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Abstract

Deep Neural Networks (DNNs) have recently led to sig-

nificant improvements in many fields. However, DNNs are

vulnerable to adversarial examples which are samples with

imperceptible perturbations while dramatically misleading

the DNNs. Moreover, adversarial examples can be used

to perform an attack on various kinds of DNN based sys-

tems, even if the adversary has no access to the underlying

model. Many defense methods have been proposed, such

as obfuscating gradients of the networks or detecting ad-

versarial examples. However it is proved out that these de-

fense methods are not effective or cannot resist secondary

adversarial attacks. In this paper, we point out that ste-

ganalysis can be applied to adversarial examples detection,

and propose a method to enhance steganalysis features by

estimating the probability of modifications caused by adver-

sarial attacks. Experimental results show that the proposed

method can accurately detect adversarial examples. More-

over, secondary adversarial attacks are hard to be directly

performed to our method because our method is not based

on a neural network but based on high-dimensional artifi-

cial features and Fisher Linear Discriminant ensemble.

1. Introduction

Deep Neural Networks (DNNs) have recently led to sig-

nificant improvements in many fields, such as image classi-

fication [28, 15] and speech recognition [1]. However, the

generalization properties of the DNNs have been recently

questioned because these machine learning models are vul-

nerable to adversarial examples [31]. An adversarial exam-

ple is a slightly modified sample that is intended to cause

an error output of the DNN based model. In the context

of classification task, the adversarial example is crafted to

force a model to classify it into a class different from the le-

gitimate class. In addition, adversarial examples have cross-

model generalization property [12], so the attacker can even

generate adversarial examples without the knowledge of the

DNN. Adversarial attacks are divided into two types: tar-

geted attack and untargeted attack. In targeted attack, the

attacker generates adversarial examples which are misclas-

sified by the classifier into a particular class. In untargeted

attack, the attacker generates adversarial examples which

are misclassified by the classifier into any class as long as it

is different from the true class.

There are many studies which focus on methods of gen-

erating adversarial examples. Some attack methods are

based on calculating the gradient of the network, such as

Fast Gradient Sign Method (FGSM) [12], Basic Iterative

Method (BIM) [18] and Jacobian Saliency Map Attack

Method [25]. While other methods are based on solving op-

timization problems, such as L-BFGS [31], Deepfool [23]

and Carlini & Wagner (C&W) attack [6].

Many defenses are proposed to mitigate adversarial ex-

amples against the above attacks. They make it harder for

the adversary to craft adversarial examples using existing

techniques or make the DNNs still give correct classifica-

tions on adversarial examples. These defenses are mainly

divided into two categories.

One way is preprocessing the input image before classi-

fication, taking advantage of the spatial instability of adver-

sarial examples. Defenders can perform some operations

on the input image in spatial domain before giving the in-

put image to a DNN, such as JPEG compression, scaling,

adding noise, etc. Gu et al. [14] propose to use an autoen-

coder to remove adversarial perturbations from inputs.

The other way is to modify the network architecture, the

optimization techniques or the training process. Goodfel-

low et al. [12] propose to augment the training set with

adversarial examples to increase the model’s robustness a-

gainst a specific adversarial attack. However, this approach

faces difficulties because the dimension of the images and

features in networks means a great quantity of training data

is required. Defensive distillation [26] is another technique

against certain adversarial attacks. This form of network

can prevent the model from fitting too tightly to the original
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data. Unfortunately, most of these defenses are not very ef-

fective against adversarial examples in classification tasks.

Obfuscated gradients appear to be robust against adver-

sarial attacks. Obfuscated gradients can be defined as a spe-

cial case of gradient masking [24], in which the attackers

cannot compute out the feasible gradient to generate adver-

sarial examples. However, Athalye et al. [2] proposed at-

tack techniques to overcome the obfuscated gradient based

defenses.

Due to the difficulty of classifying adversarial exam-

ples correctly, recent work has turned to detecting them.

Hendrycks & Gimpel [16], Li et al. [19] and Bhagoji et

al. [3] use PCA to detect statistical properties of the images

or network parameters. Feinman et al. [9] perform another

statistical test to detect adversarial examples. Grosse et al.

