area so that the total number can

be obtained by integration, without explicit detection be-

ing required. The regressors can be based on Random

Forests [18], Gaussian Processes [7], or more recently Deep

Nets [41, 42, 26, 31, 40, 36, 32, 24, 19, 30, 33, 22, 15, 28, 5],

with most state-of-the-art approaches now relying on the

latter.

Standard convolutions are at the heart of these deep-

learning-based approaches. By using the same filters and

pooling operations over the whole image, these implicitly

rely on the same receptive field everywhere. However,

due to perspective distortion, one should instead change

the receptive field size across the image. In the past, this

has been addressed by combining either density maps ex-

tracted from image patches at different resolutions [26] or

feature maps obtained with convolutional filters of differ-

ent sizes [42, 5]. However, by indiscriminately fusing in-

formation at all scales, these methods ignore the fact that

scale varies continuously across the image. While this was

addressed in [31, 30] by training classifiers to predict the

size of the receptive field to use locally, the resulting meth-

ods are not end-to-end trainable; cannot account for rapid

scale changes because they assign a single scale to relatively

large patches; and can only exploit a small range of recep-

tive fields for the networks to remain of a manageable size.

In this paper, we introduce a deep architecture that ex-

plicitly extracts features over multiple receptive field sizes

and learns the importance of each such feature at every

image location, thus accounting for potentially rapid scale

changes. In other words, our approach adaptively encodes

the scale of the contextual information necessary to predict

crowd density. This is in contrast to crowd-counting ap-

proaches that also use contextual information to account for

scaling effects as in [32], but only in the loss function as

opposed to computing true multi-scale features as we do.

We will show that it works better on uncalibrated images.

When calibration data is available, we will also show that

it can be leveraged to infer suitable local scales even better

and further increase performance.

Our contribution is therefore an approach that incor-

porates multi-scale contextual information directly into an

end-to-end trainable crowd counting pipeline, and learns

to exploit the right context at each image location. As

shown by our experiments, we consistently outperform the

state of the art on all standard crowd counting benchmarks,

such as ShanghaiTech, WorldExpo’10, UCF CC 50 and

UCF QNRF, as well as on our own Venice dataset1, which

features strong perspective distortion.

2. Related Work

Early crowd counting methods [39, 38, 20] tended to

rely on counting-by-detection, that is, explicitly detecting

1https://sites.google.com/view/weizheliu/home/

projects/context-aware-crowd-counting
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individual heads or bodies and then counting them. Unfor-

tunately, in very crowded scenes, occlusions make detec-

tion difficult, and these approaches have been largely dis-

placed by counting-by-density-estimation ones, which rely

on training a regressor to estimate people density in vari-

ous parts of the image and then integrating. This trend be-

gan in [7, 18, 10], using either Gaussian Process or Ran-

dom Forests regressors. Even though approaches relying

on low-level features [9, 6, 4, 27, 7, 14] can yield good re-

sults, they have now mostly been superseded by CNN-based

methods [42, 31, 5], a survey of which can be found in [36].

The same can be said about methods that count objects in-

stead of people [1, 2, 8].

The people density we want to measure is the number

of people per unit area on the ground. However, the deep

nets operate in the image plane and, as a result, the den-

sity estimate can be severely affected by the local scale of a

pixel, that is, the ratio between image area and correspond-

ing ground area. This problem has long been recognized.

For example, the algorithms of [41, 17] use geometric in-

formation to adapt the network to different scene geome-

tries. Because this information is not always readily avail-

able, other works have focused on handling the scale im-

plicitly within the model. In [36], this was done by learning

to predict pre-defined density levels. These levels, how-

ever, need to be provided by a human annotator at train-

ing time. By contrast, the algorithms of [26, 32] use im-

age patches extracted at multiple scales as input to a multi-

stream network. They then either fuse the features for final

density prediction [26] without accounting for continuous

scale changes or introduce an ad hoc term in the training

loss function [32] to enforce prediction consistency across

scales. This, however, does not encode contextual informa-

tion into the features produced by the network and therefore

has limited impact. While [42, 5] aim to learn multi-scale

features, by using different receptive fields, they combine

all of these features to predict the density.

