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Abstract

Real world data often have a long-tailed and open-ended

distribution. A practical recognition system must classify

among majority and minority classes, generalize from a few

known instances, and acknowledge novelty upon a never

seen instance. We define Open Long-Tailed Recognition

(OLTR) as learning from such naturally distributed data

and optimizing the classification accuracy over a balanced

test set which include head, tail, and open classes.

OLTR must handle imbalanced classification, few-shot

learning, and open-set recognition in one integrated al-

gorithm, whereas existing classification approaches focus

only on one aspect and deliver poorly over the entire class

spectrum. The key challenges are how to share visual

knowledge between head and tail classes and how to reduce

confusion between tail and open classes.

We develop an integrated OLTR algorithm that maps

an image to a feature space such that visual concepts can

easily relate to each other based on a learned metric that re-

spects the closed-world classification while acknowledging

the novelty of the open world. Our so-called dynamic meta-

embedding combines a direct image feature and an associ-

ated memory feature, with the feature norm indicating the

familiarity to known classes. On three large-scale OLTR

datasets we curate from object-centric ImageNet, scene-

centric Places, and face-centric MS1M data, our method

consistently outperforms the state-of-the-art. Our code,

datasets, and models enable future OLTR research and are

publicly available at https://liuziwei7.github.

io/projects/LongTail.html.

1. Introduction

Our visual world is inherently long-tailed and open-

ended: The frequency distribution of visual categories in

our daily life is long-tailed [38], with a few common classes

and many more rare classes, and we constantly encounter

new visual concepts as we navigate in an open world.

∗Equal contribution.
†Work done in part at Tencent AI Lab.
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Figure 1: Our task of open long-tailed recognition must

learn from long-tail distributed training data in an open

world and deal with imbalanced classification, few-shot

learning, and open-set recognition over the entire spectrum.

While the natural data distribution contains head, tail,

and open classes (Fig. 1), existing classification approaches

focus mostly on the head [7, 28], the tail [51, 25], often in a

closed setting [55, 31]. Traditional deep learning models are

good at capturing the big data of head classes [24, 18]; more

recently, few-shot learning methods have been developed

for the small data of tail classes [48, 16].

We formally study Open Long-Tailed Recognition

(OLTR) arising in natural data settings. A practical

system shall be able to classify among a few common

and many rare categories, to generalize the concept of a

single category from only a few known instances, and to

acknowledge novelty upon an instance of a never seen

category. We define OLTR as learning from long-tail and

open-end distributed data and evaluating the classification

accuracy over a balanced test set which include head, tail,

and open classes in a continuous spectrum (Fig. 1).

OLTR must handle not only imbalanced classification

and few-shot learning in the closed world, but also open-set

recognition with one integrated algorithm (Tab. 1). Existing

classification approaches tend to focus on one aspect and

deliver poorly over the entire class spectrum.

The key challenges for OLTR are tail recognition robust-

ness and open-set sensitivity: As the number of training

instances drops from thousands in the head class to the few
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Task Setting Imbalanced Train/Base Set #Instances in Tail Class Balanced Test Set Open Class Evaluation: Accuracy Over ?

Imbalanced Classification X 20∼50 × × all classes

Few-Shot Learning × 1∼20 X × novel classes

Open-Set Recognition × N/A X X all classes

Open Long-Tailed Recognition X 1∼20 X X all classes

Table 1: Comparison between our proposed OLTR task and related existing tasks.

in the tail class, the recognition accuracy should maintain

as high as possible; on the other hand, as the number of

instances drops to zero in the open set, the recognition

accuracy relies on the sensitivity to distinguish unknown

open classes from known tail classes.

An integrated OLTR algorithm should tackle the two

seemingly contradictory aspects of recognition robustness

and recognition sensitivity on a continuous category spec-

trum. To increase the recognition robustness, it must share

visual knowledge between head and tail classes; to increase

recognition sensitivity, it must reduce the confusion be-

tween tail and open classes.