[13], Gong et al. [11] and Metzen et al. [22] utilize a second

neural network to classify images as normal or adversarial.

Lu et al. [21] detect adversarial examples by hypothesiz-

ing that adversarial examples produce different patterns of

ReLU activations in networks than what is produced by nor-

mal images. Xu et al. [32] propose a method, called Feature

Squeezing, to detect adversarial examples by measuring the

disagreement among the prediction vectors of the original

and squeezed examples. Liang et al. [20] detect the adver-

sarial example by comparing the classification results of the

input and its denoised version.

Unfortunately, Carlini and Wagner perform experiments

to prove that most of these detecting methods are only ef-

fective on image datasets with small size or only several

classes [5]. Moreover, Grosse’s [13], Gong’s [11] and Met-

zen’s [22] defenses use a second neural network to classify

images as normal or adversarial. However, neural network-

s used for detecting adversarial examples can also be by-

passed [5]. In fact, given an adversarial method can fool the

original neural network, Carlini et al. [5] show that with a

similar method we can also fool the extended network for

detection, which we call secondary adversarial attacks.

In this paper we propose to detect adversarial examples

from the view of steganalysis [27] which is the technolo-

gy for detecting steganography. In fact, Goodfellow et al.

[12] have provided the insight on one essence of adversari-

al examples such that “the adversarial attack can be treated

as a sort of accidental steganography”. Furthermore, we

propose a method to enhance steganalysis features by es-

timating the probability of modifications caused by adver-

sarial attacks. Experimental results show that the proposed

method can accurately detect adversarial examples. More-

over, secondary adversarial attacks are hard to be directly

performed to our method because our method is not based

on a neural network but based on high-dimensional artificial

features and FLD (Fisher Linear Discriminant) ensemble.

2. Related Work

2.1. Adversarial Attacks

2.1.1 Fast Gradient Sign Method

Goodfellow et al. [12] propose the Fast Gradient Sign

Method (FGSM) for generating adversarial examples. This

method uses the derivative of the loss function of the net-

work pertaining to the input feature vector. Given the input

image X , FGSM is to perturb the gradient direction of each

feature by the gradient. Then the classification result of the

input image will be changed. For a neural network with

cross-entropy cost function J(X, y) where X is the input

image and yt is the target class for the input image, the ad-

versarial example is generated as

Xadv = X − ǫsign(∇XJ(X, yt)), (1)

where ǫ is a parameter to determine the perturbation size.

2.1.2 Basic Iterative Method

The Basic Iterative Method (BIM) is the iterative version

of FGSM. This method applies FGSM many times with s-

mall perturbation size instead of applying adversarial noise

with one large perturbation size. The adversarial example

of BIM is generated as

Xadv
0 = X,

Xadv
N+1 = ClipX,ǫ{X

adv
N −αsign(∇XJ(Xadv

N , yt))},
(2)

where ClipX,ǫ{X
′} represents a clipping of the pixel val-

ues after each iteration. So the results stay in the ǫ-
neighbourhood of the input image X . This attack is more

powerful because the attacker can control how far the ad-

versarial example past the classification boundary. It was

demonstrated that the attack of BIM was better than FGSM

on ImageNet [18].

2.1.3 Deepfool

Deepfool is an untargeted attack method to generate an ad-

versarial example by iteratively perturbing an image [23].

This method explores the nearest decision boundary. The

image is modified a little to reach the boundary in each iter-

ation. The algorithm stops once the modified image changes

the classification of the network.

2.1.4 Carlini & Wagner Method

This method is named after its authors [6]. The attack can

be targeted or untargeted, and has three metrics to measure

its distortion (l0 norm, l2 norm and l∞ norm). The authors

point out that the untargeted l2 norm version has the best
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performance. It generates adversarial examples by solving

the following optimization problem:

minimize
δ

‖δ‖2 + c · f(x+ δ)

s.t. x+δ ∈ [0, 1]
n

(3)

This attack is to look for the smallest perturbation mea-

sured by l2 norm and make the network classify the image

incorrectly at the same time. c is a hyperparameter to bal-

ance the two parts of equation (3). The best way to choose

c is to use the smallest value of c for which the resulting

solution x + δ has f (x+ δ) ≤ 0. f(x) is the loss func-

tion to measure the distance between the input image and

the adversarial image. f(x) is defined as:

f(x) = max(Z(x)true − max
i 6=true

{Z(x)i},−κ). (4)

Z(x) is the pre-softmax classification result vector. κ is

a hyper-parameter called confidence. Higher confidence en-

courages the attack to search for adversarial examples that

are stronger in classification confidence. High-confidence

attacks often have larger perturbations and better transfer-

ability to other models. The C&W method is a strong attack

which is difficult to defend.