In other words, while the previous methods account for

scale, they ignore the fact that the suitable scale varies

smoothly over the image and should be handled adaptively.

This was addressed in [16] by weighting different density

maps generated from input images at various scales. How-

ever, the density map at each scale only depends on features

extracted at this particular scale, and thus may already be

corrupted by the lack of adaptive-scale reasoning. Here,

we argue that one should rather extract features at multiple

scales and learn how to adaptively combine them. While

this, in essence, was also the motivation of [31, 30], which

train an extra classifier to assign the best receptive field for

each image patch, these methods remain limited in several

important ways. First, they rely on classifiers, which re-

quires pre-training the network before training the classifier,

and thus is not end-to-end trainable. Second, they typically

assign a single scale to an entire image patch that can still

be large and thus do not account for rapid scale changes.

Last, but not least, the range of receptive field sizes they

rely on remains limited in part because using much larger

ones would require using much deeper architectures, which

may not be easy to train given the kind of networks being

used.

By contrast, in this paper, we introduce an end-to-end

trainable architecture that adaptively fuses multi-scale fea-

tures, without explicitly requiring defining patches, but

rather by learning how to weigh these features for each in-

dividual pixel, thus allowing us to accommodate rapid scale

changes. By leveraging multi-scale pooling operations, our

framework can cover an arbitrarily large range of receptive

fields, thus enabling us to account for much larger context

than with the multiple receptive fields used by the above-

mentioned methods. In Section 4, we will demonstrate that

it delivers superior performance.

3. Approach

As discussed above, we aim to exploit context, that is,

the large-scale consistencies that often appear in images.

However, properly assessing what the scope and extent of

this context should be in images that have undergone per-

spective distortion is a challenge. To meet it, we intro-

duce a new deep net architecture that adaptively encodes

multi-level contextual information into the features it pro-

duces. We then show how to use these scale-aware features

to regress to a final density map, both when the cameras are

not calibrated and when they are.

3.1. Scale­Aware Contextual Features

We formulate crowd counting as regressing a people den-

sity map from an image. Given a set of N training images

{Ii}1≤i≤N with corresponding ground-truth density maps

{Dgt
i }, our goal is to learn a non-linear mapping F param-

eterized by θ that maps an input image Ii to an estimated

density map Dest
i (Ii) = F(Ii, θ) that is as similar as possi-

ble to D
gt
i in L2 norm terms.

Following common practice [25, 29, 23], our starting

point is a network comprising the first ten layers of a pre-

trained VGG-16 network [34]. Given an image I , it outputs

features of the form

fv = Fvgg(I) , (1)

which we take as base features to build our scale-aware

ones.

As discussed in Section 2, the limitation of Fvgg is that

it encodes the same receptive field over the entire image. To

remedy this, we compute scale-aware features by perform-

ing Spatial Pyramid Pooling [11] to extract multi-scale con-

text information from the VGG features of Eq. 1. Specifi-

cally, as illustrated at the bottom of Fig. 1, we compute these
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Figure 1: Context-Aware Network. (Top) RGB images are fed to a font-end network that comprises the first 10 layers of the VGG-16

network. The resulting local features are grouped in blocks of different sizes by average pooling followed by a 1×1 convolutional layer.

They are then up-sampled back to the original feature size to form the contrast features. Contrast features are further used to learn the

weights for the scale-aware features that are then fed to a back-end network to produce the final density map. (Bottom) As shown in this

expanded version of the first part of the network, the contrast features are the difference between local features and context features.

scale-aware features as

sj = Ubi(Fj(Pave(fv, j), θj)) , (2)

where, for each scale j, Pave(·, j) averages the VGG fea-

tures into k(j)×k(j) blocks; Fj is a convolutional network

with kernel size 1 to combine the context features across

channels without changing their dimensions. We do this

because SPP keeps each feature channel independent, thus

limiting the representation power. We verified that with-

out this the performance drops. This is in contrast to earlier

arthitectures that convolve to reduce the dimension [37, 43];

and Ubi represents bilinear interpolation to up-sample the

array of contextual features to be of the same size as fv . In

practice, we use S = 4 different scales, with corresponding

block sizes k(j) ∈ {1, 2, 3, 6} since it shows better perfor-

mance compared with other settings.