We develop an OLTR algorithm that maps an image

to a feature space such that visual concepts can easily

relate to each other based on a learned metric that respects

the closed-world classification while acknowledging the

novelty of the open world.

Our so-called dynamic meta-embedding handles tail

recognition robustness by combining two components: a

direct feature computed from the input image, and an

induced feature associated with the visual memory. 1) Our

direct feature is a standard embedding that gets updated

from the training data by stochastic gradient descent over

the classification loss. The direct feature lacks sufficient

supervision for the rare tail class. 2) Our memory feature is

inspired by meta learning methods with memories [51, 11,

1] to augment the direct feature from the image. A visual

memory holds discriminative centroids of the direct feature.

We learn to retrieve a summary of memory activations from

the direct feature, combined into a meta-embedding that is

enriched particularly for the tail class.

Our dynamic meta-embedding handles open recognition

sensitivity by dynamically calibrating the meta-embedding

with respect to the visual memory. The embedding is

scaled inversely by its distance to the nearest centroid: The

farther away from the memory, the closer to the origin,

and the more likely an open set instance. We also adopt

modulated attention [52] to encourage the head and tail

classes to use different sets of spatial features. As our meta-

embedding relates head and tail classes, our modulated

attention maintains discrimination between them.

We make the following major contributions. 1) We

formally define the OLTR task, which learns from natural

long-tail and open-end distributed data and optimizes the

overall accuracy over a balanced test set. It provides a

comprehensive and unbiased evaluation of visual recogni-

tion algorithms in practical settings. 2) We develop an

integrated OLTR algorithm with dynamic meta-embedding.

It handles tail recognition robustness by relating visual

concepts among head and tail embeddings, and it handles

open recognition sensitivity by dynamically calibrating

the embedding norm with respect to the visual memory.

3) We curate three large OLTR datasets according to a

long-tail distribution from existing representative datasets:

object-centric ImageNet, scene-centric MIT Places, and

face-centric MS1M datasets. We set up benchmarks for

proper OLTR performance evaluation. 4) Our extensive

experimentation on these OLTR datasets demonstrates that

our method consistently outperforms the state-of-the-art.

Our code, datasets, and models are publicly available

at https://liuziwei7.github.io/projects/

LongTail.html. Our work fills the void in practical

benchmarks for imbalanced classification, few-shot learn-

ing, and open-set recognition, enabling future research that

is directly transferable to real-world applications.

2. Related Works

While OLTR has not been defined in the literature, there

are three closely related tasks which are often studied in

isolation: imbalanced classification, few-shot learning, and

open-set recognition. Tab. 1 summarizes their differences.

Imbalanced Classification. Arising from long-tail dis-

tributions of natural data, it has been extensively studied

[41, 61, 3, 30, 62, 34, 29, 49, 6]. Classical methods

include under-sampling head classes, over-sampling tail

classes, and data instance re-weighting. We refer the readers

to [17] for a detailed review. Some recent methods include

metric learning [22, 33], hard negative mining [10, 27],

and meta learning [15, 55]. The lifted structure loss [33]

introduces margins between many training instances. The

range loss [59] enforces data in the same class to be close

and those in different classes to be far apart. The focal

loss [27] induces an online version of hard negative mining.

MetaModelNet [55] learns a meta regression net from head

classes and uses it to construct the classifier for tail classes.

Our dynamic meta-embedding combines the strengths of

both metric learning and meta learning. On one hand, our

direct feature is updated to ensure centroids for different

classes are far from each other; On the other hand, our

memory feature is generated on-the-fly in a meta learning

fashion to effectively transfer knowledge to tail classes.
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Figure 2: Method overview. There are two main modules: dynamic meta-embedding and modulated attention. The

embedding relates visual concepts between head and tail classes, while the attention discriminates between them. The

reachability separates tail and open classes.