2.2. Robustness Based Defense

Robustness based defense aims at classifying adversari-

al examples correctly. There are many methods to achieve

robustness based defense. Adversarial training is to train a

better network by using a mixture of normal and adversarial

examples in the training set for data augmentation [12]. Pre-

processing the input images is to perform some operations

to remove adversarial perturbations, such as principal com-

ponent analysis (PCA) [3], JPEG compression [7], adding

noise, cropping, rotating and so on. Defensive distillation

hides the gradient between the pre-softmax layer and soft-

max outputs by leveraging distillation training techniques

[26]. Obfuscated gradients make the attackers hard to com-

pute out the feasible gradient to generate adversarial exam-

ples [2].

2.3. Detection Based Defense

Detection based defense aims at distinguishing normal

images and adversarial examples.

Hendrycks & Gimpel [16] leverage PCA to detect ad-

versarial examples, finding that adversarial examples place

a higher weight on the larger principal components than

normal images. However, Carlini and Wagner prove that

Hendrycks’s defense is only effective on MNIST [5].

Li et al. [19] apply PCA to the values after inner con-

volutional layers of the neural network, and use a cascade

classifier to detect adversarial examples. Specifically, they

propose building a cascade classifier that accepts the input

as normal only if all classifiers accept the input, but reject-

s it if any do. However, Carlini and Wagner perform ex-

periments to prove that Li’s defense fails against the C&W

attack [5].

Grosse et al. [13] propose a variant on adversarial re-

training. Instead of attempting to classify the adversarial

examples correctly, they introduce an additional class, sole-

ly for adversarial examples, and retrain the network to clas-

sify adversarial examples as the new class. Gong et al. [11]

propose a very similar defense method. However, Carlini

and Wagner re-implement these two defenses and find that

they are only effective on MNIST [5].

Bhagoji et al. [3] leverage PCA to reduce the dimension-

ality of the images. Then instead of training on the original

images, they train a classifier on images which have been

processed with dimensionality reduction. However, this de-

fense is only effective on MNIST [5].

Feinman et al. [9] utilize a Gaussian Mixture Model to

model outputs from the final hidden layer of a neural net-

work, and claim that adversarial examples belong to a d-

ifferent distribution than that of normal images. However,

Carlini and Wagner prove that Feinman’s defense is only

effective on MNIST [5].

Metzen et al. [22] detect adversarial examples by look-

ing at the inner convolutional layers of the network. They

augment the classification neural network with a detection

neural network that takes its input from various intermediate

layers of the classification network. However, this defense

is only effective on CIFAR-10 [5].

Lu et al. [21] hypothesize that adversarial examples pro-

duce different patterns of ReLU activations in networks than

what is produced by normal images. Based on this hypoth-

esis, they propose the Radial Basis Function SVM (RBF-

SVM) classifier which takes advantage of discrete codes

computed by the late stage ReLUs of the network to detect

adversarial examples on CIFAR-10 and ImageNet.

Xu et al. [32] propose a method, called Feature Squeez-

ing (FS), to detect adversarial examples. They reduce the

color bit depth of each pixel and smooth it by a spatial filter

to squeeze the features of an image. Then the adversari-

al examples are identified by measuring the disagreement

among the prediction vectors of the original and squeezed

examples.

Liang et al. [20] regard the adversarial perturbation as

a kind of noise and use scalar quantization and smoothing

spatial filter to reduce its adversarial effect. Then the adver-

sarial example can be detected by comparing the classifica-

tion results of the input and its denoised version. We refer

to this method as Noise Reduction (NR).