The simplest way to use our scale-aware features would

be to concatenate all of them to the original VGG features

fv . This, however, would not account for the fact that scale

varies across the image. To model this, we propose to learn

to predict weight maps that set the relative influence of each

scale-aware feature at each spatial location. To this end, we

first define contrast features as

cj = sj − fv . (3)

They capture the differences between the features at a spe-

cific location and those in the neighborhood, which often

is an important visual cue that denotes saliency. Note that,

for human beings, saliency matters. For example, in the

image of Fig. 2, the eye is naturally drawn to the woman

at the center in part because edges in the rest of the image

all point in her direction and that edges at her location do

not. In our context, these contrast features provide us with

important information to understand the local scale of each

image region. We therefore exploit them as input to aux-

iliary networks with weights θjsa that compute the weights

ωj assigned to each one of the S different scales we use.

Each such network outputs a scale-specific weight map of

the form

ωj = Fj
sa(cj , θ

j
sa) . (4)

Fj
sa is a 1×1 convolutional layer followed by a sigmoid

function to avoid division by zero. We then employ these

weights to compute our final contextual features as

fI =

[

fv|

∑S

j=1
ωj ⊙ sj

∑S

j=1
ωj

]

, (5)

where [·|·] denotes the channel-wise concatenation opera-

tion, and ⊙ is the element-wise product between a weight

map and a feature map.

Altogether, as illustrated in Fig. 1, the network F(I, θ)
extracts the contextual features fI as discussed above, which

are then passed to a decoder consisting of several dilated

convolutions that produces the density map. The specific ar-

chitecture of the network is described in Table 1. As shown
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Figure 2: Context and saliency. People’s gaze tends be drawn to

the person in the center, probably because most the image edges

point in that direction.

by our experiments, this network already outperforms the

state of the art on all benchmark datasets, without explicitly

using information about camera geometry. As discussed be-

low, however, these results can be further improved when

such information is available.

3.2. Geometry­Guided Context Learning

Because of perspective distortion, the contextual scope

suitable for each region varies across the image plane.

Hence, scene geometry is highly related to contextual in-

formation and could be used to guide the network to better

adjust to the scene context it needs.

We therefore extend the previous approach to exploiting

geometry information when it is available. To this end, we

represent the scene geometry of image Ii with a perspective

map Mi, which encodes the number of pixels per meter in

the image plane. Note that this perspective map has the

same spatial resolution as the input image. We therefore use

it as input to a truncated VGG-16 network. In other words,

the base features of Eq. 1 are then replaced by features of

the form

fg = F ′
vgg(Mi, θg) , (6)

where F ′
vgg is a modified VGG-16 network with a single

input channel. To initialize the weights corresponding to

this channel, we average those of the original three RGB

channels. Note that we also normalize the perspective map

Mi to lie within the same range as the RGB images. Even

though this initialization does not bring any obvious differ-

ence in the final counting accuracy, it makes the network

converge much faster.

To further propagate the geometry information to later

stages of our network, we exploit the modified VGG fea-

tures described above, which inherently contain geometry

information, as an additional input to the auxiliary network

of Eq. 4. Specifically, the weight map for each scale is then

layer front-end(Fvgg) layer back-end decoder

1 - 2 3×3×64 conv-1 1 3×3×512 conv-2

2 × 2 max pooling 2 3×3×512 conv-2

3 - 4 3×3×128 conv-1 3 3×3×512 conv-2

2 × 2 max pooling 4 3×3×256 conv-2

5 - 7 3×3×256 conv-1 5 3×3×128 conv-2

2 × 2 max pooling 6 3×3×64 conv-2

8 - 10 3×3×512 conv-1 7 1×1×1 conv-1

Table 1: Network architecture of proposed model Convolu-

tional layers are represented as “(kernel size) × (kernel size) ×
(number of filters) conv-(dilation rate)”.

computed as

ωj = Fj
gc([cj |fg] , θ

j
gc) . (7)

These weight maps are then used as in Eq. 5. Fig. 3 depicts

the corresponding architecture.