Few-Shot Learning. It is often formulated as meta

learning [46, 5, 37, 42, 12, 57]. Matching Network [51]

learns a transferable feature matching metric to go beyond

given classes. Prototypical Network [48] maintains a set of

separable class templates. Feature hallucination [16] and

augmentation [53] are also shown effective. Since these

methods focus on novel classes, they often suffer a mod-

erate performance drop for head classes. There are a few

exceptions. The few-shot learning without forgetting [13]

and incremental few-shot learning [39] attempt to remedy

this issue by leveraging the duality between features and

classifiers’ weights [36, 35]. However, the training set used

in all of these methods are balanced.

In comparison, our OLTR learns from a more natural

long-tailed training set. Nevertheless, our work is closely

related to meta learning with fast weight and associative

memory [20, 45, 51, 11, 1, 32] to enable rapid adaptation.

Compared to these prior arts, our memory feature has two

advantages: 1) It transfers knowledge to both head and tail

classes adaptively via a learned concept selector; 2) It is

fully integrated into the network without episodic training,

and is thus especially suitable for large-scale applications.

Open-Set Recognition. Open-set recognition [44, 2], or

out-of-distribution detection [9, 26], aims to re-calibrate the

sample confidence in the presence of open classes. One

of the representative techniques is OpenMax [2], which

fits a Weibull distribution to the classifier’s output logits.

However, when there are both open and tail classes, the

distribution fitting could confuse the two.

Instead of calibrating the output logits, our OLTR ap-

proach incorporates the confidence estimation into feature

learning and dynamically re-scale the meta-embedding

w.r.t. to the learned visual memory.

3. Our OLTR Model

We propose to map an image to a feature space such that

visual concepts can easily relate to each other based on a

learned metric that respects the closed-world classification

while acknowledging the novelty of the open world. Our

model has two main modules (Fig.2): dynamic meta-

embedding and modulated attention. The former relates and

transfers knowledge between head and tail classes and the

latter maintains discrimination between them.

3.1. Dynamic Meta­Embedding

Our dynamic meta-embedding combines a direct image

feature and an associated memory feature, with the feature

norm indicating the familiarity to known classes.

Consider a convolutional neural network (CNN) with a

softmax output layer for classification. The second-to-the-

last layer can be viewed as the feature and the last layer

a linear classifier (cf. φ(·) in Fig. 2). The feature and the

classifier are jointly trained from big data in an end-to-end

fashion. Let vdirect denote the direct feature extracted from

an input image. The final classification accuracy largely

depends on the quality of this direct feature.

While a feed-forward CNN classifier works well with

big training data [7, 24], it lacks sufficient supervised

updates from small data in our tail classes. We propose

to enrich direct feature vdirect with a memory feature

vmemory that relates visual concepts in a memory module.

This mechanism is similar to the memory popular in meta

learning [42, 32]. We denote the resulting feature meta

embedding vmeta, and it is fed to the last layer for clas-

sification. Both our memory feature vmemory and meta-

embedding vmeta depend on direct feature vdirect.
Unlike the direct feature, the memory feature captures

visual concepts from training classes, retrieved from a

memory with a much shallower model.
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Learning Visual Memory M . We follow [21] on class

structure analysis and adopt discriminative centroids as the

basic building block. Let M denote the visual memory of

all the training data, M = {ci}
K
i=1

where K is the number

of training classes. Compared to alternatives [56, 48],

this memory is appealing for our OLTR task: It is almost

effortlessly and jointly learned alongside the direct features

{vdirectn }, and it considers both intra-class compactness and

inter-class discriminativeness.

We compute centroids in two steps. 1) Neighborhood

Sampling: We sample both intra-class and inter-class ex-

amples to compose a mini-batch during training. These

examples are grouped by their class labels and the centroid

ci of each group is updated by the direct feature of this mini-

batch. 2) Propagation: We alternatively update the direct

feature vdirect and the centroids to minimize the distance

between each direct feature and the centroid of its group

and maximize the distance to other centroids.