For practical applications, we can deploy detection based

defense combing with robustness based defense. First of all,

we use detection based defense to detect the input image. If

it is a normal image, we will directly feed it to the original
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DNN. Otherwise we can take advantage of robustness based

defense to mitigate adversarial examples.

3. Proposed Method

Both adversarial attacks and steganography on images

make perturbations on the pixel values, which alter the de-

pendence between pixels. However, steganalysis can ef-

fectively detect modifications caused by steganography via

modeling the dependence between adjacent pixels in natu-

ral images. So we can also take advantage of steganalysis

to identify deviations due to adversarial attacks.

Assuming that we have known the attacking method used

by the attacker, we construct a detector to detect whether

the input image is an adversarial example or not. In prac-

tice, we don’t know the method used by the attacker, but we

can deploy a series of detectors trained for various main-

stream adversarial attacks. Our detection method exploits

the fact that the perturbation of pixel values by adversarial

attack alters the dependence between pixels. By modeling

the differences between adjacent pixels in natural images,

we can identify deviations due to adversarial attacks. In

the beginning, we use a filter to suppress the content of the

input image. Dependence between adjacent pixels of the

filtered image is modeled as a higher order Markov chain

[30]. Then the transition probability matrix is used as a vec-

tor feature for a feature based detector implemented using

machine learning algorithms.

We recommend two kinds of steganalysis feature sets for

detecting adversarial examples: one is the low-dimensional

model SPAM with 686 features [27]; the other is the high-

dimensional model Spatial Rich Model (SRM) with 34671

features [10].

3.1. Features Extraction

3.1.1 SPAM

SPAM is described as follows. First, we calculate the

transition probabilities between pixels in eight direction-

s {←,→, ↓, ↑,տ,ց,ւ,ր} in the spatial domain. We

always compute the differences and the transition proba-

bility along the same direction. For example, the hori-

zontal direction from left-to-right differences are calculat-

ed by A→i,j = Xi,j − Xi,j+1, where X is an image with

size of m × n, and Xi,j is the pixel at the position (i, j)
for i ∈ {1, . . . ,m}, j ∈ {1, . . . , n− 1}. Second, we

use a Markov chain between pairs of differences (first or-

der chain) or triplets (second order chain) to model pixel

dependence along the eight directions. The first-order de-

tecting features, F 1st, model the difference arrays A via

a first-order Markov process. For the horizontal direction,

this leads to

M→x,y = Pr(A→i,j+1 = x|A→i,j = y) (5)

where x, y ∈ {−T, . . . , T}. The second-order detecting

features, F 2nd, model the difference arrays A via a second-

order Markov process. For the horizontal direction, this

leads to

M→x,y,z = P (A→i,j+2 = x|A→i,j+1 = y,A→i,j = z) (6)

where x, y, z ∈ {−T, . . . , T}. To reduce the dimension-

ality of the transition probability matrix, we only consider

differences within a limited range. Thus, we just calculate

the transition probability matrix for pairs within [−T, T ].
We separately average the horizontal and vertical matrices

and then the diagonal matrices to form the final feature sets,

F 1st, F 2nd. The expression of the average sample Markov

transition probability matrices is

F1,...,k = (M→ +M← +M↑ +M↓)/4

Fk+1,...,2k = (Mր +Mւ +Mց +Mտ)/4
(7)

where k = (2T + 1)2 for the first-order detecting features

and k = (2T + 1)3 for the second-order detecting features.

We can see that the order of Markov model and the range

of differences T control the dimensionality of our detecting

model. We use T = 3 for second order, resulting in 2k =
686 features [27].

3.1.2 Spatial Rich Model

Spatial Rich Model (SRM) can be viewed as an extend-

ed version of SPAM by extracting residuals from images

[10]. We use a pixel predictor from the pixel’s immediate

neighborhood to obtain a residual which is an estimate of

the image noise component. SRM uses 45 different pixel

predictors. The pixel predictor is linear or non-linear. Each

linear predictor is a shift-invariant finite-impulse response

filter which is described by a kernel matrix K(pred). The

residual Z = (zkl) is a matrix which has the same dimen-

sion as X:

Z = K(pred) ∗X −X
∆
= K ∗X, (8)

where the symbol ∗ denotes the convolution with X mirror-

padded. Thus, K ∗X has the same dimension as X .