3.3. Training Details and Loss Function

Whether with or without geometry information, our net-

works are trained using the L2 loss defined as

L(θ) =
1

2B

B
∑

i=1

‖Dgt
i −Dest

i ‖2
2
, (8)

where B is the batch size. To obtain the ground-truth den-

sity maps D
gt
i , we rely on the same strategy as previous

work [19, 31, 42, 30]. Specifically, to each image Ii, we

associate a set of ci 2D points P
gt
i = {P j

i }1≤j≤ci that de-

note the position of each human head in the scene. The

corresponding ground-truth density map D
gt
i is obtained by

convolving an image containing ones at these locations and

zeroes elsewhere with a Gaussian kernel N gt(p|µ, σ2) [21].

We write

∀p ∈ Ii, D
gt
i (p|Ii) =

ci
∑

j=1

N gt(p|µ = P
j
i , σ

2) , (9)

where µ and σ represent the mean and standard deviation of

the normal distribution. To produce the comparative results

we will show in Section 4, we use the same σ as the methods

we compare against.

To minimize the loss of Eq. 8, we use Stochastic Gradi-

ent Descent (SGD) with batch size 1 for various size dataset

and Adam with batch size 32 for fixed size dataset. Further-

more, during training, we randomly crop image patches of
1

4
the size of the original image at different locations. These

patches are further mirrored to double the training set.

4. Experiments

In this section, we evaluate the proposed approach.

We first introduce the evaluation metrics and benchmark
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Figure 3: Expanded Context-Aware Network. To account for camera registration information when available, we add a branch to the

architecture of Fig. 1. It takes as input a perspective map that encodes local scale. Its output is concatenated to the original contrast features

and the resulting scale-aware features are used to estimate people density.

datasets we use in our experiments. We then compare our

approach to state-of-the-art methods, and finally perform a

detailed ablation study.

4.1. Evaluation Metrics

Previous works in crowd density estimation use the mean

absolute error (MAE) and the root mean squared error

(RMSE) as evaluation metrics [42, 41, 26, 31, 40, 36].

They are defined as

MAE =
1

N

N
∑

i=1

|zi−ẑi| and RMSE =

√

√

√

√

1

N

N
∑

i=1

(zi − ẑi)2 ,

where N is the number of test images, zi denotes the true

number of people inside the ROI of the ith image and ẑi
the estimated number of people. In the benchmark datasets

discussed below, the ROI is the whole image except when

explicitly stated otherwise. Note that number of people can

be recovered by integrating over the pixels of the predicted

density maps as ẑi =
∑

p∈Ii
Dest

i (p|Ii).

4.2. Benchmark Datasets and Ground­truth Data

We use five different datasets to compare our approach to

recent ones. The first four were released along with recent

papers and have already been used for comparison purposes

since. We created the fifth one ourselves and will make it

publicly available as well.

ShanghaiTech [42]. It comprises 1,198 annotated images

with 330,165 people in them. It is divided in part A with

482 images and part B with 716. In part A, 300 images

form the training set and, in part B, 400. The remainder are

used for testing purposes. For a fair comparison with ear-

lier work [42, 32, 19, 33], we created the ground-truth den-

sity maps in the same manner as they did. Specifically, for

Part A, we used the geometry-adaptive kernels introduced

(a) Input image (b) Ground truth (c) Our prediction

Figure 4: Crowd density estimation on ShanghaiTech. First

row: Image from Part A. Second row: Image from Part B. Our

model adjusts to rapid scale changes and delivers density maps

that are close to the ground truth.

in [42], and for part B, fixed kernels. In Fig. 4, we show one

image from each part, along with the ground-truth density

maps and those estimated by our algorithm.