Composing Memory Feature vmemory . For an input

image, vmemory shall enhance its direct feature when there

is not enough training data (as in the tail class) to learn

it well. The memory feature relates the centroids in the

memory, transferring knowledge to the tail class:

vmemory = oTM :=

K∑

i=1

oici, (1)

where o ∈ R
K is the coefficients hallucinated from the di-

rect feature. We use a lightweight neural network to obtain

the coefficients from the direct feature, o = Thal(v
direct).

Obtaining Dynamic Meta-Embedding. vmeta combines

the direct feature and the memory feature, and is fed to the

classifier for the final class prediction (Fig. 3):

vmeta = (1/γ) · (vdirect + e⊗ vmemory), (2)

where ⊗ denotes element-wise multiplication. γ > 0 is

seemingly a redundant scalar for the closed-world clas-

sification tasks. However, in the OLTR setting, it plays

an important role in differentiating the examples of the

training classes from those of the open-set. γ measures the

reachability [43] of an input’s direct feature vdirect to the

memory M — the minimum distance between the direct

feature and the discriminative centroids:

γ := reachability(vdirect,M) = min
i

‖vdirect − ci‖2. (3)

When γ is small, the input likely belongs to a training

class from which the centroids are derived, and a large

reachability weight 1/γ is assigned to the resulting meta-

embedding vmeta. Otherwise, the embedding is scaled

down to an almost all-zero vector at the extreme. Such a

property is useful for encoding open classes.

(a) Embedding of Plain ResNet Model

Tail Class ‘African Grey’

Head Class ‘Buckeye’

(b) Embedding of Dynamic Meta-Embedding

Tail Class ‘African Grey’

Head Class ‘Buckeye’

Figure 3: t-SNE feature visualization of (a) plain ResNet

model (b) our dynamic meta-embedding. Ours is more

compact for both head and tail classes.

We now describe the concept selector e in Eq. (2). The

direct feature is often good enough for the data-rich head

classes, whereas the memory feature is more important for

the data-poor tail classes. To adaptively select them in a

soft manner, we learn a lightweight network Tsel(·) with a

tanh(·) activation function:

e = tanh(Tsel(v
direct)). (4)

3.2. Modulated Attention

While dynamic meta-embedding facilitates feature shar-

ing between head and tail classes, it is also vital to discrim-

inate between them. The direct feature vdirect, e.g., the

activation at the second-to-the-last layer in ResNet [18], is

able to fulfill this requirement to some extent. However, we

find it beneficial to further enhance it with spatial attention,

since discriminative cues of head and tail classes seem to be

distributed at different locations in the image.

Specifically, we propose modulated attention to encour-

age samples of different classes to use different contexts.

Firstly, we compute a self-attention map SA(f) from the

input feature map by self-correlation [52]. It is used

as contextual information and added back (through skip

connections) to the original feature map. The modulated

attention MA(f) is then designed as conditional spatial

attention applied to the self-attention map: MA(f) ⊗
SA(f), which allows examples to select different spatial

contexts (Fig. 4). The final attention feature map becomes:

fatt = f +MA(f)⊗ SA(f), (5)

where f is a feature map in CNN, SA(·) is the self-

attention operation, and MA(·) is a conditional attention

function [50] with a softmax normalization. Sec. 4.1 shows

empirically that our attention design achieves superior

performance than the common practice of applying spatial

attention to the input feature map. This modulated attention

(Fig. 4b) could be plugged into any feature layer of a CNN.

Here, we modify the last feature map only.