For example, one simple linear residual is zij =
Xi,j+1 − Xi,j , which is the difference between a pair of

horizontally adjacent pixels. In this case, the residual ker-

nel is K =
(

−1 1
)

, which means that the pixel value is

predicted as its horizontally neighboring pixel.

SRM obtains non-linear predictors by taking the mini-

mum or maximum of up to five residuals which are obtained

by using linear predictors. For example, we can predict

pixel Xi,j from its horizontal or vertical neighboring pix-

els, obtaining thus one horizontal and one vertical residual

Z(h) =
(

zhij
)

, Z(v) =
(

zvij
)

:

z
(h)
ij = Xi,j+1 −Xi,j , (9)
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z
(v)
ij = Xi+1,j −Xi,j . (10)

We can use these two residuals to compute two nonlinear

“minmax” residuals as:

z
(min)
ij = min

{

z
(h)
ij , z

(v)
ij

}

, (11)

z
(max)
ij = max

{

z
(h)
ij , z

(v)
ij

}

. (12)

After that, quantize Z with a quantizer Q−T,T with

centroids Q−T,T = {−Tq, (−T + 1) q, . . . , T q}, where

T > 0 is an integer threshold and q > 0 is a quantization

step:

rij
∆
= Q−T,T (zij) , ∀i, j. (13)

The next step is that a co-occurrence matrix of fourth or-

der, C(SRM) ∈ Q4
−T,T , is computed from four (horizontal-

ly and vertically) adjacent values of the quantized residual

rij from the entire image:

CSRM
d0d1d2d3

=

m,n−3
∑

i,j=1

[ri,j = dk, ∀k = 0, . . . , 3], (14)

where dk ∈ Q−T,T and [B] is the Iverson bracket, which is

1 if the statement B is true and 0 otherwise. The union of

all co-occurrence matrices has a total dimension of 34671.

3.2. Features Enhancement

The above methods of extracting steganalysis features

do not consider the location of modified pixels caused by

adversarial attacks. Obviously, the detection rate will be

improved if we assign larger weight to the features of the

modified location. Although we cannot obtain the accurate

modified location, we can estimate the relative modifica-

tion probability of each pixel. In order to further improve

the accuracy of detection, we propose to enhance steganal-

ysis features by estimating the probability of modifications

caused by adversarial attacks.

We take advantage of the gradient amplitude to estimate

the modification probability because the pixels with larger

gradient amplitude have larger probability to be modified.

Assume that the neural network divides images into N cat-

egories. Although we cannot know which target class will

be selected by the attacker, we can randomly select L cate-

gories to generate L targeted adversarial examples and then

estimate the modification probability of each pixel accord-

ing to these targeted adversarial examples. So we take the

t-th (1 ≤ t ≤ L) class as the target class to calculate the

gradient of the input image X . We refer to the matrix of all

pixels’ modification probabilities as Modification Probabil-

ity Map (MPM). Note that these targeted adversarial exam-

ples generated by us are only used to estimate MPM which

can be used to enhance the detection of adversarial attacks.

For FGSM and BIM, when generating the adversar-

ial example of the target class yt for the input image,

we save absolute values of the gradient of each pixel

|∇XJ(X, yt)|, and then normalize them to obtain the gradi-

ent map fnor (|∇XJ(X, yt)|) where fnor () is the function

to normalize all elements in the matrix to (0, 1). Finally,

calculate the mean value of the gradient maps of L adver-

sarial examples to get MPM P :

P =
1

L

L
∑

t=1

fnor (|∇XJ(X, yt)|), (15)

where P is a m× n matrix in which the element Pi,j is the

modification probability of the pixel Xi,j .