UCF-QNRF [15]. It comprises 1,535 jpeg images with

1,251,642 people in them. The training set is made of 1,201

of these images. Unlike in ShanghaiTech, there are dra-

matic variations both in crowd density and image resolu-

tion. The ground-truth density maps were generated by

adaptive Gaussian kernels as in [15].

UCF CC 50 [14]. It contains only 50 images with a peo-

ple count varying from 94 to 4,543, which makes it chal-

lenging for a deep-learning approach. For a fair comparison

again, the ground-truth density maps were generated using

fixed kernels and we follow the same 5-fold cross-validation

protocol as in [14]: We partition the images into 5 10-image

groups. In turn, we then pick four groups for training and

the remaining one for testing. This gives us 5 sets of results

and we report their average.
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Part A Part B

Model MAE RMSE MAE RMSE

Zhang et al. [41] 181.8 277.7 32.0 49.8

MCNN [42] 110.2 173.2 26.4 41.3

Switch-CNN [31] 90.4 135.0 21.6 33.4

CP-CNN [36] 73.6 106.4 20.1 30.1

ACSCP [32] 75.7 102.7 17.2 27.4

Liu et al. [24] 73.6 112.0 13.7 21.4

D-ConvNet [33] 73.5 112.3 18.7 26.0

IG-CNN [30] 72.5 118.2 13.6 21.1

ic-CNN[28] 68.5 116.2 10.7 16.0

CSRNet [19] 68.2 115.0 10.6 16.0

SANet [5] 67.0 104.5 8.4 13.6

OURS-CAN 62.3 100.0 7.8 12.2

Table 2: Comparative results on the ShanghaiTech dataset.

WorldExpo’10 [41]. It comprises 1,132 annotated video

sequences collected from 103 different scenes. There are

3,980 annotated frames, with 3,380 of them used for train-

ing purposes. Each scene contains a Region Of Interest

(ROI) in which people are counted. The bottom row of

Fig. 5 depicts three of these images and the associated cam-

era calibration data. We generate the ground-truth den-

sity maps as in our baselines [31, 19, 5]. As in previous

work [41, 42, 31, 30, 19, 5, 21, 36, 32, 28, 33] on this

dataset, we report the MAE of each scene, as well as the

average over all scenes.

Venice. The four datasets discussed above have the ad-

vantage of being publicly available but do not contain pre-

cise calibration information. In practice, however, it can

be readily obtained using either standard photogrammetry

techniques or onboard sensors, for example when using a

drone to acquire the images. To test this kind of scenario,

we used a cellphone to film additional sequences of the

Piazza San Marco in Venice, as seen from various view-

points on the second floor of the basilica, as shown in the

top two rows of Fig. 5. We then used the white lines on

the ground to compute camera models. As shown in the

bottom two rows of Fig. 5, this yields a more accurate cal-

ibration than in WorldExpo’10. The resulting dataset con-

tains 4 different sequences and in total 167 annotated frames

with fixed 1,280 × 720 resolution. 80 images from a single

long sequence are taken as training data, and we use the im-

ages from the remaining 3 sequences for testing purposes.

The ground-truth density maps were generated using fixed

Gaussian kernels as in part B of the ShanghaiTech dataset.

4.3. Comparing against Recent Techniques

In Tables 2, 3, 4, and 5, we compare our results to those

of the method that returns the best results for each one of

the 4 public datasets, as currently reported in the literature.

Model MAE RMSE

Idrees et al. [14] 315 508

MCNN [42] 277 426

Encoder-Decoder [3] 270 478

CMTL [35] 252 514

Switch-CNN [31] 228 445

Resnet101 [12] 190 277

Densenet201 [13] 163 226

Idrees et al. [15] 132 191

OURS-CAN 107 183

Table 3: Comparative results on the UCF QNRF dataset.