3.3. Learning

Cosine Classifier. We adopt the cosine classifier [35, 13]

to produce the final classification results. Specifically, we
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Figure 4: Modulated attention is spatial attention applied

on self-attention maps (“attention on attention”). It encour-

ages different classes to use different contexts, which helps

maintain the discrimination between head and tail classes.

normalize the meta-embeddings {vmeta
n }, where n stands

for the n-th input as well as the weight vectors {wi}
K
i=1

of

the classifier φ(·) (no bias term):

vmeta
n =

‖vmeta
n ‖2

1 + ‖vmeta
n ‖2

·
vmeta
n

‖vmeta
n ‖

,

wk =
wk

‖wk‖
.

(6)

The normalization strategy for the meta-embedding is a

non-linear squashing function [40] which ensures that vec-

tors of small magnitude are shrunk to almost zeros while

vectors of big magnitude are normalized to the length

slightly below 1. This function helps amplify the effect of

the reachability γ (cf. Eq. (2)).

Loss Function. Since all our modules are differentiable,

our model can be trained end-to-end by alternatively updat-

ing the centroids {ci}
K
i=1

and the dynamic meta-embedding

vmeta
n . The final loss function L is a combination of the

cross-entropy classification loss LCE and the large-margin

loss between the embeddings and the centroids LLM :

L =

N∑

n=1

LCE(v
meta
n , yn)+λ ·LLM (vmeta

n , {ci}
K
i=1

), (7)

where λ is set to 0.1 in our experiments via observing the

accuracy curve on validation set.

4. Experiments

Datasets. We curate three open long-tailed benchmarks,

ImageNet-LT (object-centric), Places-LT (scene-centric),

and MS1M-LT (face-centric), respectively.

1. ImageNet-LT: We construct a long-tailed version of the

original ImageNet-2012 [7] by sampling a subset follow-

ing the Pareto distribution with the power value α=6.

Overall, it has 115.8K images from 1000 categories,

with maximally 1280 images per class and minimally

5 images per class. The additional classes of images in

ImageNet-2010 are used as the open set. We make the

test set balanced.

2. Places-LT: A long-tailed version of Places-2 [60] is

constructed in a similar way. It contains 184.5K images

from 365 categories, with the maximum of 4980 images

per class and the minimum of 5 images per class. The

gap between the head and tail classes are even larger

than ImageNet-LT. We use the test images from Places-

Extra69 as the additional open-set.

3. MS1M-LT: To create a long-tailed version of the MS1M-

ArcFace dataset [14, 8], we sample images for each iden-

tity with a probability proportional to the image numbers

of each identity. It results in 887.5K images and 74.5K

identities, with a long-tailed distribution. To inspect the

generalization ability of our approach, the performance

is evaluated on the MegaFace benchmark [23], which

has no identity overlap with MS1M-ArcFace.

Network Architectures. Following [16, 53, 13], we em-

ploy the scratch ResNet-10 [18] as our backbone network

for ImageNet-LT. To make a fair comparison with [55],

the pre-trained ResNet-152 [18] is used as the backbone

network for Places-LT. For MS1M-LT, the popular pre-

trained ResNet-50 [18] is the backbone network.

Evaluation Metrics. We evaluate the performance of each

method under both the closed-set (test set contains no

unknown classes) and open-set (test set contains unknown

classes) settings to highlight their differences. Under each

setting, besides the overall top-1 classification accuracy [13]

over all classes, we also calculate the accuracy of three

disjoint subsets: many-shot classes (classes each with

over training 100 samples), medium-shot classes (classes

each with 20∼100 training samples) and few-shot classes

(classes under 20 training samples). This helps us un-

derstand the detailed characteristics of each method. For

the open-set setting, the F-measure is also reported for a

balanced treatment of precision and recall following [2].

For determining open classes, the softmax probability

threshold is initially set as 0.1, while a more detailed

analysis is provided in Sec. 4.3.

Competing Methods. We choose for comparison state-

of-the-art methods from different fields dealing with the

open long-tailed data, including: (1) metric learning: Lifted

Loss [33], (2) hard negative mining: Focal Loss [27],

(3) feature regularization: Range Loss [59], (4) few-shot

learning: FSLwF [13], (5) long-tailed modeling: Meta-

ModelNet [55], and (6) open-set detection: Open Max [2].