For C&W which does not generate adversarial examples

by gradient, the estimation of MPM starts by computing the

difference array Dt between the normal image X and the

adversarial example Xadv
t :

Dt = Xadv
t −X. (16)

Then save the absolute values of all elements in the differ-

ence array Dt and normalize them to obtain the difference

map fnor (|Dt|). Finally, calculate the mean value of the

difference maps of L adversarial examples to get MPM:

P =
1

L

L
∑

t=1

fnor (|Dt|). (17)

For Deepfool which can only generate untargeted adver-

sarial examples, we estimate MPM by computing the dif-

ference array D between the normal image X and the ad-

versarial example Xadv:

D = Xadv −X. (18)

Then save the absolute values of all elements in the differ-

ence array D and normalize them to obtain MPM:

P = fnor (|D|) . (19)

The above description is the estimation of MPM based

on normal images. In practice, the detector may receive an

adversarial example. The results of our experiments show

that the MPM of one normal image and its adversarial im-

age is quite similar. Figure 1 shows an example of a normal

image, an adversarial image and their MPM (normalized to

(0, 255) to show more clearly).

3.2.1 Enhanced SPAM

Considering the impact of MPM, Enhanced SPAM (ES-

PAM) is proposed. The difference between SPAM and ES-

PAM is that we construct a new Markov transition proba-

bility based on MPM. For example, in the horizontal direc-

tion, the Markov transition probability M→x,y is related to
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(a) Normal image (b) MPM of normal image

(c) Adversarial image (d) MPM of adversarial image

Figure 1. Illustrations of a normal image, an adversarial image and

their MPM.

the pixel Xi,j , Xi,j+1 and Xi,j+2. So we calculate the new

Markov transition probability M ′→x,y in this way:

M ′→x,y = M→x,y · Pi,j · Pi,j+1 · Pi,j+2. (20)

Similarly, for the second-order detecting features, the new

Markov transition probability M ′→x,y,z is

M ′→x,y,z = M→x,y,z · Pi,j · Pi,j+1 · Pi,j+2 · Pi,j+3. (21)

The rest of the process of forming ESPAM is the same

with SPAM. ESPAM has the same dimensionality as SPAM,

which is 686.

3.2.2 Enhanced SRM

The Enhanced Spatial Rich Model (ESRM) is built in the

similar manner as SRM. The difference is that ESRM mod-

ifies the process of forming the co-occurrence matrices to

consider the impact of MPM:

CESRM
d0d1d2d3

=

m,n−3
∑

i,j=1

max
k=0,...,3

Pi,j+k [ri,j = dk, ∀k = 0, . . . , 3],

(22)

where C(ESRM) is the enhanced version of the co-

occurrence C(SRM). In other words, instead of increasing

the corresponding co-occurrence bin by 1, we add the max-

imum of the modification probabilities taken across the four

residuals to the bin [8]. Thus, if a group has four pixels with

small modification probabilities, it has smaller effect on the

co-occurrence values than the group with at least one pixel

likely to be changed. The rest of the process of forming ES-

RM stays exactly the same with SRM. ESRM has the same

dimensionality as SRM, which is 34671.

3.3. Training Detector

The construction of our detectors based on features relies

on pattern-recognition classifiers. The detectors are trained

as binary classifiers implemented using the FLD (Fisher

Linear Discriminant) ensemble [17] with default settings.

The ensemble by default minimizes the total classification

error probability under equal priors. We find the number

of base learners and the random subspace dimensionality

via minimizing the out-of-bag estimate of the testing error

calculated from the training set because it is an unbiased

estimate of the testing error on unseen data [4].

4. Experimental Results

We construct the detectors by modeling the statistical d-

ifferences between adjacent pixels in natural images. There-

fore, our method can not achieve very good performance

on MNIST and CIFAR-10 because images with small sizes

cannot provide enough samples to construct efficient fea-

tures. However, it has good performance on ImageNet. Pre-

vious work showed that untargeted attack is easier to suc-

ceed, results in smaller perturbations, and transfers better to

different models. So we detect untargeted adversarial ex-

amples to see the performance of our method.

We test our detection method against untargeted attacks

by FGSM, BIM, Deepfool and C&W. Our experiments are

performed on 40000 images randomly selected from Ima-

geNet (ILSVRC-2016) using a pretrained VGG-16 model

[29] as classification network which is evaluated with top-

1 accuracy. This results in a train set of 25000 images, a

validation set of 5000 images, and a test set of 10000 im-

ages. The values of pixels per color channel of these 40000

images range from 0 to 255. For BIM, we use α = 1 to en-

sure that we change each pixel by 1 on each step and ǫ ≤ 8
where ǫ is a parameter to determine the perturbation size.