Model MAE RMSE

Idrees et al.[14] 419.5 541.6

Zhang et al. [41] 467.0 498.5

MCNN [42] 377.6 509.1

Switch-CNN [31] 318.1 439.2

CP-CNN [36] 295.8 320.9

ACSCP [32] 291.0 404.6

Liu et al. [24] 337.6 434.3

D-ConvNet [33] 288.4 404.7

IG-CNN [30] 291.4 349.4

ic-CNN[28] 260.9 365.5

CSRNet [19] 266.1 397.5

SANet [5] 258.4 334.9

OURS-CAN 212.2 243.7

Table 4: Comparative results on the UCF CC 50 dataset.

Model Scene1Scene2Scene3Scene4Scene5Average

Zhang et al. [41] 9.8 14.1 14.3 22.2 3.7 12.9

MCNN [42] 3.4 20.6 12.9 13.0 8.1 11.6

Switch-CNN [31] 4.4 15.7 10.0 11.0 5.9 9.4

CP-CNN [36] 2.9 14.7 10.5 10.4 5.8 8.9

ACSCP [32] 2.8 14.05 9.6 8.1 2.9 7.5

IG-CNN [30] 2.6 16.1 10.15 20.2 7.6 11.3

ic-CNN[28] 17.0 12.3 9.2 8.1 4.7 10.3

D-ConvNet [33] 1.9 12.1 20.7 8.3 2.6 9.1

CSRNet [19] 2.9 11.5 8.6 16.6 3.4 8.6

SANet [5] 2.6 13.2 9.0 13.3 3.0 8.2

DecideNet [21] 2.0 13.14 8.9 17.4 4.75 9.23

OURS-CAN 2.9 12.0 10.0 7.9 4.3 7.4

OURS-ECAN 2.4 9.4 8.8 11.2 4.0 7.2

Table 5: Comparative results in MAE terms on the World-

Expo’10 dataset.

They are those of [5], [15], [5], and [32], respectively. In

each case, we reprint the results as given in these papers and

add those of OURS-CAN, that is, our method as described

in Section 3.1. On the first three datasets, we consistently

and clearly outperform all other methods. On the World-

Expo’10 dataset, we also outperform them on average, but
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Figure 5: Calibration in Venice and WorldExpo’10. (Top row) Images of Piazza San Marco taken from different viewpoints. (Middle

row) We used the regular ground patterns to accurately register the cameras in each frame. The red ellipse overlaid in red is the projection

of a 1m radius circle from the ground plane to the image plane. (Bottom row) The same 1m radius circle overlaid on three WorldExpo’10

images. As can be seen in the bottom right image, the ellipse surface corresponds to an area that could be filled by many more people

that could realistically fit in a 1m radius circle. By contrast, the ellipse deformations are more consistent and accurate for Venice, which

denotes a better registration.

not in every scene. More specifically, in Scenes 2 and 4 that

are crowded, we do very well. By contrast, the crowds are

far less dense in Scenes 1 and 5. This makes context less

informative and our approach still performs honorably but

looses its edge compared to the others. Interestingly, as can

be seen in Table 5, in such uncrowded scenes, a detection-

based method such as DecideNet [21] becomes competitive

whereas it isn’t in the more crowded ones. In Fig. 6, we

use a Venice image to show how well our approach does

compared to the others in the crowded parts of the scene.

The first three datasets do not have any associated cam-

era calibration data, whereas WorldExpo’10 comes with a

rough estimation of the image plane to ground plane ho-

mography and Venice with an accurate one. We therefore

used these homographies to run OURS-ECAN, our method

as described in Section 3.2. We report the results in Ta-

bles 5 and 6. Unsurprisingly, OURS-ECAN clearly further

improves on OURS-CAN when the calibration data is accu-

rate as for Venice and even when it is less so as for World-

Expo, but by a smaller margin.