We apply these methods on the same backbone networks

as ours for a fair comparison. We also enable them with

class-aware mini-batch sampling [47] for effective learning.

Since Model Regression [54] and MetaModelNet [55] are
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Figure 5: Results of ablation study. Dynamic meta-embedding contributes most

on medium-shot and few-shot classes while modulated attention helps maintain the

discrimination of many-shot classes. (The performance is reported with open-set top-1
classification accuracy on ImageNet-LT.)

Method Error (%)

Softmax Pred. [19] 43.6

Ours 29.9

ODIN [26]† 24.6

Ours† 18.0

Table 2: Open class detec-

tion error (%) comparison.

It is performed on the stan-

dard open-set benchmark, CI-

FAR100 + TinyImageNet (re-

sized). “†” denotes the setting

where open samples are used to

tune algorithmic parameters.

the most related to our work, we directly contrast our results

to the numbers reported in their paper.

4.1. Ablation Study

We firstly investigate the merit of each module in our

framework. The performance is reported with open-set top-

1 classification accuracy on ImageNet-LT.

Effectiveness of the Dynamic Meta-Embedding. Recall

that the dynamic meta-embedding consists of three main

components: memory feature, concept selector, and con-

fidence calibrator. From Fig. 5 (b), we observe that the

combination of the memory feature and concept selector

leads to large improvements on all three shots. It is

because the obtained memory feature transfers useful visual

concepts among classes. Another observation is that the

confidence calibrator is the most effective on few-shot

classes. The reachability estimation inside the confidence

calibrator helps distinguish tail classes from open classes.

Effectiveness of the Modulated Attention. We observe

from Fig. 5 (a) that, compared to medium-shot classes, the

modulated attention contributes more to the discrimination

between many-shot and few-shot classes. Fig. 5 (c) further

validates that the modulated attention is more effective

than directly applying spatial attention on feature maps. It

implies that adaptive contexts selection is easier to learn

than the conventional feature selection.

Effectiveness of the Reachability Calibration. To further

demonstrate the merit of reachability calibration for open-

world setting, we conduct additional experiments following

the standard settings in [19, 26] (CIFAR100 + TinyIma-

geNet(resized)). The results are listed in Table 2, where

our approach shows favorable performance over standard

open-set methods [19, 26].

4.2. Result Comparisons

We extensively evaluate the performance of various

representative methods on our benchmarks.
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Figure 6: The absolute F1 score of our method over the

plain model. Ours has across-the-board performance gains

w.r.t. many/medium/few-shot and open classes.

ImageNet-LT. Table 3 (a) shows the performance com-

parison of different methods. We have the following

observations. Firstly, both Lifted Loss [33] and Focal

Loss [27] greatly boost the performance of few-shot classes

by enforcing feature regularization. However, they also

sacrifice the performance on many-shot classes since there

are no built-in mechanism of adaptively handling samples

of different shots. Secondly, OpenMax [2] improves the

results under the open-set setting. However, the accuracy

degrades when it is evaluated with F-measure, which

considers both precision and recall in open-set. When

the open classes are compounded with the tail classes,

it becomes challenging to perform the distribution fitting

that [2] requires. Lastly, though the few-shot learning

without forgetting approach [13] retains the many-shot class

accuracy, it has difficulty dealing with the imbalanced base

classes which are lacked in the current few-shot paradigm.

As demonstrated in Fig. 6, our approach provides a compre-

hensive treatment to all the many/medium/few-shot classes

as well as the open classes, achieving substantial improve-

ments on all aspects.