For Deepfool, we apply the l2 norm version. For C&W, we

use the l2 norm version and set κ = 0. In the process of

estimating MPM, we set L = 100.

At first, the 40000 images from ImageNet are classified

by the network to obtain their true labels. Then we use these

40000 images to generate 40000 adversarial images as ad-

versarial samples of our experiments. To prove that MPM

is effective when detecting adversarial examples, we per-

form comparative experiments. We construct two pairs of

detectors: SPAM and ESPAM, SRM and ESRM. The only

difference between each pair is one detector with MPM and

the other detector without MPM. All detectors are trained

and tested on the same adversarial method.
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Table 1. Preliminary evaluations on previous detection methods.

detection

method

effective

on

ImageNet

effective

against

C&W

without second

neural network

Hendrycks’s [16] ✗ ✗ X

Li’s [19] X ✗ X

Grosse’s [13] ✗ X ✗

Gong’s [11] ✗ X ✗

Bhagoji’s [3] ✗ ✗ X

Feinman’s [9] ✗ ✗ X

Metzen’s [22] ✗ ✗ ✗

RBF-SVM [21] X unknown X

FS [32] X X X

NR [20] X X X

Table 2. Detection rate of normal images and their adversarial im-

ages generated by FGSM.

RBF-SVM [21] ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.8340 0.8913 0.9305 0.9487

adversarial images 0.8258 0.8936 0.9243 0.9541

FS [32] ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.9460 0.9472 0.9441 0.9455

adversarial images 0.4029 0.2856 0.2078 0.1715

NR [20] ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.8774 0.8670 0.8538 0.8513

adversarial images 0.7752 0.6908 0.6324 0.5587

SPAM ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.9488 0.9570 0.9651 0.9713

adversarial images 0.9432 0.9559 0.9628 0.9709

ESPAM ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.9725 0.9758 0.9812 0.9868

adversarial images 0.9704 0.9719 0.9751 0.9806

SRM ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.9757 0.9814 0.9831 0.9887

adversarial images 0.9785 0.9822 0.9861 0.9903

ESRM ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.9809 0.9839 0.9900 0.9931

adversarial images 0.9811 0.9866 0.9905 0.9938

Carlini and Wagner point out that it is necessary to eval-

uate defenses using a strong attack on harder datasets (such

as ImageNet) [5]. Moreover, Carlini and Wagner prove that

using a second neural network to identify adversarial exam-

ples is the least effective defense [5]. Therefore we only

compare our method with the defense which is effective a-

gainst C&W on ImageNet and not based on another neural

network. Table 1 illustrates preliminary evaluations on pre-

vious detection methods: whether effective on ImageNet,

whether effective against C&W and whether without second

neural network. As shown in Table 1, Li’s defense [19] fails

against the C&W attack. Hendrycks’s [16], Bhagoji’s [3]

and Feinman’s [9] defenses are only effective on MNIST.

Table 3. Detection rate of normal images and their adversarial im-

ages generated by BIM.

RBF-SVM [21] ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.7749 0.8660 0.9145 0.9362

adversarial images 0.7975 0.8752 0.9072 0.9330

FS [32] ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.9457 0.9440 0.9466 0.9451

adversarial images 0.6281 0.3547 0.2592 0.2134

NR [20] ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.8802 0.8742 0.8599 0.8530

adversarial images 0.8210 0.7411 0.6725 0.6143

SPAM ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.9402 0.9485 0.9559 0.9606

adversarial images 0.9411 0.9474 0.9545 0.9601

ESPAM ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.9708 0.9737 0.9749 0.9760

adversarial images 0.9638 0.9675 0.9725 0.9745

SRM ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.9667 0.9706 0.9753 0.9802

adversarial images 0.9697 0.9724 0.9762 0.9812

ESRM ǫ = 2 ǫ = 4 ǫ = 6 ǫ = 8
normal images 0.9712 0.9754 0.9811 0.9878

adversarial images 0.9716 0.9767 0.9820 0.9879

Table 4. Detection rate of normal images and their adversarial im-

ages generated by Deepfool.