Original image Region of interest Ground truth MCNN [42]

Switch-CNN [31] CSRNet [19] OURS-CAN OURS-ECAN

Figure 6: Density estimation in Venice. Original image, ROI,

ground truth density map within the ROI, and density maps es-

timated both by the baselines and our method. Note how much

more similar the density map produced by OURS-ECAN is to the

ground truth than the others, especially in the upper corner of the

ROI, where people density is high.

4.4. Ablation Study

Finally, we perform an ablation study to confirm the ben-

efits of encoding multiple level contextual information and

of introducing contrast features.
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(a) (b) (c) (d) (e)
Figure 7: Image-plane density vs ground-plane density. (a) The two purple boxes highlight patches in which the crowd density per

square meter is similar in the top image. (b) Ground-truth image density obtained by averaging the head annotations in the image plane

as is done in all the approaches discussed in this paper, including ours. The bottom two patches are expanded versions of the same two

purple boxes. The density appears much larger in one than in the other due to perspective distortion that increases the image density further

away from the camera. (c) The density estimation returned by OURS-ECAN. (d) The ground-truth density normalized for image-scale

variations so that it can be interpreted as a density per square meter. (e) The OURS-ECAN density similarly normalized. Note that the

estimated densities in the two small windows now fall in the same range of values, which is correct.

Model MAE RMSE

MCNN [42] 145.4 147.3

Switch-CNN [31] 52.8 59.5

CSRNet[19] 35.8 50.0

OURS-CAN 23.5 38.9

OURS-ECAN 20.5 29.9

Table 6: Comparative results on the Venice dataset.

Model MAE RMSE

VGG-SIMPLE 68.0 113.4

VGG-CONCAT 63.4 108.7

VGG-NCONT 63.1 106.4

OURS-CAN 62.3 100.0

Table 7: Ablation study on the ShanghaiTech part A dataset.

Concatenating and Weighting VGG Features. We

compare our complete model without geometry, OURS-

CAN, against two simplified versions of it. The first one,

VGG-SIMPLE, directly uses VGG-16 base features fv as

input to the decoder subnetwork. In other words, it does not

adapt for scale. The second one, VGG-CONCAT, concate-

nates all scale-aware features {sj}1≤j≤S to the base fea-

tures instead of computing their weighted linear combina-

tion, and then passes the resulting features to the decoder.

We compare these three methods on the ShanghaiTech

Part A, which has often been used for such ablation stud-

ies [36, 5, 19]. As can be seen in Table 7, concatenating

the VGG features as in VGG-CONCAT yields a signifi-

cant boost, and weighing them as in OURS-CAN a further

one.

Contrast Features. To demonstrate the importance of

using contrast features to learn the network weights, we

compare OURS-CAN against VGG-NCONT that uses the

scale features sj instead of the contrast ones to learn the

weight maps. As can be seen in Table 7, this also results in

a substantial performance loss.

5. Conclusion and Future Perspectives

In this paper, we have shown that encoding multi-scale

context adaptively, along with providing an explicit model

of perspective distortion effects as input to a deep net, sub-

stantially increases crowd counting performance. In partic-

ular, it yields much better density estimates in high-density

regions.

This is of particular interest for crowd counting from mo-

bile cameras, such as those carried by drones. In future

work, we will therefore augment the image data with the

information provided by the drone’s inertial measurement

unit to compute perspective distortions on the fly and allow

monitoring from the moving drone.

We will also expand our approach to process consecutive

images simultaneously and enforce temporal consistency,

which among other things implies correcting ground-truth

densities to also account for perspective distortions and be

able to properly reason in the terms of ground-plane den-

sities instead of image-plane densities, which none of the

approaches discussed in this paper do. We did not do it ei-

ther so that our results could be properly compared to the

state of the art. However, as shown in Fig. 7, the price to

pay is that the estimated densities, because they are close

to this image-based ground truth, need to be corrected for

perspective distortion before they can be treated as ground-

plane densities. An obvious improvement would therefore

be to directly regress to ground densities.
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