Places-LT. Similar observations can be made on the Places-

LT benchmark as shown in Table 3 (b). With a much

stronger baseline (i.e. pre-trained ResNet-152), our ap-

proach still consistently outperforms other alternatives un-
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Backbone Net closed-set setting open-set setting

ResNet-10 > 100 6 100 & > 20 < 20 > 100 6 100 & > 20 < 20

Methods Many-shot Medium-shot Few-shot Overall Many-shot Medium-shot Few-shot F-measure

Plain Model [18] 40.9 10.7 0.4 20.9 40.1 10.4 0.4 0.295

Lifted Loss [33] 35.8 30.4 17.9 30.8 34.8 29.3 17.4 0.374

Focal Loss [27] 36.4 29.9 16 30.5 35.7 29.3 15.6 0.371

Range Loss [59] 35.8 30.3 17.6 30.7 34.7 29.4 17.2 0.373

+ OpenMax [2] - - - - 35.8 30.3 17.6 0.368

FSLwF [13] 40.9 22.1 15 28.4 40.8 21.7 14.5 0.347

Ours 43.2 35.1 18.5 35.6 41.9 33.9 17.4 0.474

(a) Top-1 classification accuracy on ImageNet-LT.

Backbone Net closed-set setting open-set setting

ResNet-152 > 100 6 100 & > 20 < 20 > 100 6 100 & > 20 < 20

Methods Many-shot Medium-shot Few-shot Overall Many-shot Medium-shot Few-shot F-measure

Plain Model [18] 45.9 22.4 0.36 27.2 45.9 22.4 0.36 0.366

Lifted Loss [33] 41.1 35.4 24 35.2 41 35.2 23.8 0.459

Focal Loss [27] 41.1 34.8 22.4 34.6 41 34.8 22.3 0.453

Range Loss [59] 41.1 35.4 23.2 35.1 41 35.3 23.1 0.457

+ OpenMax [2] - - - - 41.1 35.4 23.2 0.458

FSLwF [13] 43.9 29.9 29.5 34.9 38.1 19.5 14.8 0.375

Ours 44.7 37 25.3 35.9 44.6 36.8 25.2 0.464

(b) Top-1 classification accuracy on Places-LT.

Table 3: Benchmarking results on (a) ImageNet-LT and (b) Places-LT. Our approach provides a comprehensive treatment

to all the many/medium/few-shot classes as well as the open classes, achieving substantial advantages on all aspects.

Backbone Net MegaFace Identification Rate

ResNet-50 > 5 < 5 & > 2 < 2 & > 1 = 0 Sub-Groups

Methods Many-shot Few-shot One-shot Zero-shot Full Test Male Female

Plain Model [18] 80.64 71.98 84.60 77.72 73.88 78.30 78.70

Range Loss [59] 78.60 71.36 83.14 77.40 72.17 - -

Ours 80.82 72.44 87.60 79.50 74.51 79.04 79.08

Method Acc.

Plain Model [18] 48.0

Cost-Sensitive [22] 52.4

Model Reg. [54] 54.7

MetaModelNet [55] 57.3

Ours 58.7

Table 4: Benchmarking results on MegaFace (left) and SUN-LT (right). Our approach achieves the best performance on

natural-world datasets when compared to other state-of-the-art methods. Furthermore, our approach achieves across-board

improvements on both ‘male’ and ‘female’ sub-groups.

der both the closed-set and open-set settings. The advantage

is even more profound under the F-measure.

MS1M-LT. We train on the MS1M-LT dataset and report

results on the MegaFace identification track, which is a

standard benchmark in the face recognition field. Since the

face identities in the training set and the test set are disjoint,

we adopt an indirect way to partition the testing set into

the subsets of different shots. We approximate the pseudo

shots of each test sample by counting the number of training

samples that are similar to it by at least a threshold (feature

similarity greater than 0.7). Apart from many-shot, few-

shot, one-shot subsets, we also obtain a zero-shot subset,

for which we cannot find any sufficiently similar samples in

the training set. It can be observed that our approach has

the most advantage on one-shot identities (3.0% gains) and

zero-shot identities (1.8% gains) as shown in Table 4 (left).