normal images adversarial images

RBF-SVM [21] 0.5838 0.6012

FS [32] 0.9476 0.7441

NR [20] 0.9021 0.9208

SPAM 0.8553 0.8481

ESPAM 0.8690 0.8572

SRM 0.9445 0.9491

ESRM 0.9498 0.9527

Table 5. Detection rate of normal images and their adversarial im-

ages generated by C&W.

normal images adversarial images

RBF-SVM [21] 0.5332 0.5187

FS [32] 0.9485 0.8933

NR [20] 0.9110 0.9226

SPAM 0.6957 0.6778

ESPAM 0.7467 0.7563

SRM 0.8814 0.9092

ESRM 0.9233 0.9341

Table 6. Detection rate of secondary adversarial attacks yielded by

C&W.
SPAM ESPAM SRM ESRM

adversarial images 0.6669 0.7246 0.8944 0.9150

Grosse’s [13], Gong’s [11] and Metzen’s [22] defenses use
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a second neural network to classify images as normal or

adversarial. RBF-SVM [21] has good performance on Im-

ageNet even though its performance against C&W is not

evaluated. FS [32] and NR [20] claim good performance

when detecting C&W. Therefore, we compare our detectors

with RBF-SVM, FS and NR.

Figure 2. Average detection rate for detectors against FGSM.

Figure 3. Average detection rate for detectors against BIM.

The experimental results of detecting adversarial exam-

ples are shown in Table 2,3,4,5. The data of Table 2,3,4,5

is the detection rate of normal images and adversarial im-

ages. Figure 2 and Figure 3 illustrate these detectors’ per-

formance by averaging the detection rate of detecting nor-

mal images and adversarial images. First of all, the results

reveal that the detectors with MPM have higher detection

rates. Moreover, MPM has stronger enhancing effect on S-

PAM than SRM. When detecting FGSM and BIM, ESPAM

even has comparable performance as SRM. That is to say,

we can even use the low-dimensional model to achieve com-

parable performance as the high-dimensional model via the

enhancing method. Experimental results show that it is dif-

ficult to detect adversarial examples generated by the C&W

method. RBF-SVM is almost invalid against C&W. SPAM

and SRM achieve relatively low detection rate when detect-

ing C&W. However, MPM improves SPAM by more than 7

percent and the detection rate of ESRM reaches 93 percent

on detecting adversarial examples yielded by C&W. FS and

NR achieve comparable performance with ESRM against

C&W. Unfortunately, the detection rates of FS and NR are

much lower against FGSM and BIM. We suspect the reason

why FS and NR are less effective against FGSM and BIM is

that FS and NR are only well suited to mitigating small ad-

versarial perturbations. On the contrary, the detection rate

of ESRM is the highest on detecting adversarial examples

generated by FGSM, BIM, Deepfool and C&W. However,

the computation time of SRM and ESRM is much longer

because of their high-dimensional features.

5. Secondary Adversarial Attacks

The secondary adversarial attacks are hard to be directly

performed to our method because the structure of our detec-

tion model is not a neural network. A direct idea of escap-

ing the detection of our method is to reduce the number of

adversarial perturbations. However, this strategy will also

weaken the ability of adversarial examples to mislead the

DNN. To verify this point, we try to perform the secondary

attacks by removing 10% of the untargeted adversarial per-

turbations generated by C&W. As shown in Table 6, the de-

tection rate of ESRM drops from 93.41% to 91.50%. How-

ever, the success rate of secondary attack adversarial exam-

ples to deceive the network drops from 99.03% to 45.27%.

6. Conclusions

Inspired by the insight of Goodfellow et al. [12] that

“adversarial examples can be thought of as a sort of acci-

dental steganography”, we propose to apply steganalysis to

detecting adversarial examples. We also propose a method

to enhance steganalysis features. The experimental results

show that the enhanced scheme can accurately detect vari-

ous kinds of adversarial attacks including the C&W method.

Moreover, the secondary adversarial attacks [5] are hard to

be directly performed to our method because the structure

of our detection model is not a neural network. Our method

draws a relevant connection between adversarial examples

of computer vision and steganalysis and could kindle more

promising work in this direction. As an idea for future work,

a better secondary attack could try to add perturbations that

maintain the dependence between neighboring pixels.
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