SUN-LT. To directly compare with [54] and [55], we also

test on the SUN-LT benchmark they provided. The final

results are listed in Table 4 (right). Instead of learning a

series of classifier transformations, our approach transfers

visual knowledge among features and achieves a 1.4%
improvement over the prior best. Note that our approach

also incurs much less computational cost since MetaModel-

Net [55] requires a recursive training procedure.

Indication for Fairness. Here we report the sensitive

attribute performance on MS1M-LT. The last two columns

in Table 4 show that our approach achieves across-board

improvements on both ‘male’ and ‘female’ sub-groups,

which has an implication for effective fairness learning.

4.3. Further Analysis

Finally we visualize and analyze some influencing as-

pects in our framework as well as typical failure cases.

What memory feature has Infused. Here we inspect

the visual concepts that memory feature has infused by

visualizing its top activating neurons as shown in Fig. 7.

Specifically, for each input image, we identify its top-3
transferred neurons in memory feature. And each neuron is
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Figure 7: Examples of the top-3 infused visual concepts from memory feature. Except for the bottom right failure case

(marked in red), all the other three input images are misclassified by the plain model and correctly classified by our model.

For example, to classify the top left image which belongs to a tail class ‘cock’, our approach has learned to transfer visual

concepts that represents “bird head”, “round shape” and “dotted texture” respectively.

Figure 8: The influence of (a) dataset longtail-ness, (b)

open-set probability threshold, and (c) the number of

open classes. As the dataset becomes more imbalanced,

our approach only undergoes a moderate performance drop.

Our approach also demonstrates great robustness to the

contamination of open classes.

visualized by a collection of highest activated patches [58]

over the whole training set. For example, to classify

the top left image which belongs to a tail class ‘cock’,

our approach has learned to transfer visual concepts that

represents “bird head”, “round shape” and “dotted texture”

respectively. After feature infusion, the dynamic meta-

embedding becomes more informative and discriminative.

Influence of Dataset Longtail-ness. The longtail-ness of

the dataset (e.g. the degree of imbalance of the class dis-

tribution) could have an impact on the model performance.

For faster investigating, here the weights of the backbone

network are freezed during training. From Fig. 8 (a), we

observe that as the dataset becomes more imbalanced (i.e.

power value α decreases), our approach only undergoes

a moderate performance drop. Dynamic meta-embedding

enables effective knowledge transfer among data-abundant

and data-scarce classes.

Influence of Open-Set Prob. Threshold. The performance

change w.r.t. the open-set probability threshold is demon-

strated in Fig. 8 (b). Compared to the plain model [18] and

range loss [59], the performance of our approach changes

steadily as the open-set threshold rises. The reachability

estimator in our framework helps calibrate the sample

confidence, thus enhancing robustness to open classes.

Influence of the Number of Open Classes. Finally we

investigate performance change w.r.t. the number of open

classes. Fig. 8 (c) indicates that our approach demonstrates

great robustness to the contamination of open classes.

Failure Cases. Since our approach encourages the feature

infusion among classes, it slightly sacrifices the fine-grained

discrimination for the promotion of under-representative

classes. One typical failure case of our approach is the con-

fusion between many-shot and medium-shot classes. For

example, the bottom right image in Fig. 7 is misclassified

into ‘airplane’ because some cross-category traits like “nose

shape” and “eye shape” are infused. We plan to explore

feature disentanglement [4] to alleviate this trade-off issue.

5. Conclusions

We introduce the OLTR task that learns from natural

long-tail open-end distributed data and optimizes the overall

accuracy over a balanced test set. We propose an integrated

OLTR algorithm, dynamic meta-embedding, in order to

share visual knowledge between head and tail classes and to

reduce confusion between tail and open classes. We validate

our method on three curated large-scale OLTR benchmarks

(ImageNet-LT, Places-LT and MS1M-LT). Our publicly

available code and data would enable future research that

is directly transferable to real-world applications.
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